❶ 日常生活污水如何处理的,又排放到何处呢
通常情况下日常排出的生活污水一般经过下水管道收集起来,再输送到污水处理厂,或者用版污水处理设权备,经过处理后可达到再生水的目的。再生水一般用于市政景观用水,比如草坪灌溉用水,一些新建小区使用再生水冲厕所等。合理使用再生水可节省水资源。
生活污水一般都采用生化方法处理,因为生活污水的BOD5/CODcr≈0.5,可生化性强。接触氧化法具有容积负荷高,停留时间短,有机物去除效果好,运行简单和占地面积小等优点。达标排放
❷ 城市污水回用的可行方案分析
现场质量管理又称生产过程质量管理,是从原材料投入到工程竣工所进行的质量管理。由于施工现场是影响工程质量的诸要素的集中点,因此搞好现场施工可以稳定和提高工程质量,加快施工进度,降低成本,提高效益。由于现场质量管理在高楼渡槽成功应用,高楼渡槽优良的质量不仅降低了成本,提高了效益,而且缩短了工期,给企业增加了一笔巨大的无形资产。
城市污水回用指的是,生活和工业污水经过处理后,作为工业,农业或市政用水的水源。城市污水中含有污染物质的水量仅占整个污水量的0.1%,其余绝大部分是可用清水,而且城市污水就近可得。水量稳定、易于收集,污水处理技术也比较成熟,将城市污水经常规处理后回用于工业是完全可行的。目前,我国城市污水的回用率还很低,但是西方发达国家已经有了许多成功的实例。美国自50年代起,即开始着手这方面的工作,据报道,美国357个城市实现了污水回用,其中回用于农业占55.3%,回用工业占40.5%;日本早在1962年就开始污水回用的实践,70年代东京、名占屋和大皈等城市就已将城市污水处理后回用于工业;前苏联莫斯科东南区设有专用的工业水系统,有36家工厂使用处理后的城市污水,每日污水回用量达5.5-105m3;南非联邦不但丁业使用再生水,而且在约翰内斯堡市,每日自来水的85%加人的是城市再生水,开创了使用污水回用到饮用水的先例。 一、城市污水的产生,主要污染物及污染特征 1、工业污染源 各种工业生产中所产生的废水排入水体就造成了工业污染源。不同的工业所产生的工业废水中所含污染物的充分有很大差异,这是由于各种工业加工的原料不同、工艺过程不同造成的。 冶金工艺所产生的废水主要有冷却水、洗涤水和冲洗水等。 轻工业所加工的原料多为农副产品,因此工业废水主要含有机质,有时还常含有大量的悬浮物质、硫化物和重金属,如汞、镉、砷等。 化学工业的产品很多,因此化学工业废水的充分也很复杂,在废水中常含有多种有害、有毒,甚至剧毒物质,如氰、酚、砷、汞等。总之,工业污染源向水体制排放大废水具有量大、面广、充分复杂的特点,是重点解决的污染源。 2、城市生活污水 城市居民聚集地区所产生的生活污水,多为洗涤水和冲刷器物所产生的污水,因此,主要由一些无毒有机物,如糖类、淀粉、纤维素、油脂、蛋白质、尿素等组成。其中含氮、磷、硫较高。此外,还伴有各种洗涤剂,这是另一类污染源,它们对人体有一定危害。在生活污水中还含有相当数量的微生物,其中一些病源体,如病菌、病毒、寄生虫等,都对人的健康有较大危害。 3、农村污水和灌溉水 农村污水和灌溉水是水体污染的主要来源。由于农田施用化学农药和化肥,灌溉后或经雨水将农药和化肥带入水体造成农药污染或富营养化。在污水灌溉区,河流、水库、地下水都会出现污染,同时也就出现土壤污染、食品污染。 4、雨水收集与利用 结合当地气候条件和住区地形、地貌确定雨水处理方案;屋面、地表雨水经收集、处理后,应达到规定的回用水质标准;优先选用暗渠收集雨水,雨水处理宜采用渗水槽系统,渗水槽内宜装填砾石或其他滤料;利用住区的绿地、水景等进行自然净化,使其满足用水对象的要求;采用多种渗透设施进行渗透净化;雨水回用系统,应设置雨水初期弃流装置;公共活动场地、人行道、露天停车场应采用透水铺装材料,以利于雨水入渗,可渗透铺装面积应不小于30%。 二、城市污水回用的可行用途 1、补充地下水:似乎有两个可能性值得评估,即(a)补充地下水,建立地下水防护堤来防止水质恶化,避免盐碱水的侵入;(b)平整地表面,补充浅含水层。这些措施的潜在性具有局限性,因为可供使用的处理水量有限,而水竞争性用途却很多。另外一个潜在性是,利用洪水期的地表水流量补充地下水。 2、中水回用:把小区产生的各种污废水及雨水进行收集再行处理达到所要求使用的水质标准,再用于小区环境用水和小区杂用水,称为中水回用。因其水质居于生活饮用水水质和允许排放污水水质标准之间,取名为"中水"。小区污水回用开辟了第二水源,降低了小区新鲜水取用量,经处理后的污水回用于小区,减少了污水的排放量,减轻了受纳水体的污染,也减少了治理环境污染的投资。所以污水回用既节约了水资源,也消除了环境污染,具有多重效益。 3、污水回用于冷却水系统:城市污水处理后,根据不同的水质情况,有的可以直接回用于工业循环冷却水系统,有的需要进一步处理后再回用 4、景观及绿化用水:废水回收的可能性是,用于(a)城市风景点的灌溉(公园、花园和道路绿化带)、补充公园的池塘来美化环境。对这些用途的水处理还要求包括二级水处理以及减少病菌等。 5、增加河流流量:在黄淮海流域,河流系统的生态价值产生了很大的变化或因污染和下游流量的减少损失很多,因此,对使用废水来调节低流量很感兴趣。但是,似乎所有可供使用的水,包括回收的废水都需要用来满足城市和农村群众的需求。 6、污水用于农田灌溉:一方面可以缓解当地的农业水资源紧缺的矛盾,另一方面,由于污水中含有丰富的氮、磷、钾等营养元素,为作物生长所必需.
三、城市污水再生利用的模式与发展状况 城市污水的再生利用实际上包括再生和利用两个环节,污水利用的条件是拟进行回用的水必须满足一定用途的水质要求,因此,回用处理(再生)的环节通常是必不可少的。目前的城市污水利用较多考虑的是城市污水处理厂二级处理后的出水,这种水的利用有二种形式:直接回用和间接利用。直接回用多用于污水处理厂附近的农田灌溉及草场等用水,回用的途径及方式受地域限制还比较单一,调配运转不方便,而且这种水虽然经过了人工强化处理和消毒等措施,但由于未经过一定时间的自然净化,在使用和控制不当时会产生一定的问题。间接利用是从水域的整体考虑,从水体上游取水净化供城市使用,产生的污水经城市污水处理厂净化后排入水体的下游,回归于水体(此过程构成了水的社会循环),再经过一定河段的自然净化,可为下游城市或地区利用。经处理污水的间接利用是将自然界中水的社会循环与自然循环有机结合,在水体自净容量的限度内,对水体的利用基本不会造成损害,这种方式需要从宏观上进行管理,是水资源可持续利用的重要途径。 国内外已有许多将净化后的城市污水应用于工业、农业、市政、渔业等的成功实例。近年来,阿根廷、智利、印度、科威特、墨西哥、秘鲁、俄罗斯等国将城市污水一级或二级处理出水应用于农业灌溉,其规模逐年扩大。日本创造了中水道系统,在建筑群内设双管供水系统,利用再生污水冲刷厕所、作冷却水、浇花园和草地、冲洗马路和汽车或作景观、消防用水,获得了显著成效。 城市污水再生利用的中心问题在于根据地区的特点拟定适宜的再利用对策。美国加利福尼亚州根据其农业发达、用水量大的特点,提出的基本模式是灌溉回用,农业用水直接取自水源和经处理的城市污水;佛罗里达州根据其城市用水集中的特点,提出的基本模式是非饮用回用,大规模地实行双管供水系统,以自来水价格的40%将城市污水处理水供给高尔夫球场、城市绿化、以及建筑物和住宅区的中水道用水;而德克萨斯州根据自己用水的传统和水文地质特点,采用间接回用的模式,大规模进行污水处理水的地下回灌。以色列的城市污水处理水的主要回用出路是农业灌溉,但在人口集中的城市区域也进行一定规模的中水道回用。日本大部分地区利用污水处理水进行清流复活,这是因为该国基本上不缺水,但水资源的修复和保护是回用的重点。 采用净化后的城市污水供工农业及市政事业等多目标、多对象的回用在技术上是可行的,经济上是适宜的,对缓解城市水荒、促进城市的可持续发展有非常重要的意义。近10年来我国对城市污水再生利用组织科技攻关取得丰硕成果,如中小城镇和住宅小区的污水回用;城市污水净化后回用于园林绿化、市政景观、冲刷马路等;大型宾馆及娱乐场所的中水回用系统;城市污水回用于工业冷却水系统或低压锅炉补给水及工艺用水;污水回用规划、技术政策等软课题研究等。此外,还兴建了若干示范工程。随着我国城市化进程的推进,我国城市污水资源日益丰富,目前已超过500-108m3/a,如果有1%的污水回用,将对缓解北方一些重要城市的缺水起重要作用。我国是世界上13个贫水国之一,当前,我国600余座城市中有300余座缺水,有些城市水资源严重匮乏,全国城市缺水60-108m3/a,因缺水而减少的工业产值>1200亿元/a,且呈现增长之势。自2000年5月份以来,由于干旱缺水,已有150个城市先后开始实行定时限量供水,严重影响了城市的可持续发展。虽然我国在利用城市污水灌溉农田方面积累了多年的实践经验和具备了一定的科学研究基础,许多城市也实施了一些开源节流的措施,但把城市污水当作一种稳定可靠的水资源予以开发利用仍然进展不大。这中间很大程度上是认识问题,当然也有一些属于技术上或投资上的问题。
污水作为水资源回用的前提是提供适合于回用的水质,且不造成任何潜在的二次污染。目前随着水处理技术的发展,能达到一定水质的水处理技术往往不在于其技术上的可能性,而在于经济上的可行性。因此,常规污水处理工艺的强化、组合及高效、低耗能处理技术的应用,自然能源和廉价资源的开发利用,污水处理和资源回收相结合技术,已成为城市污水资源化技术研究的主流;同时,城市污水再生利用的系统及优化理论、环境风险评价、水质指标及系统管理模式等,也将成为城市污水再生利用研究的重要方面。 四、我国城市污水处理的发展现状 20世纪80年代中期以来,我国的城市污水排放量开始成倍增长(>500-108m3/a),而相比之下,我国的污水处理率却增长缓慢,目前还不足10%[3]。近十几年,我国城市已由解放初期的132座增加至668座,城市人口已占全国总人口的35%,预计到2010年可上升到47%,按此预测,届时城市污水量也将达到720-108m3/a。在我国现有的668个城市中,仅有123个城市有307座不同处理等级的城市污水处理厂,其中城市污水二级处理率为10%左右。全国现有17000个建制镇,绝大多数没有排水和污水处理设施。国家提出至2000年污水处理率要求达到25%,2010年达到40%。 目前,各地对城市污水的处理考虑较多的是排水管网终端的集中式处理,而对于污水流经整个城市的过程却缺少控制,尤其是在城市排水系统不健全的地区,致使一些分布于城区的沟渠水体倍受污染,日久天长这些水体也就成了名副其实的臭水。现在一些有条件的地区采取了截污、清淤、引水等治理措施,使水体在感官上有了很大的改善,但同时也破坏了水体的自净体系和功能,使水体抵抗外界污染的能力减弱。由于我国的城市排水管网较多采用的仍然是合流制管道,雨季时大量污水随雨水从截污干管的溢流井排入水体,而造成严重的污染。可见,只有在城区点源污染和面源污染得到有效控制的前提下,才能全面实现城区的碧水目标。 五、城市污水回用的处理方法 1、补充地下水处理技术:城市污水地下回灌深度处理方法一般为传统的污水处理方法,废水处理的程度则取决于回灌的水量与水质、地下水盆地和天然地下水稀释的可能性、土壤类型、地下水深度、回灌方式、使用前在含水层中的停留时间等。确定深度处理技术需考虑废水成分、选定技术对特定废水参数的处理水平、选定地区的土壤渗滤处理效果等因素。土壤渗滤也叫土壤含水层处理,是地下回灌流程中一个重要组成部分,具有简单、经济等特点,其费用仅为厂内设备处理达到相同水平所需费用的40%。土壤渗滤净化机理包括慢速过滤、化学沉降、吸附、离子交换、生物降解、硝化与反硝化以及消毒等。土壤渗滤是地下回灌技术的主要特征,也是确定深度处理技术最重要的影响因素。污水回用的目的不同,水质标准和污水深度处理的工艺也不同。但要特别注意实现回灌前处理、土壤含水层处理、取水后再处理三者间的合理优化。 2、中水处理工艺 物理处理法--膜滤法:适用于水质变化大的情况。采用这种流程的特点是:装置紧凑,容易操作,以及受负荷变动的影响小。 膜滤法是在外力的作用下,被分离的溶液以一定的流速沿着滤膜表面流动,溶液中溶剂和低分子量物质、无机离子从高压侧透过滤膜进入低压侧,并作为滤液而排出;而溶液中高分子物质、胶体微粒及微生物等被超滤膜截留,溶液被浓缩并以浓缩形式排出。 我国有使用膜生物反应器处理生活污水的报道,经过110天的运作,均得到稳定而优质的膜过滤出水,符合杂用水水质标准。对COD的去除率可提高15%~30%。并具有较强的抗冲击负荷能力。一体式膜生物反应器中水处理系统对经预处理后的港口污水的油类去除率均保持在70%-85%。北京一个人口为2.5万的居民小区采用膜生物反应器的中水处理系统,出水水质明显高于生物接触氧化法。 物理化学法:适用于生活污水水质变化较大的情况。一般采用的方法有:砂滤、活性炭吸附、浮选、混凝沉淀等。这种流程的特点是:采用中空纤维超滤器进行处理,技术先进,结构紧凑,占地少,系统间歇运行,管理简单。 该法以紫外吸收、臭氧、活性炭吸附相组合为基本方式,与传统二级处理相比,提高了水质。意大利南部采用了紫外吸收单元给二级出水消毒,当紫外吸收的剂量为160mws/cm2时,大肠菌失去活性,回用水达到意大利的农业回用标准。西班牙水处理厂用过量的臭氧(剂量大于9mg/L)对过滤后的二级出水消毒,再用于农业灌溉。 生物处理法:适用于有机物含量较高的生活污水。一般采用活性污泥法、接触氧化法、生物转盘等生物处理方法。或是单独使用,或是几种生物处理方法组合使用,如接触氧化+生物滤池;生物滤池+活性炭吸附;转盘十砂滤等流程。这种流程具有适应水力负荷变动能力强、产生污泥量少、维护管理容易等优点。 据报道,德国采用活性污泥SBR和生物膜SBR插入到主体活性污泥反应器中脱氮,脱氮率可达90%。日本认为SBR活性污泥工艺是小型废水处理厂最有前途的工艺,适合在城市地区使用。 3、污水回用于冷却水系统 (1).微生物问题由于回用污水中的COD和氨、氮含量较高,导致微生物繁殖大幅度增加,产生生物粘泥,因此必须加大杀菌力度。传统的方法是投加氧化性杀菌剂或直接投加氯气。氧化型杀生剂的杀菌效果好,一般能解决微生物繁殖问题,具体应用中可根据水质情况决定投加量和投加频率。 (2).腐蚀问题回用污水的TDS浓度通常比新鲜水高2-5倍,电导率、CI、SO42-都高,PH较低,腐蚀程度大,所以要选择合适的水质稳定剂来控制回用水对设备的腐蚀。 (3).悬浮物问题二级处理后污水浓度较小,悬浮物主要是一些从生化曝气池带出的活性污泥。悬浮物的去除方法有两个:一是选择适当的滤料,经过过滤,可以滤除大部分悬浮物,二是加人化学剂,两种方法的结合可以去除大部分悬浮物。 在探索污水回用于循环水系统的工作中,我国也取得了较好的成绩。如大连污水回用示范工程,济南炼油厂污水回用项目,华能北京热电厂污水回用实践等。 4、绿化及景观用水 (1)绿化用水:采用回用水作为绿化用水,水质应达到用于灌溉的水质标准;在输水-布水系统中余氯的含量不低于0.5mg/L或更高,以清除嗅味、黏膜及细菌;采用喷灌,SS应小于30mg/l,以防喷头堵塞。 (2)景观用水:采用再生污水用做景观用水,需要脱氯,以保护水生动物。再生水应清澈、无毒、无嗅,应去除营养物,以避免藻类繁殖。水中不含有致病菌。 5、增加河流流量: 6、污水用于农田灌溉:
六、城市污水回用的经济、环境效益 1、城市污水回用的经济效益 城市污水回用与开发其他水源相比在经济上的优势:①比远距离引水便宜。其基建投资只相当于从30公里外引水,而我国水资源分布不均衡,对于西北部贫水的城市,如果从东南部水资源丰富的地区引水,引水距离至少为上百公里,甚至达到上千公里,工程是十分浩大的。②比海水淡化经济。城市污水所含杂质少于0.l%,而且可用深度处理方法加以去除,而海水则含有3.5%的溶解盐和大量有机物,其杂质含量为污水二级处理出水的35倍以上。③不仅节约了宝贵的水资源,而且节约了排污费用。目前,大部分城市污水都是直接排放人江河湖泊,不仅污染环境,而且国家要收取相应的排污费(新鲜水费为1.12元/m3,排污水费为0.15元/m3),这对于城市的发展来说也是不小的负担。以一个年产2万吨合成氨厂为例,使用处理后的污水作为循环冷却水及其他上艺用水,每年可节水300万m3,减少排污费24万元,直接经济效益100万元。再以南方某炼油厂为例,采用处理后污水作循环冷却水,可节约新鲜水32万m3/a,减少排污32万m3/a,两项节约费用40.6万元/a,除去投资费用每年可获经济效益20.6万元/a。 2、城市污水回用的环境效益 城市污水回用开辟了第二水源,减少了城市新鲜水的取用量,减轻了城市供水不足的压力和负担,缓解了供需矛盾。这对缺水城市意义更为重大。城市污水处理后的回用,减少了污水排放量:一是减轻了对水体的污染,并能使部分被污染的水逐渐更新复活;二是减少了治理环境污染的投资。节水效益明显,城市污水量大且集中,如果很好地推广使用污水回用技术,可以节省大量水质要求不高的用水消耗量。相比较于海水淡化、远距离调水,城市污水回用有着它们无法相比的环境效益;而且就目前的技术水平而言,海水淡化、远距离调水以及地下水开采也都存在着一定的不足,这也凸显出城市污水回用的优势。 七、城市污水回用存在的问题和展望 1、缺乏对污水再生利用的系统规划 目前我国尚未建立城市污水再生利用规划指标体系。在城市建设总体规划中,虽然进行了城市的供水及排水规划,但在水资源的综合利用方面缺乏统一的规划,尤其是城市污水再生利用规划,这势必会造成重复建设和决策失误。因此,城市污水再生利用应纳入城市总体规划以及城市水资源合理分配与开发利用计划,在综合平衡、科学论证的基础上,针对城市实际情况进行总体规划,确定其应有的位置和作用。在再生水水质、使用用途、处理程度、处理流程、输水方式的选择上,要综合平衡、远近结合,既要满足功能要求和用水水质需求,又要因地制宜、经济合理。过高的目标与要求,将可能适得其反。 2、城市污水收集与处理设施建设严重滞后 城市污水的收集与处理是城市污水再生利用的重要前提条件,目前我国的城市污水管网建设严重滞后于城市发展,二级生物处理率不到15%。因此,强化城市污水管网与污水处理工程设施的建设是推动城市污水再生利用的关键。 不少地方政府对污水再生利用的认识不够,在缺水时优先考虑的是调水,而且绝大多数城市污水处理厂的规划、设计与建设目标是达标排放,往往没有考虑污水的大规模再生利用。因此,今后城市污水处理厂的建设,既要满足区域水污染控制要求与相应的排放标准,也要考虑城市污水的再生利用需求。在某些地区,可以通过开展城市污水再生利用工作来促进污水收集与处理工程的建设与完善。 3、城市污水再生利用技术相对落后 城市污水再生利用事业的发展必须依靠科技进步,从始至终都要有新技术、高技术的保证和支持。目前我国城市污水再生利用技术和设备的开发难以满足快速增长的再生利用工程建设和运行管理的需求,今后城市污水再生利用的技术发展应着重于已有技术的集成化、综合整合、产业化和工程化,需要对已有技术不断改进和更新,加强新工艺、新流程、新技术和设备产品的研究、开发和推广应用,并注重示范性工程的研究和建设。通过工程化和生产性测试,着重解决城市污水再生利用于农业、生态、市政和工业中的水质净化技术、水质稳定技术、水质保障技术、安全用水技术、工程技术、运行管理技术和成套技术设备问题。 4、 相关法规和政策不够完善 城市污水再生利用需要健全的法制保障和全面的统一管理。而我国城市污水再生利用的法规和政策还需要完善。例如:要求新建居住区和集中公共建筑区在编制各项市政专业规划时,必须同时编制污水再生回用规划,污水再生回用工程应与其他工程同步设计、同步施工、同步验收;在城市道路的市政管线中,必须预留再生水管道的位置,有条件的路段应预埋再生水管;要求在城市各项用水中能够使用再生水的(如绿化、道路浇洒)必须使用再生水;制订鼓励城市污水再生利用工程建设与运营的管理政策和经济政策,采取行之有效的鼓励政策和行政管理手段,促进工、农业生产部门和市政用水部门积极使用再生水。在城市污水再生利用工程的可行性研究、立项、设计、建设或改造中,要建立相应的规范和再生水水质标准,改革管理体制和服务体系,在卫生安全、生产过程、产品质量等方面,保障每一个再生水使用单位享有免受不良影响的基本权益。 长期以来,由于自来水水价低,而质量相对较差的再生水则净化成本高、价格也比自来水高,造成工厂企业宁可使用物美价廉的自来水而不愿意使用再生水,导致再生水无人问津的尴尬局面。另外,城市污水处理厂因没有效益而加重了地方的财政负担。因此,国家及城市有关管理部门要积极推动现行水价政策的改革,建立合理的用水价格体系以及污水处理与再生利用价格体系,要实行按(水)质定价,将各种水源的供水价格差距拉开,尤其是再生水与自来水之间应有较大的价差,使水资源的利用趋向结构合理。 八、结语 城市污水的资源化应该建立在水的良性社会循环的基础上,这对水资源的可持续性开发和再生利用至关重要。不仅可以节约大量的新鲜水,而且可以降低排污水对环境的污染,可谓经济效益、社会效益双丰收。结合我国国情对城市污水再生利用模式进行探讨,旨在寻求适合我国经济和社会发展的水污染控制及水资源再生利用的良好模式。随着我国西部开发及北部缺水地区城市发展战略的实施,将会推动我国城市污水资源化研究的进展,逐步形成和完善与我国国情相适应的水资源良性社会循环体系,实现城市与水资源开发利用的可持续发展。相信只要大家都树立起节水意识,减少污水排放,提高污水回用率,就一定能缓解我国水资源短缺的问题,使城市污水这一危害环境的杀手,变成造福人民的宝贵资源。我们期待的一个大更蓝,水更清美好家园一定会实现。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:https://bid.lcyff.com/#/?source=bdzd
❸ 污水处理怎么实现水资源再生利用
城市污水是城市中各种污水和废水的统称,它由各种生活污水、工业废水和入渗地下水三部分组成。城市污水处理系统是指收集、输送、处理、再生和利用城市污水的设施以一定方式组合成的总体。随着工业化、城镇化的加快,城市污水排放量越来越大,如果不能得到妥善处理,将严重污染环境,影响人居环境质量和城市可持续发展。资料显示,整个水体污染中,农业畜牧养殖业排放量约占40%,工业约占30%,城市污水约占30%~40%。因此,城市污水处理事业的发展好坏十分重要。
在对城市污水的认识上,人们经历过一个由低级到高级的过程。相当长的一个时期,由于技术手段和认识的限制,人们曾经把城市污水看做“废水”。既然是废水,自然就是简单处理完后向下游排掉就可以了。随着经济的发展,城市水资源短缺的压力越来越大,追究城市水危机的根本原因,人们越来越认识到,是水的社会循环超出了水的自然循环可承载的范围。因此,只有充分尊重水的自然运动规律,合理科学地使用水资源,使上游地区的用水循环不影响下游水域的水体功能、社会循环不损害自然循环的客观规律,从而维系或恢复城市乃至流域的良好水环境,才是水资源可持续利用的有效途径。
这就要求我们从“取水—输水—用户—排放”的单向开放型的用水模式转变为“节制地取水—输水—用户—再生水”的反馈式循环流程,提高水的利用效率。实现这一重大用水模式的转变,加强污水再生利用是关键。随着科学技术的进步,城市污水已不再是废水,而是一种宝贵的资源。既然是一种资源,就要最大限度地利用。提高城市污水的再生利用率,一是可以减少污染物排放,二是节约了有限的水资源。华东理工大学教授陆柱建议,城市应当大力推广循环用水、一水多用、污水回收利用等节水措施,统计数据显示,中国废水排放量由2001年的432.9亿吨增长到2006年的536.8亿吨,年复合增长率达到4.39%,其中,工业废水排放量与生活污水排放量分别增长19.5%与30.1%。另据建设部普查,到2006年年底,全国656个城市共有城市污水处理厂814座,日处理污水能力为6310万立方米,排水管道长度26.1万千米,城市污水年处理总量201亿立方米,城市污水处理率57.01%,其中污水处理厂集中处理率为44.1%。此外,按照《国务院关于落实科学发展观加强环境保护的决定》和《国务院关于印发节能减排综合性工作方案的通知》要求:到2010年,全国设市城市的污水处理率不低于70%;缺水城市再生水利用率达到20%以上。
与发达国家相比,中国污水处理仍存有较大差距。就污水处理率而言,欧美发达国家都在80%以上,美国、荷兰等国家的污水处理率近些年甚至超过90%。
❹ 现代污水处理有哪些常见的方法
1、物理处理法
物理处理法是通过物理作用, 以分离、 回收污水中不溶解的、 呈悬浮状的污染物质(包括油膜和油珠), 在处理过程中不改变其化学性质。 常用的有过滤法、 沉淀法、 浮选法等。
(1) 过滤法:利用过滤介质截流污水中的悬浮物。 过滤介质有筛网、纱布、 粒物, 常用的过滤设备有格栅、筛网、微滤机等。
1) 格栅与筛网。 在排水工程中, 废水通过下水道流人水处理厂, 首先应经过斜置在渠道内的一组金属制的呈纵向平行的框条(格栅)、 穿孔板或过滤网(筛网), 使漂浮物或悬浮物不能通过而被阻留在格栅、 细筛或滤料上。
这一步属废水的预处理, 其目的在于回收有用物质;初步漫清废水以利于以后的处理, 减轻沉淀池或其他处理设备的负荷;保护抽水机械, 以免受到颗粒物堵塞发生故障。 保护水泵和其他处理设备。格栅截留的效果主要取决于污水水质和格栅空隙的大小。 清渣方法有人工与机械两种。栅渣应及时清理和处理。
筛网主要用于截留粒度在数毫米到数十毫米的细碎悬浮态杂物, 如纤维、纸浆、藻类等,通常用金属丝、化纤编织而成,或用穿孔钢板,孔径一般小于5mm,最小可为0.2mm。 筛网过滤装置有转鼓式、 旋转式、 转盘式、 固定式振动斜筛等。 不论何种结构,既要能截留污物,又便于卸料及清理筛面 。
2)粒状介质过滤(又称彤、滤、 惊料过滤)。 废水通过粒状滤料(如石英砂)床层时,其中细小的悬浮物和肢体就被截留在滤料的表面和内部空隙中。 常用的过滤介质有石英砂、 无烟煤和石榴石等。 在过滤过程中滤料同时对悬浮物进行物理截留、 沉降和吸附等作用。 过滤的效果取决于滤料孔径的大小、 滤料层的厚度、 过滤速度及污水的性质等因素。
当废水自上而下流过粒状滤料层时,位径较大的悬浮颗粒首先被截留在表层滤料的空隙中,从而使此层滤料空隙越来越小,逐渐形成一层主要由被截留的团体颗粒构成的滤膜, 并由它起主要的过滤作用。 这种作用属于阻力截留或筛滤作用。
废水通过滤料层时,众多的滤料表面提供了巨大的可供悬浮物沉降的有效面积,形成无数的小 “沉淀池”,悬浮物极易在此沉降下来。这种作用属于重力 沉降。
由于滤料具有巨大的表面积, 它与悬浮物之间有明显的物理吸附作用。此外,砂粒在水中常常带有表面负电荷,能吸附带正电荷的铁、 铝等肢体,从而在滤料表面形成带正电荷的薄膜,并进而吸附带负电荷的胶土和多种有机物等胶体,在砂粒上发生接触絮凝。
(2)沉淀法。沉淀法是利用污水中的悬浮物和水的相对密度不同的原理, 借助重力沉降作用使悬浮物从水中分离出来。 根据水中悬浮颗粒的浓度及絮凝特性(即彼此帖结聚团的能力)可分为四种:
1) 分离沉降(或自由沉降)。在沉淀过程中,颗粒之间互不聚合,单独进行沉降。 颗位只受到本身在水中的重力和水流阻力的作用,其形状、 尺寸、 质量均不改变,下降速度也不改变。
2)混凝沉淀(或称作絮凝沉降)。 混凝沉降是指在混凝剂的作用下,使废水中的胶体和细微悬浮物凝聚为具有可分离性的絮凝体,然后采用重力沉降予以分离去除。 混凝沉淀的特点是在沉淀过程中,颗粒接触碰撞而互相聚集形成较大絮体,因此颗粒的尺寸和质量均会随深度的增加而增大,其沉速也随深度 而增加。
常用的无机混凝剂有硫酸铝、 硫酸亚铁、 三氯化铁及聚合铝;常用的有机絮凝剂有聚丙烯酷胶等,还可采用助凝剂如水玻璃、 石灰等 。
3)区域沉降(又称拥挤沉降、 成层沉降)。 当废水中悬浮物含量较高时,颗粒间的距离较小,其间的聚合力能使其集合成为一个整体,并一同下沉,而颗粒相互间的位置不发生变动,因此澄清水和混水间有一明显的分界面,逐渐向下移动,此类沉降称为区域沉降。加高浊度水的沉淀池和二次沉淀池中的沉降(在沉降中后期)多属此类。
4)压缩沉淀。当悬浮液中的悬浮固体浓度很高时,颗粒互相接触、挤压,在上层颗粒的重力作用下,下层颗粒间隙中的水被挤出,颗粒群体被压缩。压缩沉淀发生在沉淀池底部的污泥斗或污泥浓缩池中,进行得很缓慢。依据水中悬浮性物质的性质不同,设有沉砂池和沉淀池两种设备。
沉砂池用于除去水中砂粒、煤渣等相对密度较大的元机颗粒物。沉砂池一般设在污水处理装置前,以防止处理污水的其他机械设备受到磨损。
沉淀池是利用重力的作用使悬浮性杂质与水分离。它可以分离直径为20~100µ,m以上的颗粒。根据沉淀池内的水流方向,可将其分为平流式、辐流式和竖流式三种。
①平流式沉淀池。废水从池一端流人,按水平方向在池内流动,水中悬浮物逐渐沉向池底,澄清水从另一端溢出。
②辐流式沉淀池。池子多为圆形,直径较大,一般在20~30m以上,适用于大型水处理厂。原水经进水管进入中心筒后,通过筒壁上的孔口和外围的环形穿孔挡板,沿径向呈辐射状流向沉淀池周边。由于过水断面不断增大,流速逐渐变小,颗粒沉降下来,澄清水从其周围溢出汇入集水槽排出。
③竖流式沉淀池。截面多为圆形,也有方形和多角形的。水由中心管的下口流入池中,通过反射板的阻拦向四周分布于整个水平断面上,缓缓向上流动。沉速超过上升流速的颗粒则沉到污泥斗,澄清后的水由四周的埋口溢出池外。
在污水处理与利用的方法中,沉淀(或上浮)法常常作为其他处理方法前的预处理。如用生物处理法处理、污水时,一般需事先经过预沉池去除大部分悬浮物质,以减少生化处理时的负荷,而经生物处理后的出水仍要经过二次沉淀池的处理,进行泥水分离以保证出水水质。
(3)浮选法。将空气通人污水中,并以微小气泡形式从水中析出成为载体,污水中相对密度接近于水的微小颗粒状的污染物质(如乳化油等)附在气泡上,并随气泡上升到水面,然后用机械的方法撇除,从而使污水中的污染物质得以从污水中分离出来。疏水性的物质易气浮,而亲水性的物质不易气浮。因此有时为了提高气浮效率,需向污水中加入浮选剂改变污染物的表面特性,使某些亲水性物质转变为疏水性物质,然后气浮除去,这种方法称为“浮选”。
气浮时要求气泡的分散度高,量多,有利于提高气浮的效果。泡沫层的稳定性要适当,既便于浮渣稳定在水面上,又不影响浮渣的运送和脱水。产生气 泡的方法有两种:
1)机械法。使空气通过微孔管、微孔板、带孔转盘等生成微小气泡。
2)压力溶气法。将空气在一定的压力下溶于水中, 并达到饱和状态, 然后突然减压, 过饱和的空气便以微小气泡的形式从水中逸出。 目前废水处理中的气浮工艺多采用压力溶气法。
气浮法的主要优点有:设备运行能力优于沉淀池, 一般只需15~20min即可完成固液分离, 因此它占地少, 效率较高;气浮法所产生的污泥较干燥, 不易腐化, 且系表面刮取, 操作较便利;整个工作是向水中通人空气, 增加了水中的潜解氧量, 对除去水中有机物、 藻类表面活性剂及臭味等有明显效果, 其出水水质为后续处理及利用提供了有利条件。
气浮法的主要缺点是:耗电量较大;设备维修及管理工作量增加, 运转部分常有堵塞的可能;浮渣露出水面, 易受风、 雨等气候因素影响。
除了上述两种气浮方法外, 目前较为常用的方法还有电解气浮法。
(4)离心分离法。 含有悬浮污染物质的污水在高速旋转时, 利用悬浮颗粒(如乳化油)和污水受到的离心力不同, 从而达到分离目的的方法。 常用的离心设备有旋流分离器和离心
2、化学处理法
向污水中投加化学试剂, 利用化学反应来分离、 回收污水中的污染物质,或将污染物质转化为无害的物质。 该法既可使污染物与水分离, 回收某些有用物质, 也能改变污染物的性质, 如降低废水的酸碱度、 去除金属离子、 氧化某些有毒有害的物质等, 因此可达到比物理法更高的净化程度。 常用的化学方法 有化学沉淀法、 中和法、 氧化还原法和混凝法。
化学法处理的局限性如下:
由于化学处理废水常采用化学药剂(或材料), 处理费用一般较高, 操作与 管理的要求也较严格。
化学法还需与物理法配合使用。 在化学处理之前, 往往需用沉淀和过滤等手段作为前处理;在某些场合下,又需采用沉淀和过滤等物理手段作为化学处理的后处理。
( 1)化学沉淀法。
化学沉淀法是指向废水中投加某些化学药剂, 使其与废水中的溶解性污染物发生五换反应, 形成难榕于水的盐类(沉淀物)从水中沉淀出来, 从而降低或除去水中的污染物。化学沉淀法多用于在水处理中去除钙离子、 镜离子以及废水中的重金属离子, 如隶、 锅、铅、 钵等。 按使用的沉淀剂不同, 沉淀法可分为石灰法(又称为氢氧化物沉淀法)、硫化物法和银盐法等。
水中Ca 2+、 Mg2+令 含量的总和称总硬度, 可分为碳酸盐硬度和非碳酸盐硬度。碳酸盐硬度可投加石灰使水中的Ca 2+和Mg2+形成CaC03和Mg (OH) 2沉淀而降低, 如需同时去除非碳酸盐硬度, 可采用石灰-苏打软化法, 使Ca 2+和Mg2+ 形成CaC03 矛llMg ( OH) 2沉淀除去。 因此, 当原水硬度或碱度较高时, 可先用化学沉淀法作为离子交换软化的前处理, 以节省离子交换的运行费用。
去除废水中的重金属离子时, 一般采用投加碳酸盐的方法, 生成的金属离子, 碳酸盐的溶度积很小, 便于回收。 如利用碳酸销处理含镑废水。
ZnS04 + Na 2C03 一一→ZnC03 ↓+ NazS04
此法优点是经济简便, 药剂来源广, 因此在处理重金属废水时应用最广。 存在的问题是劳动卫生条件差, 管道易结垢堵塞与腐蚀;沉淀体积大, 脱水困难。
(2)中和法。
中和法处理是利用酸碱相互作用生成盐和水的化学原理, 将废水从酸性或碱性调整到中性附近的处理方法。 对于酸或碱的浓度大于3%的废水, 首先应进 行酸碱的回收。 对于低浓度的酸碱废水, 可采取中和法进行处理。
酸性污水的处理, 通常采用投加石灰、 苛性锅、 碳酸锅或以石灰石、 大理石作洁、料来中和酸性污水。 碱性污水的处理, 通常采用投加硝酸、 盐酸或利用二氧化碳气体中和碱性污水。 另外, 对于酸、 碱性污水也可以用二者相互中和的办法来处理。
(3)氧化还原法。
氧化还原法是通过化学药剂与水中污染物之间的氧化还原反应, 将污水中的有毒有害污染物转化为无毒或微毒物质的方法。 这种方法主要处理无机污染物, 如重金属和氧化物的污染。 利用高健酸御、 液氯、 臭氧等强氧化剂或电极的阳极反应, 将废水中的有害物质氧化分解为元害物质;利用铁粉等还原剂或电极的阴极反应, 将废水中的有害物质还原为无害物质;臭氧氧化法对污水进 行脱色、 杀菌和除臭处理;空气氧化法处理含硫废水;还原法处理含锦电镀废水等都是氧化还原法处理废水的实例。
水处理常用的氧化剂有氧、 臭氧、 氯、 次氯酸等。 常用的还原剂有硫酸亚铁、 亚硫酸盐、 铁屑、 铸粉等。
(4)混凝法。
混凝法是在含不易沉降的细颗粒及胶体颗粒的废水中加入电解质以破坏肢体的稳定性而使其聚沉。 常用的混凝剂有硫酸铝、 硫酸亚铁、 三氯化铁、 聚乙烯亚股或聚丙烯酷胶等。 为加速混凝常伴随加入助凝剂石灰、 活性硅胶、 骨胶等。
3、物理化学处理法
物理化学法(简称物化法), 是利用萃取、 吸附、 离子交换、 膜分离技术、气提等物理化学的原理, 处理或回收工业废水的方法。 它主要用分离废水中无机的或有机的(难以生物降解的)溶解态或胶态的污染物质, 回收有用组分,并使废水得到深度净化。 因此, 适合于处理杂质浓度很高的废水(用作回收利用的方法), 或是浓度很低的废水(用作废水深度处理)。利用物理化学法处理工业废水前, 一般要经过预处理, 以减少废水中的悬浮物、 油类、 有害气体等杂质, 或调整废水的pH值, 以提高回收效率、 减少损耗。同时, 浓缩的残渣要 经过后处理以避免二次污染。常用的方法有萃取法、 吸附法、 离子交换法、 膜析法(包括渗析法、 电渗析法、 反渗透法、 超滤法等)。
(1)萃取法。
萃取法是向污水中加人一种与水不相溶而密度小于水的有机溶剂, 充分混合接触后使污染物重新分配, 由水相转移到溶剂相中, 利用溶剂与水的密度差别, 将溶剂分离出来, 从而使污水得到净化的方法。再利用溶质与溶剂的沸点差将溶质蒸馆回收, 再生后的溶剂可循环使用。使用的溶剂叫萃取剂, 提出的物质叫萃取物。 萃取是一种液-液相间的传质过程, 是利用污染物(溶质)在水与有机溶剂两相中的溶解度不同进行分离的。
在选择萃取剂时, 应注意萃取剂对被萃取物(污染物)的选择性, 即溶解能力的大小, 通常溶解能力越大, 萃取的效果越好;萃取剂与水的密度相差越大, 萃取后与水分离就越容易。常用的萃取剂有含氧萃取剂、 含磷萃取剂、 含氮萃取剂等 。 常用的萃取设备有脉冲筛板塔、 离心萃取机等。
(2)吸附法。
吸附法处理废水是利用——种多孔性固体材料(吸附剂)的表面来吸附水中的一种或多种溶解污染物、 有机污染物等(称为熔质或吸附质), 以回收或去除它们, 使废水得以净化。例如, 利用活性炭可吸附废白水中的盼、 隶、 错、氧等剧毒物质, 且具有脱色、 除臭等作用。吸附法目前多用于污水的深度处理, 可分为静态吸附和动态吸附两种方法, 即在污水分别处于静态和流动态时进行吸 附处理。常用的吸附设备有固定床、 移动床和流动床等。
在废水处理中常用的吸附剂有活性炭、 磺化煤、 木炭、 焦炭、 硅藻土、 木屑和吸附树脂等。以活性炭和吸附树脂应用较为普遍。一般吸附剂均呈松散多 孔结构, 具有巨大的比表面积。其吸附力可分为分子引力(范德华力)、 化学键力和静电引力三种。水处理中大多数吸附是上述三种吸附力共同作用的结果。
吸附剂吸附饱和后必须经过再生, 把吸附质从吸附剂的细孔中除去, 恢复其吸附能力。再生的方法有加热再生法、 蒸汽吹脱法、 化学氧化再生法(湿式氧化、 电解氧化和臭氧氧化等)、 溶剂再生法和生物再生法等。
由于吸附剂价格较贵, 而且吸附法对进水的预处理要求高, 因此多用于给水处理中。
(3)离子交换法。
离子交换法是利用离子交换剂的离子交换作用置换污水中的离子态污染物质的方法。随着离子交换树脂的生产和离子交换技术的发展, 由于效果良好, 操作方便, 近年来在回收和处理工业污水中的有毒物质方面, 得到一定的应用。如用阳离子交换剂去除(回收) 污水中的铜、镍、镉、锌、汞、金、银、铂等重金属。
离子交换法多用于工业给水处理中的软化和除盐, 主要去除废水中的金属 离子。 离子交换软化法采用Na+交换树脂。
(4)膜析法。
1) 电渗析法。电掺析法是在直流电场的作用下, 利用阴、 阳离子交换膜对溶液中阴阳离子的选择透过性(即阳膜只允许阳离子通过, 阴膜只允许阴商子通过), 使一部分溶液中的离子迁移到另一部分溶液中去,使得溶液中的电解质与水分离, 从而达到浓缩、纯化、分离的一 种水处理方法。电渗析法是在离子交换技术基础上发展起来的新方法, 除用于污水处理外, 还可用于海水除盐、制备去离子水(纯水)等。
2)反渗透法。
反渗透法巳用于含重金属废水的处理、 污水的深度处理及海水淡化等。在世界淡水供应危机严重的今天, 反渗透法结合蒸馆法的海水淡化技术前景广阔。 它的另一重要用途是与离子交换系统联用, 作为离子交换的预处理方法以制备去离子的超纯水。在废水处理中, 反渗透法主要用于去除与回收重金属离子, 去除盐、有机物、色度以及放射性元素等。
目前在水处理领域内广泛应用的半透膜有醋酸纤维素 膜和聚酷胶膜磺化聚苯醋等高聚物。常用的反渗透装置有管式、螺旋式、中空纤维式及板框式等。渗透水可重复利用。
4、生物处理法
生物处理法是利用自然环境中微生物的生物化学作用, 氧化分解溶解于污 水中或肢体状态的有机污染物和某些无机毒物(如氟化物、硫化物), 并将其转化为稳定无害的无机物, 从而使废水得以净化的方法。 此法具有投资少、效果好、运行费用低等优点, 在城市废水和工业废水的处理中得到最广泛的应用。
现代生物处理法根据微生物在生化反应中是否需要氧气, 分为好氧生物处 理和厌氧生物处理两类。
(1)好氧生物处理法。
在有氧的条件下, 依赖好氧菌和兼氧菌的生化作用完成废水处理的工艺称为好氧生物处理法。 该法需要有氧的供应。 根据好氧微生物在处理系统中所呈现的状态, 可分为活性污泥法和生物膜法。
1)活性污泥法是目前使用最广泛的一种生物处理法。 该方法是向曝气池中富含有机污染物并有细菌的废水中不断地通人空气(曝气), 在一定的时间后就会出现悬浮态絮状的泥粒, 这实际上是由好氧菌(及兼性好氧菌)所吸附的有机物和好氧菌代谢活动的产物所组成的聚集体, 具有很强的分解有机物的能力,称之为 “活性污泥”。从曝气池流出的污水和活性污泥混合液经沉淀池沉淀分离后, 澄清的水被排放, 污泥作为种泥回流到曝气池, 继续运作。 这种以活性污泥为主体的生物处理法称为 活性污泥法” 。废水在曝气池中停留4~6h, 可除去废水中的有机物(BOD6)约90%。 活性污泥法有多种池型及运行方式, 通常有普通活性污泥法、完全混合式表面曝气法、吸附再生法等。
2)生物膜法是使污水连续流经固体填料(碎石、煤渣或塑料填料), 微生物在填料上大量繁殖, 形成污泥状的胶膜称为生物膜, 利用生物膜处理污水的方法,称为生物膜法。生物膜主要由大量的菌胶团、真菌、藻类和原生动物组成。 生物膜上的微生物起到和活性污泥同样的净化作用, 吸附并降解水中的有机污 染物, 从填料上脱落的衰老的生物膜随处理后的污水流入沉淀池, 经过沉淀池沉淀分离后, 使污水得以净化。常用的生物膜法有生物滤池、生物接触氧化池、生物转盘等。
(2)厌氧生物处理法。
在无氧的条件下, 利用厌氧微生物的作用分解、污水中的有机物, 使污水净化的方法称为厌氧生物处理法。 近年来, 世界性的能源紧张, 使污水处理向节能和实现能源化的方向发展, 从而促进了厌氧微生物处理方法的发展。 一大批高效新型厌氧生物反应器相继出现, 包括厌氧生物滤池、 升流式厌氧污泥床、 厌氧硫化床等。 它们的共同特点是反应器中生物团体浓度很高, 市泥龄很长, 因此处理能力大大提高, 从而使厌氧生物处理法所具有的能耗小、可以回收能源、 剩余的污泥量少、 生成的污泥稳定而易处理、 对高浓度有机废水处理效率高等优点得到充分体现。厌氧生物处理法经过多年的发展,已经成为污水处理的主要方法之一。
5、除磷、 脱氮
( 1) 除磷。 城市废水中磷的主要来源是粪便、 洗涤剂和某些工业废水, 以正磷酸盐、 聚磷酸盐和有机磷的形式溶解于水中。 常用的除磷方法有化学法和生物法。
1)化学法除磷。 利用磷酸盐与铁盐、 石灰、 铝盐等反应生成磷酸铁、 磷酸钙、 磷酸铝等沉淀, 将磷从废水中排除。化学法的特点是磷的去除效率较高, 处理结果稳定, 污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
2)生物法除磷。生物法除磷是利用微生物在好氧条件下, 对废水中溶解性 磷酸盐的过量吸收,沉淀分离而除磷。 整个处理过程分为厌氧放磷和好氧吸磷 两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下, 将体内积聚的聚磷分解为无机磷释放回废水中。这就是 “ 厌氧放磷”。聚磷菌在分解聚磷时产生的能量除一部分供自己生存外, 其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸) 储存于体内。
进入好氧状态后, 聚磷菌将储存于体内的PHB进行好氧分解, 并释放出大 量能量,一部分供自己增殖, 另一部分供其吸收废水中的磷酸盐, 以聚磷的形式积聚于体内。这就是 “好氧吸磷”。在此阶段, 活性污泥不断增殖。 除了一部分含磷活性活泥回流到厌氧池外, 其余的作为剩余污泥排出系统,达到除磷的目的。
(2) 脱氮。
生活废水中各种形式的氮占的比例比较恒定:有机氮 50%~60%,氨氮40%~ 50%,亚硝酸盐与硝酸盐中的氮占 0~ 5%。 它们均来源于人们食物中的蛋白质。脱氮的方法有化学法和生物法两大类。
1)化学法脱氮。包括氨吸收法和加氯法。
①氨吸收法。 先把废水的pH值调整到10以上,然后在解吸塔内解吸氨
②加氯法。在含氨氮的废水中加氯。通过适当控制加氯量, 可以完全除去水中的氨氮。为了减少氯的投加量, 此法常与生物硝化联用, 先硝化再除去微量的残余氨氮。
2)生物法脱氮。生物脱氮是在微生物作用下, 将有机氮和氨态氮转化为氮气的过程, 其中包括硝化和反硝化两个反应过程。
硝化反应是在好氧条件下, 废水中的氨态氮被硝化细菌 (亚硝酸菌和硝酸菌)转化为亚硝酸盐和硝酸盐。 反硝化反应是在无氧条件下, 反硝化菌将硝酸盐氮(N03-)和亚硝酸盐氮(NH2-)还原为氮气。因此整个脱氮过程需经历好氧和缺氧两个阶段。
❺ 日常生活污水如何处理的,又排放到何处呢
日常生活污水经过污水厂的处理加工后二次利用,可以作为水体的补给水,灌溉田地或排放水回用。
1.生活污水定义:
指城市机关、学校和居民在日常生活中产生的废水,包括厕所粪尿、洗衣洗澡水、厨房等家庭排水以及商业、医院和游乐场所的排水等。
2.生活污水中的有害物质:
生活污水中含有大量有机物,如纤维素、淀粉、糖类和脂肪蛋白质等;也常含有病原菌、病毒和寄生虫卵;无机盐类的氯化物、硫酸盐、磷酸盐、碳酸氢盐和钠、钾、钙、镁等。总的特点是含氮、含硫和含磷高,在厌氧细菌作用下,易生恶臭物质。
3、生活污水活性污泥法处理工艺有:
(1)普通活性污泥法
(2)阶段曝气活性污泥法
(3)延时曝气活性污泥法
(4)吸附-再生活性污泥法
(5)完全混合活性污泥法
(6)吸附-生物降解活性污泥法
(7)氧化沟
(8)间歇式活性污泥法
4、城市污水经过处理后,有下面几条排放途径:
(1)放纳水体,作为水体的补给水。如下游的河道、湖泊、海边等。排放收纳水中是城市污水处理后最常采用的出路,但排出的处理后的水应达到国家或地方相关的排放标准,否早可能造成收纳水体遭受污染。
(2)灌溉田地。灌溉田地可使处理后的水得到充分利用,但必须符合GB5084-1992《农田灌溉水质标准》使土壤与农作物免遭污染。
(3)排放水回用。排放水回用是最合理的出路,既可以有效地节约和利用有限的宝贵淡水资源,又可减少污水的排放量,减轻其对水环境的污染。城市污水经二级处理和深度处理后回用的范围很广,可以提供给企业工厂作冷却水用,也可以回用于生活杂用,如景观用水、园林绿化用水、浇洒道路、冲厕所等。
是通过下水管道,流到了大海里,有的则深埋,有的则经过处理,排放到大海里。
用特殊装置啊!
楼主所说的城市“生活污水”应该指“生活污水”,一般在水行业城市废水包括工业废水和生活污水,其中工业废水是经过一定处理要求后排入污水管道进入污水处理厂的。
另外,楼主所说的“城市生活污水排放标准”应该是经过污水处理厂处理后排放到水体中的排放标准。
可参照下面的答案:
城市中工业单位排污与城市污水处理厂排污分别执行下列标准:
工业单位排污执行《污水综合排放标准》GB8978-1996,造纸、船舶、海洋石油、纺织、肉类、合成氨、钢铁、航天、兵器、磷肥、烧碱行业除外。
排入GB3838Ⅲ类水域(划定的保护区和游泳区除外)执行一级标准(Ⅲ类水域:主要适用于集中式生活饮用水地表水源地二级保护区、鱼虾类越冬场、洄游通道、水产养殖区等渔业水域及游泳区);
排入GB3838Ⅵ、Ⅴ类水域执行二级标准(Ⅵ类水域主要适用于一般工业用水及人体非直接接触的娱乐用水区,Ⅴ类水域主要适用于农业用水区及一般景观要求水域);
排入设定二级污水处理厂的城镇排水系统的污水,执行三级标准。
城市污水处理厂排污执行《城镇污水处理厂污染物排放标准》GB18918-2002
一级标准分为A标准和B标准,城镇污水处理厂出水排入国家和省确定的重点流域及湖泊、水库等封闭或半封闭水域时,执行一级标准中A标准;
排入GB3838地表水Ⅲ类功能水域执行一级标准的B标准。
二级标准为出水排入GB3838Ⅵ、Ⅴ类水域时执行;
三级标准为非重点控制流域和非水源保护区的建制镇的污水处理厂,根据当地经济条件和水污染控制要求,采用一级强化处理工业时执行。但必须预留二级处理设施的位置,分期达到二级标准。
(注:GB3838是《地表水环境质量标准》
内容比较烦琐,如果楼主还有不明白的问题,可以新增问题补充,以便详细为你解答。
回答补充:城市污水当然必须由城市管网排入城市污水处理厂处理后执行《城镇污水处理厂污染物排放标准》GB18918-2002中规定的限值要求排放,排放区域也就是上面所说到的那几类区域了。
收费没有严格的标准,要根据各地各厂实际的电费、药剂费、大修费、维护费、工资福利费、管理费、处理效率以及其他费用来衡定,一般1~10万m3/d规模的二级处理厂收费标准为0.3~0.8元每立方米污水。不过一般在引用和计算中可以估算为0.5元每立方米。
滤池的主要作用是过滤悬浮物,但是在滤池也有脱氮除磷作用时,也能够起到脱氮和除磷的作用
1、活性污泥法:SBR、AO、AAO、氧化沟等
2、生物膜法:生物滤池、生物转盘、生物接触氧化池等
3、厌氧生物处理法:厌氧消化、水解酸化池、UASB等
4、自然条件下的生物处理法:稳定塘、生态系统塘、土地处理法
像这样的微型污水处理厂,必须建调节池,如果不考虑以后扩容的需求,直接按时平均流量就可以,4.17方/小时,建议按5方/小时设计。
污水经过城市下游,一部分处理回圈利用,一部分流入河流,但按照归定被处理的污水必须是环境达标的水
这要跟据水的性质如果可生化性好,优先采用生化。根据符合高低才用不同工艺
❻ 什么是再生水再生水的处理方式有哪些
一、再生水是指废水或雨水经适当处理后,达到一定的水质指标,满足某种使用要求,可以进行有益使用的水。和海水淡化、跨流域调水相比,再生水具有明显的优势。从经济的角度看,再生水的成本最低,从环保的角度看,污水再生利用有助于改善生态环境,实现水生态的良性循环。
二、再生水处理工艺
(1)工艺1(混凝、沉淀和过滤):二级出水→ 混凝→ 臭氧脱色→ 机械加速澄清池 →V型滤池→ 紫外线消毒→ 出水。
(2)工艺2(MBR工艺):城市污水→ 曝气沉砂池→ MBR→ 臭氧脱色→ 二氧化氯消毒 →出水。
(3)工艺3(MBR+RO工艺):城市污水→ 曝气沉砂池 →MBRRO →二氧化氯消毒 →出水。
(4)工艺4(二级RO工艺):二级出水→ 过滤器 →紫外消毒 →微滤 →一级RO→ pH调节→ 二级RO →加氯消毒→ 出水。
三、前景展望
进一步研发再生水技术,拓展城市再生水利用的空间,恢复良好用水环境是中国建设小康社会、和谐社会的必然要求,是中国经济社会可持续发展的必然要求,是解决水资源短缺,控制水污染的必然要求,是建设循环经济的基础。再生水处理和应用是一项庞大的复杂的系统工程,也是长期的任务,需要制度、法律、行政、管理、教育、宣传、技术、财政等多方面的配合。
❼ 污水处理厂水进入人工湿地属于再生水利用嘛
那需粗搏要看污水处理厂处理过的水的水质怎样,一般来说,达标的再生水有多种回用途径,主要有农业利岩友祥用、城市杂用、工业利用、环境利用等四大类。
具体来说,可以
农业上:农田灌溉、造林育苗、畜牧养殖、水产养殖等;
城市杂用:城市绿水、冲厕、道路冲洗、车辆冲洗、建筑施工、消防;
工业用水:冷却用水、洗涤用水、锅炉用水、工艺用水、产品(如化工产品)用水;
环境利用:娱乐性景观用水、观赏性景观用水、湿地环境用水等;
补充水资源:告亏补充地下水、补充地表水。
❽ 污水处理再利用有哪些方式
污水再利用 经过处理的二级水可以做很多 ,但是如果是原生污水的话利用就比较少,因为内原生污水的杂质不确定加之太多,容国内在这方面的利用还是比较少的,不过目前还是有一种利用方式 ,就是使用污水源热泵系统利用污水内部温度恒温的特点为室内工冷暖,雷诺特环境设备(北京)有限公司是一家专业从事污水源热泵系统工程施工的单位,该公司的离心式技术(离心式污水换热器有效地解决了传统污水换热器已堵塞的毛病,详细的你可以去咨询他们。
❾ 实现城市废水资源化有什么方法
1.城市废水资源化的意义近20年来,经济的持续快速发展和人口的膨胀加剧了对水的需求,造成世界范围水资源短缺。水资源短缺威胁着人类的生存和发展,已成为全球人类共同面临的最严峻的挑战之一。
为解决困扰人类发展的水资源短缺问题,开发新的可利用水源是世界各国普遍关注的课题。城市废水水质、水量稳定,经处理和净化以后可以作为新的再生水源加以利用。世界上不少缺水国家把城市废水的资源化作为解决水资源短缺的重要对策之一,围绕城市废水的资源化与再生利用开展了大量的研究,包括废水回用途径的分析与开拓,废水资源化工艺与技术研究,回用水水质标准的建立,回用水对人体健康的影响,促进废水资源化的政策与管理体系等。
城市废水如不加以净化,随意排放,将造成严重的水环境污染。如将城市废水的净化和再生利用结合起来,去除污染物,改善水质后加以回用,不仅可以消除城市废水对水环境的污染,而且可以减少新鲜水的使用,缓解需水和供水之间的矛盾,为工农业的发展提供新的水源,取得多种效益。许多国家和地区把城市废水再生水作为水资源的一种重要组成,对城市废水的资源化进行了系统规划,例如美国佛罗里达州的南部地区、加利福尼亚州的南拉谷那、科罗拉多州的奥罗拉、沙特阿拉伯、意大利及地中海诸国等。实践表明,城市废水经处理后可以用于农业、城市和工业等领域。作为缓解水资源短缺的重要战略之一,城市废水资源化显示了光明的应用前景。
2.废水资源化途径与再生水水质标准(1)废水资源化途径根据城市废水处理程度和出水水质,经净化后的城市废水可以有多种回用途径。大体可分为城市回用、工业回用、农业回用(包括牧渔业)和地下水回灌。在工业回用中,主要可用作冷却水;城市回用中有城市生活杂用水、市政与建筑用水等;农业用水则主要是灌溉用水。
(2)再生水水质标准对于城市废水的回用工程,最重要的是再生水的水质要满足一定的水质标准。回用对象不一样,所规定的标准也不一样。以下介绍几种废水回用途径及相应的水质标准。
①回灌地下水:再生水回灌地下蓄水层作饮用水源时,其水质必须满足或高于国家生活饮用水卫生标准(GB5749—85)。美国加利福尼亚州卫生署于1976年制订了再生水回灌地下水的建议水质标准,1977年进一步对水质标准进行了修订。考虑到难生物降解有机物对地下水质影响以及对人体健康的危害,除一般常规监测指标外,还要求对苯、四氯化碳等20种有机物和6种农药有机物进行监测。
②工业回用:再生水的工业回用主要有3个方面:回用作冷却水、工艺用水以及锅炉补给水。回用作冷却水的再生水水质应满足冷却水循环系统补给水的水质标准;回用作工艺用水时,由于工艺的不同,水质也千差万别,应根据不同工业的不同工艺,满足其相应的水质标准;用作蒸汽锅炉补给水的水质与锅炉压力有直接关系。再生水往往需要经过补充处理后才能用作锅炉补给水。
③农业回用:再生水的农业回用主要用于灌溉。通常对灌溉用水的水质要求为:不传染疾病,确保使用者和公众的卫生健康;不破坏土壤的结构与性能,不使土壤退化或盐碱化;不使土壤中的重金属和有害物质的积累超过有害水平;不得危害作物的生长;不得污染地下水。为了使再生水回用农业的水质符合以上要求,以保障人民身体健康,促进农业持续发展,世界卫生组织以及各国均制订了污水灌溉农田的水质标准。我国最新颁布了“农田灌溉水质标准(GB5084—92)”。
3.城市废水资源化实例作为解决水资源短缺的重要对策之一,国内外对城市废水的资源化与回用都十分重视,并取得了许多成功的经验。以下列举一些废水资源化的成功实例,以供我国广大缺水地区在探索、研究和推广废水资源化中借鉴和参考。
(1)美国的废水再生与回用美国城市废水的再生与回用起步较早。全美有再生水回用点536个,其中加州有238个。下面介绍美国废水再生与回用的几个实例。
①加利福尼亚州橘子县21世纪水厂再生水回灌地下:该城市由于超量开采地下水,造成地下水位低于海平面,促使海水不断流向内陆,致使地下淡水退化不宜饮用。为防止地下水位下降造成海水入侵,美国加州橘子县早在1965年就开始研究将三级处理出水回灌地下,以阻止海水入侵。橘子县为此兴建了“21世纪水厂”,该厂设计能力为5678米3/天。原水为城市污水二级处理出水,进一步经沉淀、过滤和活性炭处理后回灌地下水。由于回灌地下总溶解性固体的限制为500毫克/升,因此一部分再生水在回灌地下水之前还采用反渗透法进行了脱盐。21世纪水厂的净化水通过23座多点注入管井分别注入4个蓄水层,与深层蓄水层井水以2∶1的比例混合以阻止海水的入侵。该项工程表明:人工控制海水入侵是可行的;城市废水经深度处理后能够达到饮用水水质标准;工程经长期运行证明稳定、可靠。
②佛罗里达州圣彼得斯堡的废水再生与回用:该市是城市废水回用的先驱之一。1978年实施了双配水系统,供给用户两种质量的水(饮用水和非饮用水),再生水开始用于非饮用水目的的使用。1991年该市向7000多户家庭及办公楼提供再生水(8×103)米3/天,并用做公园、操场、高尔夫球场灌溉用水以及空调系统冷却水和消防用水。该市共有4座废水处理厂,总处理能力达(270×103)米3/天,采用活性污泥生物处理工艺,并附加有铝盐混凝、过滤及消毒处理,双管输水系统管道共长420千米。通过10口深井将多余的再生水注入盐水蓄水层,一年间平均约有60%的再生水注入深井。由于使用再生水,节约了优质水,因此尽管该市入口增加了10%,但饮用水仍能满足供应。
③亚利桑那州派洛浮弟核电站回用再生水作冷却水:该核电站是美国最大的核电站。第一期三个反应堆分别于1982、1984及1986年投产,每个发电能力为1270兆瓦。此外拟再建两个反应堆。核电站地处沙漠,严重干旱,因此采用再生水作为冷却水。再生水来自两座城市废水处理的二级生物处理出水。输至核电站再经补充处理,使之达到所需水质。该核电站采用冷却水系统,补给水约(200×104)米3天。
(2)日本的废水再生与回用日本近20多年来在废水再生和利用方面进行了大量研究开发和工程建设。1986年城市废水回用量达(6300×10)米3/年,占全部城市废水处理量的0.8%。再生水主要回用于中水道、工业用水、农田灌溉、河道补给水等。各种用途及其所占的比例为:中水道系统为40%、工业用水29%、农业用水15%、景观与除雪16%。中水道系统是日本污水回用的典型代表。1988年日本共建有中水道844套,其中办公楼、学校为大户。学校占18.l%、办公楼占17.3%、公共楼房占9.2%、工厂占8.4%。中水道再生水主要用于冲洗厕所(占37%)、冲洗马路(占16%)、浇灌城市绿地(占15%)、冷却水(占9%)、冲洗汽车(占7%)、其他(景观、消防等)为16%。
(3)其他国家的废水再生与回用世界上第一座将城市废水再生水直接用作饮用水源的回收厂设在纳米比亚的首都温德和克市。该回收厂于1968年投产,第一阶段产水量为2300米3/天,正常处理能力可达4500米3/天,后增至6200米3/天。水为城市废水厂二级生物处理出水,处理流程如下:
深度处理水的水质经严格的水质监测,证明符合世界卫生组织(WHO)及美国环保局发布的标准。以色列属半干旱国家。再生水已成为该国的重要水资源之一。100%的生活废水和72%的城市废水已经回用。据1987年资料,全国废水总量(832.5×10)立方米,处理量达(2.18×108)立方米,处理率接近90%。再生水用作灌溉达(1.046×108)立方米(占42%),回灌地下为(0.7×108)立方米(占29%左右),排海水量(0.7×108)立方米(占29%左右)。废水处理后贮存于废水库。全国共修建127座废水库,其中地面废水库123座,地下废水库4座。废水进行农业灌溉之前一般通过稳定塘系统处理。有些城市将城市二级生物处理出水再经物化处理后回用于工业冷却水。此外,废水经深度处理后回灌地下水,再抽出至管网系统,或并入国家水资源调配系统,输送至南部地区,或用于一般供水系统,最南部地区甚至将它作为饮用水源。
由于采取了上述废水回用的措施,以色列大大提高了水资源的有效利用,从而缓和了水资源短缺对社会经济发展的制约作用。科威特利用经三级处理后的城市废水进行农业灌溉。印度目前至少有200个农场利用城市废水进行灌溉,面积达23000公顷。
(4)我国的废水再生与回用我国长期以来有利用生活污水灌溉农田的经验,先后开辟了1042多个大型污水灌溉区。在我国北方干旱地区,利用污水灌溉农田,可充分利用其水肥资源发展农业生产,确实收到了一定效果。但由于一些污灌区地址选择不当,设计不合理,废水预处理不够,又缺乏水质控制标准和及时的监测,出现了土壤、农作物及地下水的严重污染,威胁着人体健康和安全。若干年前,曾开展大规模的污灌区环境质量综合评价工作,研究与制订了污水灌溉与污泥用于农田的各项环境标准与规定,已将污水农业利用引向科学的道路。由于我国不少地区,如北方地区水资源紧缺,迫切需要把城市废水作为第二水源加以回收利用,实现废水资源化。为此,国家组织了有关开发城市废水资源化工艺的科技攻关,研制成套技术设施,建立示范工程,并逐步推广应用。攻关内容包括工业回用、市政景观利用的水质预处理技术、水质标准、卫生安全评价、中小城镇和住宅小区污水回用技术的研究等。一些成果已在天津纪庄子污水处理厂改造工程中应用,并在天津、太原、大连等城市建设了污水回用工程。例如,大连春柳废水处理厂的二级生物处理出水经深度处理后用于冷却水;太原杨家堡废水处理厂采用生物填料接触氧化池处理城市污水用于冷却水;北京高碑店热电厂亦将高碑店污水处理厂的出水作为冷却水水源。经过十多年来的努力,我国在城市废水资源化以及回用方面取得了一定的成绩,为今后更大范围的推广应用奠定了坚实的基础。随着我国城市废水处理厂的普及与兴建,废水再生利用规模和速度亦将迅速发展。
❿ 污水资源化主要途径
污水资源化又称废水回收(wastewaterrecovery),是把工业、农业和生活废水引到预定的净化系统中,采用物理的、化学的或生物的方法进行处理,使其达到可以重新利用标准的整个过程。这是提高水资源利用率的一项重要措施。
各种污水(工业废水、农业污水和生活污水等)的性质和物质组成有很大差异,需用不同的方法处理后网收利用。中国各城市的污水排放量日益增加。1991年6月,国家环境保护局发布中国《1990年环境状况公报》指出,1990年全国污水总排放量254亿立方米,即日排9698万立方米,其中工业废水占70.3%。污水经处理后又转化为可利用的水资源,对于城市发展而言,具有双重意义。一是减少污染、保护环境,二是增加水资源、缓解缺水危机。根据国内外经验,废水回收主要回用于工业循环水、区域非饮用供水、推广水中水技术和中水利用、再生水用于农业、回补地下含水层,或作为城市绿化、环境卫生等用水等。
物化法
聚合氯化铝是一种无机高分子混凝剂,由于氢氧根离子的架桥作用和多价阴离子的聚合作用而生产的分子量较大、电荷较高的无机高分子水处理药剂)的特点主要是由压力式雾化器的工作原理所决定的,使这一干燥系统有它自己的特点。由于压力式喷雾干燥所得产品是多孔微粒状或空心微粒状,采用压力式喷雾干燥,阴离子聚丙烯酰胺,多以获得颗粒状产品为目的,所得颗粒状产品具有优良的防尘性能和流动性能。
聚合氯化铝(Polyaluminium Chloride) 简称PAC。通常也称作碱式氯化铝或混凝剂等,它是介于ALCL3和AL(OH)3 之间的一种水溶性无机高分子聚合物,化学通式为[AL2(OH)NCL6-NLm]其中m代表聚合程度,n表示PAC产品的中性程度。颜色呈黄色或淡黄色、深褐色、深灰色树脂状固体。该产品有较强的架桥吸咐性能,在水解过程中,伴随发生凝聚,吸附和沉淀等物理化学过程。