⑴ 高氯废水cod的测定
高氯废水COD的检测一向是污水处理厂化验检测的一个难题,氯离子屏蔽是否完全,对COD的检测结果影响很大。
按照HJ828--2017的标准,只能直接测含氯化物浓度低于1000mg/L的水中化学需氧量的测定,高于1000mg/L的含氯化物的水中化学需氧量的检测,需稀释使含氯化物的浓度低于1000mg/L后再继续检测,这就给一级A排放标准的污水处理厂的出水检测带来不便,特别是沿海地区的污水处理厂。
我们单位是靠海边的污水处理厂,排放标准暂时是一级A,正在提标改造,提标完成后后将是类四类水标准,这就标志着出水的化学需氧量达到30mg/L以下,因为是沿海地区,水中含氯化物浓度较高,按标准要稀释后再测,但由于排放的出水本身COD就较小,又要稀释,这样会增加误差,影响数据的准确度。
我是一名化验员,针对我厂的当前水质情况进行了为期几天的检测实验。我厂出水COD排放现在在40mg/L左右,含氯化物在一千到两千之间,我将出水COD的检测用两种不同的方法屏蔽氯离子然后检测。一种是将原出水稀释一倍使含氯化物低于1000㎎/L,然后HJ828-一2017标准检测。另一种是在HJ828-2017的基础上多加1ml的硫酸汞屏蔽剂进行化学需氧量的检测,检测数据如下
我得出结果是含氯化物在一千到两千之间的化学需氧量的测定用稀释法加2ML硫酸汞屏蔽和直接加3ml硫酸汞屏蔽氯离子没用太大的区别,误差范围在质量控制标准范围内。 通过这次实验得到的结果的使用,给我以后的高氯废水COD的检测工作带来方便,我将用直接加3ML硫酸汞屏蔽氯离子的代替稀释使氯离子浓度降低的方法,这样就减少工作量,提高工作效率。
⑵ 氯离子的存在为什么会影响COD的值
(1)阳离子的电性直接与该原子内的核电荷的大小有关,如果是电子层结构相同的阳离子核电荷愈大,则核对最外围的引力就愈大,此时阳离子半径是核电荷数大的离子半径就小.例如电子层结构相同的钠离子和铝离子.铝离子半径小于钠离子.(2)阴离子的负电性,主要是该原子的最外层上获得了电子后,正、负电荷不平衡,负电荷大于正电荷.静电的吸引是靠这个最外层的负电荷与前面的阳离子吸引.(3)若是同一阴离子,与电子层结构相同的,原来原子半径不相同的两个阳离子发生静电吸引的话,那么核电荷大的静电吸引就大(不考虑其他因素)那么离子的键能就大.(4)离子键的强弱影响离子化合物的物理性质,如熔、沸点等,例如氧化铝的熔点比氧化钠高,因为,铝离子半径比钠离子半径小.(5)离子半径的大小也影响离子的晶体结构,例如氯化钠和氯化铯等.(6)相反,相同电子层结构的阴离子,负电性愈大,离子半径就大,例如负二价硫离子与负一价氯离子,前者半径大于后者,它们分别与钠离子结合成硫化钠和氯化钠,熔点后者大于前者.
⑶ 高氯(Cl-)废水的危害 ,详细一点,谢谢
1、含盐量高,造成细胞脱水死亡;
2、对金属腐蚀性强;
3、影响监测污水中的COD值。
⑷ 污水中氯离子对环境有什么影响
一般的城市污水中所含的氯离子大约100左右,基本对环境没影响。而且一般的污水处理厂也无法处理氯离子
⑸ 污水处理中进水氯离高,达到2000mg/L,对于AO工艺来说,该如何处理。
增加污泥浓度,和水力停留时间,使污泥驯化得适应高盐度污水;再者就可以在后处理上加上反渗透什么的。关键要看氯离子浓度和硫离子浓度。
⑹ 为什么高浓度的含盐废水对微生物影响较大
先描述一个渗透压的实验:用一张半渗透薄膜将两种不同浓度的盐溶液隔开,低浓度盐溶液的水分子就会透过半渗透薄膜进入高浓度盐溶液,而高浓度盐溶液的水分子也会透过半渗透薄膜进入低浓度盐溶液,但其数量要少,故高浓度盐溶液一侧的液面会升高,当两侧液面的高差产生了足够阻止水再流动的压力时渗透就会停止,这时两侧液面的高差产生的压力就是渗透压。一般来说,盐分浓度越高,渗透压越大。
微生物在盐水溶液中的情况与渗透压的实验是相似的。微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。在日常生活中,人们用食盐(氯化钠)腌渍蔬菜和鱼肉,灭菌防腐保存食物,就是运用了这个道理。工程经验数据表明:当废水中的氯离子浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。
不过,经过长期驯化,微生物会逐渐适应在高浓度的盐水中生长繁殖。目前已经有人驯化出能够适应10000mg/L以上氯离子或硫酸根浓度的微生物。但是,渗透压的原理告诉我们,已经适应在高浓度的盐水中生长繁殖的微生物,细胞液的含盐浓度是很高的,一旦当废水中的盐分浓度较低或很低时,废水中的水分子会大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂死亡。因此,经过长期驯化并能逐渐适应在高浓度的盐水中生长繁殖的微生物,对生化进水中的盐分浓度要求始终保持在相当高的水平,不能忽高忽低,否则微生物将会大量死亡。
⑺ 循环水余氯高会有什么影响
1.余氯高,水的电位就高,水的导电性加强,因此腐蚀加剧。
2.干扰环蚀药剂
⑻ 氯离子含量高是否影响微生物生长的因素
氯离子含量高对微生物生长是有影响的。
高浓度氯离子对废水生物处理的毒害作用主要是通过升高的环境渗透压而破坏微生物的细胞膜和菌体内的酶,从而破坏微生物的生理活动。
工程经验数据表明:当废水中的氯离浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。
基本介绍
微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。
但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。
⑼ 高氯化物废水如何处理
处理含盐废水,对于6000+的COD,建议用生物法来处理。
有三种方法
1 普通的好回氧或厌氧污泥
2 利用嗜盐答菌
3 利用酵母菌
普通的好氧或厌氧污泥遭受含盐废水冲击时,
可以通过自身的渗透压调节机制来适应这种环境,但其适应能力有限,它们通常不能处理含盐较高的废水。 嗜盐菌和耐盐酵母菌对盐有特殊的适应性,它们可以在高含盐废水中生长繁殖,并且具有较强的降解能力,因此有广阔的应用前景,今后应加强它们在实际废水中的研究"提高它们的处理能力。
⑽ 氯离子为什么会对COD测定产生干扰
在COD检测的过来程中,水样中Cl离子极易自被氧化剂氧化,会增加氧化剂的消耗,使得测定结果偏高。
水样在一定条件下,以氧化1升水样中还原性物质所消耗的氧化剂的量为指标,折算成每升水样全部被氧化后,需要的氧的毫克数,以mg/L表示。它反映了水中受还原性物质污染的程度。
氯离子是生物体内含量最丰富的阴离子,通过跨膜转运和离子通道参与机体多种生物功能。
(10)高氯废水对ocd的影响扩展阅读:
试样在微酸性溶液中,加入定量的硝酸银标准溶液,使氯离子成为氯化银沉淀,以高铁铵钒为指示剂,用硫氰酸铵标准溶液滴定过量的硝酸银。
氯电极在使用前应在每毫升含有2μg左右的氯溶液中浸1h,使其活化,使用时用去离子水洗涤数次,用滤纸片吸干水分并向下振动电极(与使用体温表前的振动相似),以保证内参比溶液与电极膜相接触。
当测量了高浓度氯试液后再测低浓度时,必须用不含氯的水洗2~3次,每次搅拌2~3min,测第一个低浓度试样时,响应时间应不少于10min,并应反复测量至电位值一致时为止。