⑴ 电镀废水怎么处理
电镀生产排出的废水或废液的处理。电镀工厂排出的废水和废液中含有大量金属离子如:铬、镐、镍,含氰,含酸,含碱,一般常含有有机添加剂。金属离子有的以简单的阳离子形式存在,有的则以酸根阴离于形式存在,有的以复杂的络合离子存在。电镀废水处理常用中和沉淀法、中和混凝沉淀法、氧化法、还原法、钡盐法、铁氧体法等化学方法。化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。
⑵ 求一篇关于“电化学方法,在污水处理方面的运用”
电镀废水处理技术的重大突破
—微波处理工艺(MWTD)的问世
MWTD是一种新型的电镀废水处理技术, 其工艺过程由化学反应、催化反应和物理反应的组成。电镀废水中以各种重金属、氰化物和COD为主要污染物,现有化学沉淀法工艺过程的控制要求较高、适应性不强,难以对电镀废水的处理实现稳定的达标排放,尤其是预处理要求高的生产线排放出的较高COD的电镀混合废水。
微波污水处理技术的基础是“极性分子理论”及“电磁原理”。微波对流体中物质进行选择性馈能,使场内吸波物质的电子加速运动碰撞;而污染物离子在微波场作用下定向排列,减轻或破除电子之间的络合、螯合健能,磁化胶体内粒子从而达到低温催化和加速流体中固、液分离作用;对场内物质的高频振荡从而达到低温杀菌作用,使废水中的有机污质BOD5、CODcr、NH3-N、磷酸盐和硫化物及重金属等转化为沉淀或部分完成了污染物分子形式的转化,经快速沉淀、过滤,从而使污水得以净化。
MWTD电镀废水处理工艺由广州九松源环保科技公司研发,该技术已申报了多项发明专利,能高效的去除电镀废水中的各种污染物并实现稳定达标排放。MWTD的出现是电镀废水处理技术的重大突破!
●技术来源
微波技术起源于20世纪30年代,最初应用于通信领域。我国于1973年研制成功了915MHz和2450MHz两个频段的磁控管(微波管),其生产的微波源已能供工业化生产的需要。微波技术在环境保护领域的应用则鲜有探讨。随着工业的发展,环境污染越来越严重,人们也在不断寻求新技术以便更有效解决环境问题。直到最近十几年,人们才开始注意到微波技术在环境保护领域的潜力.1986年,微波能开始被应用于水处理的研究中。至1992年,国内首先设计生产出世界上第一台“多功能工业微波炉”,经过多位科学家的共同努力,于1999年“多功能工业微波炉”取得突破性进展,获得成功,并取得了良好的效果。现已成功运用于废气、废水、固体废气物的处理及环境监测等方面.在此基础上,我公司更进一步完善和设计生产出工业化微波能水处理机组设备,并形成了微波化学污水处理技术工艺。该技术在环境保护领域具有广泛的应用前景。
我国微波功率应用技术取得了初步成绩。其主要标志为:(1)微波加热干燥、微波食品加工和微波杀菌、杀虫已在多种工业中广泛 应用;(2)家用微波炉已形成规模生产的能力;(3)微波医疗仪的临 床应用已取得了普遍的成功;(4)在多个领域前沿课题中采用微波功率已取得了许多可喜进展,拓展新领域研究阵地,跟上了世界的步伐。
从世界各国研究动向来看,微波功率应用正处在向新领域发展 的时期,研究重点已从传统的加热干燥、 食品加工转向多个高新技 术领域。目前主要研究的领域有:微波催化化学反应、新材料微波加 工处理、微波气体放电的多种应用等。
微波化学的实验研究:该研究几乎遍及化学、化工所有领域,大 量的文选报告显示了微波电磁场可以加速化学反应,可将反应时间 缩短到原需时间的十分之一到千分之一,给化学工业引入了诱人的 前景。
我们所涉及的技术就是利用微波催化化学反应在环保领域中的应用。
现在,我公司微波污水处理技术的推广与应用已全面在广东省启动,我公司成立之初便参与多项中试并取得成效,深得好评。MWTD电镀废水处理工艺由广州九松源环保科技有限公司研发,该技术已申报了三项发明专利,能高效的去除电镀废水中的各种污染物并实现稳定达标排放。MWTD的出现是电镀废水处理技术的重大突破。MWTD是一种新型的电镀废水处理技术, 其工艺过程由化学反应、催化反应和物理反应的组成。电镀废水中以各种重金属、氰化物和COD为主要污染物,现有化学沉淀法工艺过程的控制要求较高、适应性不强,尤其是对预处理要求高的生产线排放出的较高COD的电镀混合废水,难以实现稳定的达标排放。
微波能水处理技术在水处理中的应用效果,经专家、学者现场检测认定,该技术是水处理领域的一项技术革命,与传统工艺方法相比具有十大优势:
1、可有效地调整和提高可生化性条件。
2、可同时高效的处理各类重金属和高COD的电镀混合废水并实现稳定达标排放。
3、能很好的解决由于含氰、含铬废水混排而引起的氰化物或六价铬超标的问题。
4、工艺过程中药剂的利用效率高、直接处理费用较化学沉淀法低10~35%。
5、工艺过程中的响影因素少,过程控制简单和准确、操作运行管理方便。
6、工程占地面积小,约为化学沉淀法的20~50%。
7、工艺设备的扩展性强,主要设备可拆迁、并联,避免重复投资与建设。
8、处理后的出水,各种重金属离子的浓度远低于排放标准,有利于中水回用等后续深度处理工艺的正常运行以及有效降低后续深度处理处理费用。
9、污泥的沉降性能好,其沉淀速度是传统工艺的3~4倍;污泥的含水率低,为96~98%;污泥的脱水性能良好。
10、具有良好的杀菌除臭能功,经处理后出水细菌总数可直接达到废水排放要求。
其优点,必将使水治理事业发生深刻的变化,产生轰动性社会效益、经济效益和环境效益。
微波能水处理技术广泛适用于印染污水、电镀污水、造纸废水、洗水厂污水、石化污水、酒精制糖污水、淀粉厂污水、填埋场浸出液、生禽养殖屠宰场废水、市政污水、选矿提炼厂污水等等。
●技术原理
二、 技术原理
2.1微波概述
微波是指波长为1mm~1m,频率为300MHz~300000MHz的电磁波,由于微波的频率很高,所以亦称超高频电磁波。微波频段的具体划分见表1。
表1微波频段范围
频率范围/MHz波段中心波长/m常用主频率/MHz波长/m
890~940L0.3309150.328
2400~2500S0.12224500.122
5725~5875C0.05258000.052
22000~22250K0.014221250.014
注:目前只有915MHz和2450MHz被广泛应用,在较高的两个频段还没有合适的大功率工业设备。
2.2微波化学污水处理技术原理
微波能水处理技术基础是“极性分子理论”及“电磁原理”。微波对流体中物质进行选择性馈能,使场内吸波物质的电子加速运动碰撞;而污染物离子在微波场作用下定向排列,减轻或破除电子之间的络合、螯合健能,磁化胶体内粒子从而达到低温催化和加速流体中固、液分离作用;对场内物质的高频振荡从而达到低温杀菌作用,使废水中的有机污质BOD5、CODcr、NH3-N、磷酸盐和硫化物及重金属等转化为沉淀或部分完成了污染物分子形式的转化,经快速沉淀、过滤,使污水得于净化。
微波在处理水中污染物的同时,也能杀灭水中的细菌、藻类等微生物。其作用原理是:由于微波辐射的热效应,即微波辐射场照射生物体,引起生物体组织器官的加热作用而产生的生理影响和抑制、伤害作用。组成细胞的极性分子在外加微波场的作用下升温发热,从而导致组织温度有一定程度的升高。当微波源功率密度较大,生物体产热过多,超过了体温调节能力时,生物体的温度平衡功能失调,体温上升,于是生物体发生生理功能紊乱并发生病理变化,进而死
四、 设备
微波能水处理技术设备由添加剂混合装置、微波源和微波反应器三部分组成,其核心是微波反应器(以下简称反应器),见图5。微波源及反应器由反应器主体与二台20千瓦微波源组成,是根据微波能加热物质的原理,使吸波物质在微波场中经过加热物化、低温催化、高频穿透等作用,并使加入添加剂后的水中污染物生成速沉絮体物,经固液分离后去除。而反应器装置的主要性能是:①反应器中的化学反应速度、工作压力、温度等可控制;②在反应器的密闭条件下,实现连续给排物料,且数量可调控;③微波能输入功率大小可连续调控,并绝对屏蔽、安全。其主要指标是:①反应器内压力调控范围为0.085~0.098Mpa;②反应器中被加热物质温度调控范围为室温~90°C;③反应器中物料处理量可根据物料性质、实现工艺目标而进行系统设计。
●技术特点
MWTD法具有十大优势:
1、可有效地调整和提高可生化性条件。
2、可同时高效的处理各类重金属和高COD的电镀混合废水并实现稳定达标排放。
3、能很好的解决由于含氰、含铬废水混排而引起的氰化物或六价铬超标的问题。
4、工艺过程中药剂的利用效率高、直接处理费用较化学沉淀法低10~35%。
5、工艺过程中的响影因素少,过程控制简单和准确、操作运行管理方便。
6、工程占地面积小,约为化学沉淀法的20~50%。
7、工艺设备的扩展性强,主要设备可拆迁、并联,避免重复投资与建设。
8、处理后的出水,各种重金属离子的浓度远低于排放标准,有利于中水回用等后续深度处理工艺的正常运行以及有效降低后续深度处理处理费用。
9、污泥的沉降性能好,其沉淀速度是传统工艺的3~4倍;污泥的含水率低,为96~98%;污泥的脱水性能良好。
10、具有良好的杀菌除臭能功,经处理后出水细菌总数可直接达到废水排放要求。
●MWTD法的应用与展望
鉴于其技术原理和技术特点,MWTD法除能有效处理电镀废水外,在以下几类废水中可望得到成功的运用或与传统工艺进行优化组合进行污水净化处理,从而达到稳定的净化效果。
1、废水除磷:低浓度COD和高含磷酸盐的废水,对BOD/TP没有要求,可采用MWTD技术“一步法”实现除磷、COD等,实现达标排放,已成功完成了中试。
2、高难(浓)度有机废水的处理:对可生化差、有毒有害的有机废水,选用MWTD技术进行预处理去除大部分的COD,同时可提高废水的可生化性,有利于减少工艺负荷和提高废水处理工艺的运行质量。
3、线路版废水:只需对显影、脱膜等高浓度废水进行相应的预处理后,即可采用类似电镀废水的处理工艺进行有效地处理,可确保实现达标排放或再进行深度处理实现回用。已成功完成了中试。
4、医院污水:可实现成套设备完成医院污水的达标处理,无需投加消毒剂即可达到杀菌消毒的效果。
5、微污染水源的处理:采用微波技术,可同时实现COD、总磷和氨氮的净化,提高微污染水源的水质,运行费用和操作运行管理等具有明显的优势。
●结论
经大量实践证明:微波能水处理技术对水中污染物有显著的去除效果。出水中的色度、硫化物、悬浮物、CODcr、BOD5、挥发酚和总磷等去除率在80%以上;利用有效的传统工艺衔接可以使出水中的氨氮和阴离子洗涤剂达到排放要求。可以有效地调整和提高废水的可生化性,有利于减少工艺负荷和提高废水处理工艺的运行质量。处理后的出水,各种重金属离子的浓度远低于排放标准,有利于中水回用等后续深度处理工艺的正常运行以及有效降低后续深度处理处理费用。处理后水中的速沉絮体物的沉降速率为0.7cm/min,污泥的沉降性能好,其沉淀速度是传统工艺的3~4倍;污泥的含水率低,为96~98%;污泥的脱水性能良好。具有良好的杀菌除臭能功,经处理后出水细菌总数可直接达到废水排放要求。工艺设备的扩展性强,主要设备可拆迁、并联,避免重复投资与建设。工程占地面积小,约为传统工艺法的20~50%。工艺过程中药剂的利用效率高、直接处理费用较化学沉淀法低10~35%。工艺过程中的响影因素少,过程控制简单和准确、操作运行管理方便处理后检测项目符合《污水综合排放标准》(GB8978-1996)中的一级标准要求。另经有关权威专业部门检测,其微波漏能远远低于国家标准,证明其对人体绝对安全可靠。微波能水处理技术在国内外无先例,处于世界先进水平。
微波能水处理技术在治理江河湖泊,净化水体,改善水资源生态环境方面独具特点,可快速去污、高效杀菌,可靠除藻,达到去浊变清的目的,对水体不产生二次污染。将污水逐渐置换澄清,生成絮体物,快速沉降,覆盖于底部污泥层上,防止水质的进一步恶化。
微波能水处理技术在海水淡化的应用上有特别的优势,为低成本的扩展人类淡水资源做出巨大的贡献。
为保护人类赖以生存的自然生态环境,彻底解决水资源问题,保护我们的绿色家园,让微波能水处理技术把不可能变成可能!
⑶ 如何处理电镀废水
电镀生产排出的废水或废液的处理。
电镀工厂排出的废水和废液中含有大量金属离子如:铬、镐、镍,含氰,含酸,含碱,一般常含有有机添加剂。
金属离子有的以简单的阳离子形式存在,有的则以酸根阴离于形式存在,有的以复杂的络合离子存在。
电镀废水处理常用中和沉淀法、中和混凝沉淀法、氧化法、还原法、钡盐法、铁氧体法等化学方法。
化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。
⑷ 电镀废水常用的处理方法
电镀废水常用的方法有哪些?
电解:高能耗、高能耗、高铁耗,高专浓度含铬废水产生的污泥属过多,不宜采用。同时,含氰废水处理不理想,应采用化学法处理含氰废水。
化学试剂+气浮法:采用化学试剂氧化还原中和气浮分离污泥与水。由于电镀污泥比例大,废水中含有多种有机添加剂,气浮在实际应用中不彻底,运行管理不便。到90年代末,气浮法的应用越来越少。
化学品+沉淀:该方法是第一种采用,经过30多年的实际使用比较,采用不同的处理工艺。目前,已恢复到很早、有效的工艺技术中来。这种方法在国外电镀处理中应用较多。但是,经过长时间的固液分离,沉淀池中的污泥会发生翻身,出水很难保证标准的稳定性。
生物处理工艺:水量少、单一镀种的操作效果高,许多大型项目的使用非常不稳定,因为水质和水量难以恒定,微生物难以适应水温、物种、重金属离子浓度的变化。而pH值,大量微生物瞬间死亡,发生环境污染事故,细菌培养不容易。
膜分离法:是利用高分子所具有的选择性来进行物质分离的技术,包括电渗析、反渗透、膜萃取、超过滤等。用电渗析法处理电镀产业废水,处理后废水组成不变,有利于回收使用。
⑸ 电镀废水怎么处理
1、化学沉淀法,在含重金属的废水中加入碱、硫化物,使废水中的重金属成分生成沉淀,从而轻易去除沉淀物;2、氧化法,加入氧化剂,使废水中的有毒物质化成无毒或者低毒物质;3、生物法,利用离子交换或者膜分离等方法去除废水中的杂质;4、电解法,电解作用能去除多种金属离子,净化效果较好。
电镀废水处理常用中,化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。
电镀污水的治理在国内外普遍受到重视,已研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少污染物的排放量。
随着电镀工业的快速发展和环保要求的日益提高,电镀污水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。
⑹ 电镀污泥处理技术|电镀污泥烘干技术
电镀污泥处理和回收技术
电镀污泥是电镀废水处理过程中产生的排放物, 其中含有大量的铬、镉、镍、锌等有毒重金属, 成分十分复杂。在我国《国家危险废物名录》(环发[1998]89号) 所列出的47类危险废物中, 电镀污泥占了其中的7大类, 是一种典型的危险废物。目前, 由于我国电镀行业存在厂点多、规模小、装备水平低及污染治理水平低等诸多问题, 大部分电镀污泥仍只是进行简单的土地填埋, 甚至随意堆放, 对环境造成了严重污染。因此, 如何采取有效的技术处理凯散处置电镀污泥, 并实现其稳定化、无害化和资源化, 一直都是国内外的研究重点。
1、电镀污泥的固化/稳定化技术
目前, 电镀污泥的固化/稳定化研究主要集中在固化块体稳定化过程的机理和微观机制等方面。Roy 等以普游孙态通硅酸盐水泥作为固化剂, 系统地研究了含铜电镀污泥与干扰物质硝酸铜的加入对水泥水化产物长期变化行为的影响, 发现硝酸铜与含铜电镀污泥对水泥水化产物的结晶性、孔隙度、重金属的形态及pH 等微量化学和微结构特征都有重要的影响, 如固化体的pH 随硝酸铜添加量的增加而呈明显的下降趋势, 孔隙度则随硝酸铜添加量的增加而增大。Asavapisit 等[3]研究了水泥、水泥和粉煤灰固化系统对电镀污泥的固化作用, 分析了固化体的抗压强度、淋滤特性及微结构等的变化特性, 发现电镀污泥能明显降低两系统最终固化块体的抗压强度, 原因是覆盖在胶凝材料表面上的电镀污泥抑制了固化系统的水化作用, 但粉煤灰的加入不仅能使这种抑制作用最小化, 而且还能降低固化体中铬的浸出率, 原因可能是粉煤灰部分取代高碱度的水泥后, 使混合系统的碱度降到了有利于重金属氢氧化物稳定化的水平。
Sophia 等认为, 单一水泥处理电镀污泥的抗压强度优于水泥和粉煤灰混合系统, 但只要水泥与粉煤灰的配比适宜, 同样能满足对铬的固化需要。而固化过程中粉煤灰的使用对铜的长期稳定性并无益处。
添加剂的使用能改善电镀污泥的固化效果。在电镀污泥的固化处置中, 根据有害物质的性质, 加入适当的添加剂, 可提高固化效果, 降低有害物质的溶出率, 节约水泥用量, 增加固化块强度。在以水泥为固化剂的固化法中使用的添加剂种类繁多, 作用也不同, 常见的有活性氧化铝、硅酸钠、硫酸钙、碳酸钠、活性谷壳灰等。
2、电镀污泥的热化学处理技术
热化学处理技术(如焚烧、离子电弧及微波等) 是在高温条件下对废物进行分解, 使其中的某些剧毒成分毒性降低, 实现快速、显著地减容, 并对废物的有用成分加以利用。近年来, 利用热化学处理技术实现对危险废物电镀污泥的预处理或安全处置正引起人们的重视。
目前, 有关电镀污泥热化学处理技术的研究, 以对在焚烧处理电镀污泥过程中重金属的迁移特性等问题的研究比较突出。Espinosa 等对电镀污泥在炉内焚烧过程的热特性及其中重金属的迁移规律进行了研究, 发现焚烧能有效富集电镀污泥中的铬, 灰渣中铬的残留率高达99%以上, 而在焚烧过程中, 绝大部分污泥组分以CO2,H2O,SO2等形态散失, 因此减容减重效果非常明显, 减重可达34%。Barros 等利用水泥回转窑对混合焚烧电镀污泥过程进行了研究, 分析了添加氯化物(KCl,NaCl等) 对电镀污泥神源中Cr2O3和NiO 迁移规律的影响, 认为氯化物对Cr2O3和NiO 在焚烧灰渣中的残留情况几乎没有任何影响, 焚烧过程中Cr2O3和NiO 都能被有效地固化在焚烧残渣中。刘刚等利用管式炉模拟焚烧炉研究电镀污泥的热处置特性时, 分析了铬、锌、铅、铜等多种重金属的迁移特性, 认为焚烧温度在700℃以下时, 污泥中的水分、有机质和挥发分就能被很好地去除, 且高温能有效抑制污泥中重金属的浸出, 但这种抑制对各种重金属的影响各不相同, 如镍是不挥发性重金属, 在焚烧灰渣中的残留率为100%,铬在灰渣中的残留率也高达97%以上, 而锌、铅、铜的析出率则随焚烧温度的升高而有不同程度的增大。
在离子电弧、微波等其他热化学处理研究方面,Ramachandran 等用直流等离子电弧在不同气氛下对电镀污泥进行处理, 并对处理后的残渣及处理过程中产生的粉末进行了研究, 认为此法在实现铜、铬等有价金属回收的同时可将残渣转化成稳定的惰性熔渣。Gan 等通过微波辐射对电镀污泥进行了解毒和重金属固化实验, 发现微波辐射处理对电镀污泥中重金属离子的
固化效果显著, 原因可能是在高温干燥与电磁波的共同作用下, 有利于重金属离子同双极聚合分子之间发生强烈的相互作用而结合在一起, 而经微波处理的电镀污泥具有粒度细、比表面积高、易结团等特性。
此外, 热化学处理有利于降低电镀污泥中铬的毒性。Ku 等研究了高温热处理电镀污泥过程中铬的毒性价态变化, 认为高温热处理能将铬(Ⅵ) 转化成铬(Ⅲ), 且温度越高转化效果越明显; 在经高温处理的电镀污泥中, 主要以铬(Ⅲ) 为主。Cheng 等[16]将电镀污泥与黏土的混合物分别在900℃和1100℃的电炉中热养护4h 后, 对其中铬的价态进行了分析, 发现在经900℃热养护处理的混合物中, 铬(Ⅵ) 占有绝对优势, 而经1100℃热养护处理的混合物中, 铬则主要以铬(Ⅲ) 存在。
3、电镀污泥中有价金属的回收技术
3.1 酸浸法和氨浸法
酸浸法是固体废物浸出法中应用最广泛的一种方法, 具体采用何种酸进行浸取需根据固体废物的性质而定。对电镀、铸造、冶炼等工业废物的处理而言, 硫酸是一种最有效的浸取试剂, 因其具有价格便宜、挥发性小、不易分解等特点而被广泛使用。Silva 等以磷酸二异辛酯为萃取剂, 对电镀污泥进行了硫酸浸取回收镍、锌的研究实验。Vegli 惏等的研究显示, 硫酸对铜、镍的浸出率可达95%~100%,而在电解法回收过程中, 二者的回收率也高达94%~99%。
也可用其他酸性提取剂(如酸性硫脲) 来浸取电镀污泥中的重金属。Paula 等利用廉价工业盐酸浸取电镀污泥中的铬, 浸取时将5mL 工业盐酸(纯度为25.8%,质量浓度为1.13g/mL)添加到大约1g 预制好的试样中, 然后在150r/min的摇床上震荡30min, 铬的浸出率高达97.6%。
氨浸法提取金属的技术虽然有一定的历史, 但与酸浸法相比, 采用氨浸法处理电镀污泥的研究报道相对较少, 且以国内研究报道居多。氨浸法一般采用氨水溶液作浸取剂, 原因是氨水具有碱度适中、使用方便、可回收使用等优点。采用氨络合分组浸出-蒸氨-水解渣硫酸浸出-溶剂萃取-金属盐结晶回收工艺, 可从电镀污泥中回收绝大部分有价金属, 铜、锌、镍、铬、铁的总回收率分别大于93%,91%,88%,98%,99%。针对适于从氨浸液体系中分离铜的萃取剂难以选择的问题, 祝万鹏等开发了一种名为N510的萃取剂, 该萃取剂在煤油-H2SO4体系中能有效地回收电镀污泥氨浸液中的Cu2+,回收率高达99%。王浩东等[26]对氨浸法回收电镀污泥中镍的研究表明, 含镍污泥经氧化焙烧后得焙砂, 用NH3质量分数7%、CO2质量分数5%~7%的氨水对焙砂进行充氧搅拌浸出, 得到含Ni(NH3)4CO3的溶液, 然后对此溶液进行蒸发处理, 使Ni(NH3)4CO3转化为NiCO3·3Ni(OH)2,再于800℃锻烧即可得商品氧化镍粉。
酸浸或氨浸处理电镀污泥时, 有价金属的总回收率及同其他杂质分离的难易程度, 主要受浸取过程中有价金属的浸出率和浸取液对有价金属和杂质的选择性控制。酸浸法的主要特点是对铜、锌、镍等有价金属的浸取效果较好, 但对杂质的选择性较低, 特别是对铬、铁等杂质的选择性较差; 而氨浸法则对铬、铁等杂质具有较高的选择性, 但对铜、锌、镍等的浸出率较低。
3.2 生物浸取法
生物浸取法的主要原理是, 利用化能自养型嗜酸性硫杆菌的生物产酸作用, 将难溶性的重金属从固相溶出而进入液相成为可溶性的金属离子, 再采用适当的方法从浸取液中加以回收, 作用机理比较复杂, 包括微生物的生长代谢、吸附, 以及转化等。就目前能收集到的文献来看, 利用生物浸取法来处理电镀污泥的研究报道还比较少, 原因是电镀污泥中高含量的重金属对微生物的毒害作用大大限制了该技术在这一领域的应用。因此, 如何降低电镀污泥中高含量的重金属对微生物的毒害作用, 以及如何培养出适应性强、治废效率高的菌种, 仍然是生物浸取法所面临的一大难题[30],但也是解决该技术在该领域应用的关键。
3.3 熔炼法和焙烧浸取法
熔炼法处理电镀污泥主要以回收其中的铜、镍为目的。熔炼法以煤炭、焦炭为燃料和还原物质, 辅料有铁矿石、铜矿石、石灰石等。熔炼以铜为主的污泥时, 炉温在1300℃以上, 熔出的铜称为冰铜; 熔炼以镍为主的污泥时, 炉温在1455℃以上, 熔出的镍称为粗镍。冰铜和粗镍可直接用电解法进行分离回收。炉渣一般作建材原料。
焙烧浸取法的原理是先利用高温焙烧预处理污泥中的杂质, 然后用酸、水等介质提取焙烧产物中的有价金属。用黄铁矿废料作酸化原料, 将其与电镀污泥混合后进行焙烧, 然后在室温下用去离子水对焙烧产物进行浸取分离, 锌、镍、铜的回收率分别为60%,43%,50%。
4、电镀污泥的材料化技术
电镀污泥的材料化技术是指利用电镀污泥为原料或辅料生产建筑材料或其他材料的过程。Ract 开展了以电镀污泥部分取代水泥原料生产水泥的实验, 认为即使是含铬电镀污泥在原料中的加入量高达2%(干基质量分数) 的情况下, 水泥烧结过程也能正常进行, 而且烧结产物中铬的残留率高达99.9%。Magalh es等分析了影响电镀污泥与黏土混合物烧制陶瓷的因素, 认为电镀污泥的物化性质、预制电镀污泥与黏土混合物时的搅拌时间, 是决定陶瓷质量优劣的主导因素, 如原始电镀污泥中重金属的种类(如铝、锌、镍等) 和含量明显地决定着电镀污泥及其与黏土混合物的淋滤特性, 而预制电镀污泥与黏土混合物时, 剧烈或长时间的搅拌作用则有利于混合物的均匀化和烧结反应的进行。此外, 将电镀污泥与海滩淤泥混合可烧制出达标的陶粒。
5、结语
电镀污泥的处理一直是国内外的研究重点, 虽然有关人员在该领域已经开展了很多研究并取得了一定成果, 但仍存在许多急需解决的问题, 如传统的以水泥为主的固化技术、以回收有价金属为目的的浸取法存在对环境二次污染的风险等, 要解决这些问题必须采取新的研究途径。近年来, 利用热化学处理技术实现对电镀污泥的预处理或安全处置为未来电镀污泥的处理提供了更广阔的发展空间和前景。新近的研究显示, 热化学处理技术在电镀污泥的减量化、资源化及无害化方面都有明显的优势, 因此, 必将成为未来电镀污泥处理领域的一个重要研究方向。
然而, 由于热化学处理技术在电镀污泥处理方面的应用与研究还比较少, 许多问题还需进一步探索, 如对热化学处理电镀污泥过程中重金属的迁移特性、重金属在灰渣中的残留特性、热化学处理过程中重金属的析出特性及蒸发特性等都需要深入研究。
⑺ 电镀废水如何处理
电镀废水处理的主要方法:化学沉淀法、离子交换法、RO膜处理法、电解法、生物法、紫外线处理、蒸发法等,一般是几种方法联合处理才能达到GB21900的要求。
⑻ 电镀的废水处理电镀废水有什么处理方法
1、微电解工艺去除电镀废水处理效果:主要去除重金属离子,降低COD,脱除色度,COD去除率在百分之80以上。??电镀废水来自凹印版辊生产废水,主要来自除锈、镀铜、镀镍、镀铬等生产工序,废水中主要污染物为Cr6?,Ni2?,Cu2?和酸等重金属离子。本文主要介绍了电镀废水处理工艺和电镀废水处理方法。?电镀行业废水的污染特征?电镀行业废水水质较复杂,废水中含有铬、锌、铜、镍、镉等重金属离子以及酸、碱、氰化物等具有很大毒性的杂物。该行业废水具有以下特点:?成分复杂、污染物可分为无机污染物和有机污染物两大类。?水质变化幅度大、各股生产废水污染物种类多样,CODcr变化系数大。?废水毒性大、含有大量的重金属离子,若不经处理直接排放会对周围水体造成极大的污染。
2、铁碳微电解电镀废水处理工艺设计——微电解+芬顿?采用微电解-中和-混凝沉淀的方法对电镀废水进行处理。当微电解填料置于酸性废水中,低电位的Fe与高电位的C在废水中产生电位差,形成无数的微小原电池,反应中生成的Fe2?将Cr6?还原成Cr3,完成反应后,废水进入中和沉淀池,通过PH计和PLC系统控制加入NaOH溶液,并进行搅拌,控制废水的PH值在合适的范围,在此条件下,Cr3?,Cu2?,Ni2?,Fe3?形成氢氧化物絮凝沉淀,静置沉淀1小时后,上清液达标外排,污泥进入污泥浓缩池,经板框压滤后另行处置。
⑼ 环保越来越严格,电镀污水应该怎么处理
电镀生产排出的废水或废液的处理。电镀工厂排出的废水和废液中含有大量金属离子如:铬、镐、镍,含氰,含酸,含碱,一般常含有有机添加剂。金属离子有的以简单的阳离子形式存在,有的则以酸根阴离于形式存在,有的以复杂的络合离子存在。电镀废水处理常用中和沉淀法、中和混凝沉淀法、氧化法、还原法、钡盐法、铁氧体法等化学方法。化学法设备简单,投资少,应用较广,但常留下污泥需要进一步处理。1、沉淀法(1)中和沉淀法。在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。(2)硫化物沉淀法。加入硫化物使废水中重金属离子生成硫化物沉淀而除去的方法。与中和沉淀法相比,硫化物沉淀法的优点是:重金属硫化物溶解度比其氢氧化物的溶解度更低,反应pH值在7~9之间,处理后的废水一般不用中和,处理效果更好。但硫化物沉淀法的缺点是:硫化物沉淀颗粒小,易形成胶体,硫化物沉淀在水中残留,遇酸生成气体,可能造成二次污染。(3)螯合沉淀法。通过高分子重金属捕集沉淀剂(DTCR)在常温下与废水中Hg、Cd、Cu、Pb、Mn、Ni、Zn及Cr等重金属离子迅速反应,生成不溶水的螯合盐,再加入少量有机或(和)无机絮凝剂,形成絮状沉淀,从而达到捕集去除重金属的目的。DTCR系列药剂处理电镀废水的特点是可同时去除多种重金属离子,对重金属离子以络合盐形式存在的情况,也能发挥良好的去除效果,去除胶质重金属不受共存盐类的影响,具有较好的发展前景。
⑽ 电镀废水怎么处理
我国处理电镀废水常用的方法有化学法、生物法、物化法和电化学法等。
化学法:化学法是依靠氧化还原反应或中和沉淀反应将有毒有害的物质分解为无毒无害的物质,或者直接将重金属经沉淀或气浮从废水中除去。
生物法:生物处理是一种处理电镀废水的新技术。一些微生物代谢产物能使废水中的重金属离子改变价态,同时微生物菌群本身还有较强的生物絮凝、静电吸附作用,能够吸附金属离子,使重金属经固液分离后进入菌泥饼,从而使得废水达标排放或回用。
物化法:物化法是利用离子交换或膜分离或吸附剂等方法去除电镀废水所含的杂质,其在工业上应用广泛,通常与其他方法配合使用。
电化学法:电解法是利用电解作用处理或回收重金属,一般应用于贵金属含量较高或单一的电镀废水。电解法处理Cr(VI),是用铁作电极,铁阳极不断溶解产生的亚铁离子能在酸性条件下将Cr(VI)还原成Cr(Ⅲ),在阴极上Cr(Ⅵ)直接还原为Cr(Ⅲ),由于在电解过程中要消耗氢离子,水中余留的氢氧根离子使溶液从酸性变为碱性,并生成铬和铁的氢氧化物沉淀去除铬。电解法能够同时除去多种金属离子,具有净化效果好、泥渣量少、占地面积小等优点,但是消耗电能和钢材较多,已较少采用。