1. 浙江大学化学工程与生物工程学系的学术研究
科研建设
国家及省部级研究基地 化学工程联合国家重点实验室二次资源化工国家专业实验室高压过程装备与安全教育部工程研究中心生物质化工教育部重点实验室(浙江大学)工业生物催化浙江省工程实验室教育部膜与水处理技术工程研究中心 研究所 化学工程研究所 联合化学反应工程研究所 聚合与聚合物工程研究所 生物工程研究所 制药工程研究所 化工机械研究所 工业生态与环境研究所 科研成果(2009-2012)
2012年度,化工系科研总经费14353.60万元,其中纵向经费占44.0%,横向经费占56.0%。国家基金共32项,经费达到2638万。发表学术论文被SCI收录217篇;被EI收录117篇;SITP:11篇;授权发明专利159项。
科研论文(篇) SCI收录 EI收录 ISTP收录 2009年 200 165 13 2010年 192 142 13 2011年 176 197 10 2012年 217 117 11 专利(件) 发明专利实用新型专利软件登记或外观设计合计2009年 65 18 3 86 2010年 69 11 1 81 2011年 128 24 0 152 2012年 158 35 0 193 科研获奖 获奖年度 奖励名称 奖励等级 负责人 项目名称 2009 国家技术发明奖 二等奖 任其龙 食品功能因子高效分离与制备中的分子修饰与吸附分离耦合技术 2009 教育部高等学校
自然科学奖 一等奖 罗英武、李伯耿 活性可控自由基聚合反应过程基础 2009 浙江省科学技术奖 一等奖 何潮洪 雷公藤有效成分的提取分离及质量控制技术 2009 教育部高等学校
技术发明奖 二等奖 杨健、郑津洋 CSMB耦合型模拟移动床集成反应分离设备 2009 机械工业联合会
科技进步奖 二等奖 王乐勤、郑津洋、吴大转、谭善光、曾 胜 大型延迟焦化装置高压切焦泵技术研究与工业应用 2009 浙江省科学技术奖 二等奖 徐志南、林建平、
蔡谨、黄磊 体内和体外高效合成功能性异源蛋白质的理论基础和关键技术 2009 浙江省科学技术奖 二等奖 徐志南 吗替麦考酚酯及其制剂(赛可平)的研究及产业化 2009 浙江省科学技术奖 二等奖 申屠宝卿 符合RoHS指令的电子电器专用阻燃耐漏电尼龙66系列工程塑料研发 2009 安徽省科技进步奖 三等奖 陈欢林、张林 环氧树脂高盐废水膜蒸馏浓缩-盐回收新工艺及装备 2010 国家技术发明奖 二等奖 王乐勤、吴大转 涡轮泵发射技术研究 2010 国家技术发明奖 二等奖 陈志荣 脂溶性维生素及类胡萝卜素的绿色合成新工艺及产业化 2010 浙江省科学技术奖 一等奖 陈新志、钱超 连续化低碳脂肪胺生产技术 2010 浙江省科学技术奖 一等奖 郑津洋 冲拔式车载大直径高压天然气无缝钢瓶关键技术及产业化 2010 教育部高等学校
科技进步奖 一等奖 郑津洋、刘鹏飞、
赵永志、杨健 70Mpa高压气态储氢系统关键技术及应用 2010 浙江省科学技术奖 二等奖 姚善泾、林东强、关怡新 扩张床吸附介质研制及生物分离机制研究 2010 浙江省科学技术奖 二等奖 吴绵斌 红豆杉的中医药综合利用研究 2010 浙江省科学技术奖 三等奖 郑津洋、刘鹏飞 天然气长输管道安全预测预警关键技术与应急救援指挥辅助决策系统 2010 中国专利优秀奖 郑津洋 聚烯烃管道电熔焊接接头冷焊缺陷的超声检测方法 2011 教育部高等学校
科技进步奖 一等奖 杨立荣、吴坚平、徐刚 化学-酶法制备手性菊酯农药的关键技术及产业化 2011 浙江省科学技术奖 二等奖 王乐勤、吴大转 流程工业高压离心泵理论、技术研究与应用 2011 浙江省科学技术奖 二等奖 金志江、张志新、许忠斌 高性能高参数减温减压装置 2011 浙江省科学技术奖 二等奖 曾胜 全自动电机转子动平衡机 2011 中国轻工业联合会
科技进步奖 一等奖 许忠斌 高效精密注塑系统及装备的研发 2012 国家技术发明奖 二等奖 杨立荣、吴坚平、徐刚 全有机溶剂中化学-酶法高效制备手性菊酯关键技术及产业化 2012 浙江省科学技术奖 一等奖 李伯耿、罗英武、
范宏、王文俊、
曹堃、吴林波、
卜志扬 复杂高分子体系的反应动力学及其应用基础研究 2012 中国石油和化学工业
联合会科技奖 一等奖 郑津洋、施建峰 聚烯烃及其复合管道安全检测与评价方法 2012 中国海洋工程咨询协会海洋工程科学技术奖 一等奖 闫克平、黄逸凡 海洋浅地层高分辨率多道地震探测技术及其应用
2. 列举绿色化学在生活中的应用实例
最突出的就是光能引用,大街上的太阳能路灯;还有绿色燃料氢气的重点引用;以及核能的开发引用!好多的
主要着眼于以下几个方面:
1、采用无毒、无害的原料:化学研究和化工生产中经常采用有毒、有害的原料,如剧毒的光气、氢氰酸、苯类、醛类等原料和中间体,它们严重地污染环境并危害人类的健康。采用无毒、无害的原料是绿色化学的一项重要任务。
2、开发、应用“原子经济”反应路线:就是最大限度地利用原料分子中的每一个原子,使之结合到目标分子中,不产生副产物或废物,从而实现废物的零排放。“原子经济”反应有利于节约资源和保护环境。3、采用新型、高效、对环境友好、可回收的催化剂:通过选择催化剂,可以提高反应的选择性,并避免副产物的生成,提高原子的利用率,减少有害物质对环境的排放。
4、采用无毒、无害的溶剂:致力于开发无溶剂存在下的反应,如固态反应;开发和应用无毒、廉价、不危害环境的水介质体系;以超临界流体做介质的反应将成为绿色合成工艺的重要途径。
5、产品的绿色化:采用新的工艺、新的原料、新的配方,合成新的对人类和环境无毒、无害的绿色产品是绿色化学的最终使命和终极目标。如开发新型的制冷剂,减少对臭氧层的破坏;开发新型的、可生物降解的高分子材料,解决“白色污染”问题。
6、充分应用可再生资源:采用可再生资源做化学化工原料,是绿色化学的一项重要任务和研究方向。据统计,现代95%以上的有机化学品都来自石油和煤,但石油和煤的储量有限,属不可再生能源。同时,石油和煤的开采和加工又严重污染环境。采用可再生的生物质,如淀粉、纤维素、沼气、糖类等取代传统的石油、煤等工业原料既可以保护资源又有利于环境,可谓一举双得。
7、从产品开发的途径上考虑:传统的化学工艺的开发是经过漫长的实验探索,并不断地改进、优化和完善。在这种研究模式下,必将消耗大量的化学试剂、溶剂和能源,并源源不断地产生副产物和废物。往往开发一条可行的化学工艺需要经过漫长的时间和消耗大量的人力、物力。目前,计算机辅助分子设计和材料设计是一门新兴学科分支,并在实践中取得了广泛的发展和应用。如在有机合成和药物合成中,科学家首先建立了一个已知的有机合成反应尽可能全的资料库,然后在确定目标产物后,第一步找出一切可产生目标产物的反应;第二步又把这些反应的原料作为中间目标产物找出一切可产生它们的反应路线;接着应用计算机智能技术优化出价廉、物美、不浪费资源、不污染环境的最佳反应路线;最后,通过化学方法合成出所设计的目标分子。绿色化学在节约原料、保护环境、保障人类健康与安全方面发挥了日益显著的作用,并受到社会的广泛关注。世界各国的许多科研机构和政府部门都在致力于绿色化学的开发和推广应用。相信随着科学的进步和人们绿色意识的提高,我们的赖以生存的地球环境会变得更加美好。
3. 低碳脂肪胺和脂肪胺区别
脂肪胺属于有机胺的一种,指碳链长度在C2-C22范围内的一大类有机胺化合物,根据碳链长度不同,脂肪胺可分为低碳脂肪胺(C2~C8)类和高级脂肪胺(C8~C22)类。例如,异丙胺和乙基胺(一乙胺、二乙胺、三乙胺)均属于低碳脂肪胺(C2~C8)。除了上述的甲胺、乙胺、丙胺和丁胺类系列产品
低碳脂肪胺还包括戊胺和己胺类系列产品,这些产品也是重要的有机合成中间体,如环戊胺可以合成具有杀菌作用的胺类,以其有光学活性的环戊胺衍生物为原料制得的环戊烯基氧氨嘧啶具有抗肿瘤及抗氧化的作用;而环己胺可用做生产食品添加剂的甜蜜素等。
4. 废水处理中常用的方法
1、废水首先经过格栅、筛网后流至絮凝沉淀池,为了使处理效果好,在絮凝沉淀池中加入混凝剂,使废水中悬浮物治理效果更好,混凝加药也起到调节废水的作用.絮凝沉淀后的废水流入预曝气调节池中。
2、曝气调节池中通入空气,起到预曝气调节的作用.调节均匀的废水用泵提升到一级浮动填料生化池中。
3、生化池中安装充氧效率很高的曝气头,并装入浮动填料,实践证明该项技术对COD和BOD有较高的去除效率.一级浮动填料生化池中废水自流入二级浮动填料生化池,二池采用方法相同。
4、二级浮动填料生化池水自流入斜板沉淀池中.池中加入聚丙烯蜂窝斜管,可大大提高沉降效率,另外水力负荷高,停留时间短,占地面积小。
5、混凝沉淀池与斜板沉淀池沉淀污泥排入污泥浓缩池中,然后经污泥脱水机械脱水。
6、斜板沉淀池排出的水流入清水池中,经检测后外排。
污水处理流程图
处理方法:
1、按作用分:污水处理按照其作用可分为物理法、生物法和化学法三种。
(1)物理法:主要利用物理作用分离污水中的非溶解性物质,在处理过程中不改变化学性质。常用的有重力分离、离心分离、反渗透、气浮等。物理法处理构筑物较简单、经济,用于村镇水体容量大、自净能力强、污水处理程度要求不高的情况。
(2)生物法:利用微生物的新陈代谢功能,将污水中呈溶解或胶体状态的有机物分解氧化为稳定的无机物质,使污水得到净化。常用的有活性污泥法和生物膜法。生物法处理程度比物理法要高。
(3)化学法:是利用化学反应作用来处理或回收污水的溶解物质或胶体物质的方法,多用于工业废水。常用的有混凝法、中和法、氧化还原法、离子交换法等。化学处理法处理效果好、费用高,多用作生化处理后的出水,作进一步的处理,提高出水水质。
2、按处理程度分:污水处理按照处理程度来分可分为一级处理、二级处理和三级处理。
(1)一级处理主要是去除污水中呈悬浮状态的固体物质,常用物理法。
(2)二级处理的主要任务是大幅度去除污水中呈胶体和溶解状态的有机物,BOD去除率为80%~90%。
(3)三级处理的目的是进一步去除某种特殊的污染物质,如除氟、除磷等,属于深度处理,常用化
5. 目视比色法测工业废水中氨氮的方法
1. 方法原理
碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用波长在410~425nm范围。
2. 干扰及消除
脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁和硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热以除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。
3. 方法的适用范围
本法最低检出浓度为0.025mg/L(光度法),测定上限为2ml。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水中氨氮的测定。
4. 仪器
分光光度计,pH计。
5. 试剂
配制试剂用水均应为无氨水。
(1)纳氏试剂:可选择下列一种方法制备。
① 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加氯化汞溶液。
另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存。
② 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。
另称取7g碘化钾和10g碘化汞(Hgl2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。
(2)酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6•4H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。
(3)铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。
(4)铵标准使用溶液:移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。
6. 测定步骤
(1)校准曲线的绘制
① 吸取0、0.50、1.00、3.00、5.00、7.00和l0.0ml铵标准使用液于50ml比色管中,加水至标线,加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测量吸光度。
② 由测得的吸光度,减去零浓度空白的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的校准曲线。
(2)水样的测定
① 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同校准曲线的绘制。
② 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线。加1.5ml纳氏试剂,混匀。放置10min后,同校准曲线步骤测量吸光度。
(3)空白试验
以无氨水代替水样,做全程序空白测定。
七、结果计算
由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg):
式中:m——由校准曲线查得的氨氮量(mg);
V——水样体积(ml)。
6. 脂肪胺在水中的碱性大小顺序
脂肪胺在水中的碱性大小顺序为仲胺大于伯胺大于叔胺。
1、伯胺:RNH2。连接1个烃基。伯胺中氮原子的亲核性强,是合成有机胺的主要方法。
2、仲胺:R2NH。连接2个烃基。是众多天然产物与生物活性分子的合成子,也是现代药物的关键活性官能团。
3、叔胺:R3N。连接3个烃基。其用途十分广泛,既可以作为配制产品的组分,又可作为各种专用化学衍生物的中间产品,同时也是生产季铵盐的重要原料。
7. 氨基磺酸是不是具有两性
具有双亲水基和双疏水基的gemini表面活性剂作为一类性能卓越的新型表面活性剂。
目前,氨基酸型两性表面活性剂按照正电荷中心氮原子来划分,可以分为含弱碱 性氮原子的氨基酸型两性表面活性剂和含强碱性氮原子的氨基酸型两性表面活性剂(即 甜菜碱)。该两种类型的氨基酸型两性表面活性剂已经在各个行业有了较为广泛的应用,应 用的大多数主要是羧酸型或磷酸型产品。氨基磺酸型两性表面活性剂开发和应用的较少, 但其在使用性能上越来越彰显出其优越性。氨基磺酸型两性表面活性剂(主要指的是含弱 碱性氮原子的)的合成方法主要有以下三大类第一类,通过脂肪胺(主要包括伯胺)和磺化剂(卤代磺酸盐)反应; 这类方法的合成反应通式为 其中R和R’分别是长链(或较长链)和短链烃为主链的基团,X是卤基,M是金属离子。在美国专利US-1944300和日本专利JP-61260055A分别公布了烷基伯胺与氯代磺 酸钠的反应。该类方法,原料价格贵,易水解,反应温度较高,为了使反应向右进行,提高反 应产率,有的需要适当减压以利于卤化氢气体逸出,同时,卤化氢气体对设备腐蚀性大,外 排对环境造成污染。第二类,通过脂肪胺(主要包括伯胺)和磺化剂(磺酸内酯,烷基撑亚硫酸酯)反
应; 其反应通式为 其中R是长链烃基,R1是碳数为2-4的短链烃基或短链烃氧基,R2是碳数为2-4的 短链烃基。在US-3082179的美国专利中,公布了烷基璜内酯作为磺化剂合成氨基磺酸型两 性表面活性剂。该类方法,虽然反应可以在低温下进行,但是原料成本高,璜内酯不稳定,有的反应过程需要在不常见的溶剂或无水等苛刻的条件下进行。