导航:首页 > 污水知识 > 砷废水处理

砷废水处理

发布时间:2022-12-07 17:44:35

A. 工厂排放出的酸性废水中的三价砷 (H3AsO3弱酸)不易沉降,可投入MnO2 先将其氧化成五价砷(H

答复楼主:
根据您的描述,您提到的工厂废水酸性很大,投了生石灰才会升到2,那最初的PH是低于2的
所以您的工厂废水要么含有稀硫酸、稀盐酸或者稀硝酸这些强酸
本身题目所提到的弱酸是不具备这样大的酸性的
加入生石灰后,钙和酸根结合
应该是生成硫酸钙、氯化钙、硝酸钙
其中硫酸钙是沉淀物,而氯化钙和硝酸钙不是
所以废水里应该含有硫酸
而沉淀物是硫酸钙

不知道您的题目中有否提到废水来源是煅烧还是什么硫化产物
希望对您有帮助

B. 以硫铁矿为原料生产硫酸所得的酸性废水中砷元素含量极高,为控制砷的排放,采用化学沉降法处理含砷废水,

C. 以硫铁矿为原料生产硫酸所得的酸性废水中砷元素含量极高,为控制砷的排放,采用化学沉降法处理含砷废水,

()图表中硫酸浓度为28.42g/L,换算物质的量浓度=

28.42g
98g/mol
1L
=0.29mol/L;
故答案为:0.29;
(2)难溶物Ca3(AsO42的沉淀溶解平衡为:Ca3(AsO42(s)?3Ca2++2AsO43-;溶度积Ksp=c3(Ca2+)?c2 (AsO43-);若混合溶液中Al3+、Fe3+的浓度均为1.0×10-4mol?L-1,依据Ksp大小可以得到,Ksp(FeAsO4 )小,反应过程中Fe3+先析出沉淀;依据Ksp(FeAsO4 )=c(Fe3+)c(AsO43-)=5.7×10-21;Fe3+的浓度均为1.0×10-4mol?L-1,计算得到 c(AsO43-)=5.7×10-17mol/L;
故答案为:c3(Ca2+)?c2 (AsO43-);5.7×10-17
(3)三价砷(H3AsO3弱酸)不易沉降,可投入MnO2先将其氧化成五价砷(H3AsO4弱酸),则该反应的离子方程式为:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O;
故答案为:2H++MnO2+H3AsO3=H3AsO4+Mn2++H2O;
(4)①硫酸钙难溶于酸,所以酸性条件下能析出,因此pH调节到2时废水中有大量沉淀产生,沉淀主要成分的化学式为CaSO4,故答案为:CaSO4
②H3AsO4是弱酸电离出来的AsO43-较少,所以酸性条件下不易形成Ca3(AsO42沉淀,当溶液中pH调节到8左右时AsO43-浓度增大,Ca3(AsO42开始沉淀,
故答案为:H3AsO4是弱酸,当溶液中pH调节到8左右时AsO43-浓度增大,Ca3(AsO42开始沉淀.

D. 处理含砷废水的方法有哪些

(1)石灰法;(2)石灰-铁盐法;(3)硫化法;(4)软锰矿法;(5)综合回收法;(6)磷酸盐法;(7)活性炭、活性铝吸附法;(8)反渗透法;(9)离子交换法。

E. 污水处理技术篇:水体中的砷如何去除

水体中的砷如何去除:目前,国内外处理污水处理中含砷废水的方法主要有沉淀法专、离子交换法、生属物法、膜法、电凝聚法、吸附法等。这些方法均有其自身的特点,如:沉淀法除砷技术较为完善,应用较为广泛,但它处理后会产生大量废渣,造成二次污染,而且除砷效率低,难以满足饮用水水质要求;离子交换法适用于处理量不大、组成单一、回收价值高的废水,但其处理工艺复杂、成本高,难以实现工业化生产;生物法中微生物对周边环境的要求很严格,因砷具有毒性,用此法处理水中的砷目前尚处在起步阶段;膜分离法处理成本较高,不宜大规模应用;电凝聚法操作技术条件要求比较高;吸附法是利用吸附剂提供的大比表面积,通过砷污染物与吸附剂间较强的亲和力达到净化除砷的目的。吸附法由于简单易行、去除效果好、能回收废水中的砷、对环境不产生或很少产生二次污染,且吸附材料来源广泛、价格低廉、可重复使用等优势而备受人们关注。

F. 有50公里河道被三氧化二砷(砒霜)矿石废料污染,求怎么处理(高分)

当河道被三氧化二砷污染时,处理方法如下:

隔离泄漏污染区,限制出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。不要直接接触泄漏物。小量泄漏:避免扬尘,用洁净的铲子收集于干燥、洁净、有盖的容器中。大量泄漏:用塑料布、帆布覆盖,减少飞散。然后收集、回收或运至废物处理场所处置。

三氧化二砷是冶炼砷合金和制造半导体的原料。玻璃工业用作澄清剂和脱色剂,以增强玻璃制品透光性。皮革工业用以制亚砷酸钠作皮革保藏剂。但是使用不当有极大的环境危害。

(6)砷废水处理扩展阅读:

安全事项

应贮存在通风、干燥的库房中。容器必须密封,与食用原料隔离贮存,防止漏洒和受潮。要加强管理。搬运人员在工作完毕后应立即更衣,并用清水洗手,以免误入口中。

失火时,可用水、砂土扑救。毒性及防护:致死量(经口入)60mg。慢性中毒能造成胃肠功能紊乱,导致周期性结肠炎、慢性肝炎,重者可肝硬变。对黏膜、皮肤、神经系统、肾和心脏有损害。

粉尘中毒时,首先看到黏膜、眼和皮肤的改变。急性经口中毒时,采用催吐、洗胃,静脉注射葡萄糖溶液措施。

参考资料来源:网络-三氧化二坤

G. 镍里面含砷高怎么处理

废水中含抄有镍的处理方法:
1、对于电袭镀镍废水,浓度不高,可直接投加片碱,把pH调节至碱性条件11左右,氢氧根会与镍离子结合生成氢氧化镍沉淀,把镍去除。
2、大多数电镀镍废水,在加碱条件下很难处理到0.1mg/L以下,主要有两点原因,第一是废水中混进了前处理废水,前处理废水中含有一部分络合剂,络合剂 会与镍离子结合生成小分子,从而阻止氢氧根与镍离子结合生成沉淀;
第二是果镍离子含量过高,氢氧根与镍离子首先形成沉淀,但是沉淀过多会阻止废水中剩余 的镍离子与氢氧根结合反应。
两种情况下都会导致镍离子超标。
3、对于加碱情况下很难处理的电镀镍废水,可以采用重捕剂M1进行沉淀处理。
对于前处理液导致镍超标的电镀镍废水,可以调节废水pH至10,直接投加重捕剂M1进行处理,用量为镍离子的5-7倍即可。
废水中含有镍的处理注意事项:
1、如果镍含量比较高导致难处理,可以二次沉淀处理,先通过加碱调节pH至11,沉淀出水,除去一部分镍离子,再对出水投加重捕剂M1进行二次沉淀处理,能节省成本,又能稳定达标。

H. 制酸废水中的砷怎么处理,选用什么滤料

凯得菲(KDF)滤料在水处理中的应用

摘要:介绍高纯铜锌合金凯得菲(KDF)的特性,在水处理行业的应用范围及前景

关键词:高纯铜锌合金、凯得菲(KDF)、电化反应、重金属、余氯、阻垢、水处理

一、 凯得菲(KDF)的作用及作用机理

凯得菲(KDF)是高纯度的铜/锌合金颗粒,它通过微电化学氧化-还原反应(Redox)进行水处理工作,在与水接触时,合金中的两种金属在亚微观尺度上构成无数小的原电池系统,这种材料在水中具有强大的反应能力和极快的反应速度,可以清除水中高达99%的氯和水中溶解的铅、汞、镍、铬等金属离子和化合物。对抑制细菌、真菌、污垢、水藻的滋生效果卓著。被用于预处理、主处理与废水处理设备。凯得菲(KDF)完善或取代现有技术,可大辐度延长了系统寿命,减少了重金属、微生物、污垢,降低了总费用,减化系统维护。

(1) 去除强氧化剂(余氯)

凯得菲(KDF)具有强大的还原能力,能去除水中的各种强氧化剂,对余氯特别有效。凯得菲(KDF)是由铜、锌二种不同的金属组成的,与水接触时,合金中电位正的铜成为阴极,而电位负的锌是阳极,构成原电池。锌阳极在反应中失去了电子,生成锌离子进入溶液,铜阴极上发生游离氯的还原反应,而不会发生金属铜的溶解,水和余氯成为最后的电子接受者,同时生成氢离子、氢氧根离子和氯离子总反应式如下:

Zn+HOCl+H2O+2e—Zn2++Cl-+H++2OH-

水中其他的氧化剂,如臭氧、溴、碘等与凯得菲(KDF)接触后也能发生类似的氧化还原反应。

(2)去除重金属

凯得菲(KDF)处理介质可以去除水中的多种重金属离子,如铅、汞、铜、镍、镉、砷、锑、铝和其他许多可溶性重金属离子,它们的去除是通过置换反应和物理和化学吸附反应来完成的。凯得菲(KDF)去除重金属离子的机理如下:金属离子吸附于凯得菲(KDF)处理介质的表面并与凯得菲(KDF)中的锌发生置换反应,生成的金属或吸附在凯得菲(KDF)表面,或进入凯得菲(KDF)晶格中,从而使有毒重金属污染物结合在凯得菲(KDF)上。例如,水中溶解的铅离子还原成不溶性的铅原子,并吸附于凯得菲(KDF)介质的表面,汞离子与凯得菲(KDF)也发生类似的反应,X射线衍射研究发现汞的去除是形成了铜-汞合金。凯得菲(KDF)处理重金属离子的化学反应式如下:

Zn/Cu/Zn+Pb2+ →Zn/Cu/Pb+Zn2+

Zn/Cu/Zn+Hg2+→Zn/Cu/Hg+Zn2+

金属离子在水的PH升高时水解形成金属氢氧化物沉淀,也能去除金属离子。

(3)去除硫化氢

在应用膜法进行水处理时,如果选用地下水作水源,水中可能存在硫化氢,硫化氢如被氧化成硫磺就会污染滤膜表面,凯得菲(KDF)过滤介质有去除硫化氢的功能,生成的硫化铜不溶于水,可在凯得菲(KDF)介质反冲洗时去除,化学反应式如下:

Cu/Zn + H2S → Cu/Zn + CuS + H2

2H2 +02 →2H20

(4)减少悬浮固体

凯得菲(KDF)处理介质的颗粒平均尺寸大约为60目,最小的颗粒约110目,也能起到物理过滤去除悬浮物质的作用,通常凯得菲(KDF)过滤介质能够有效地去除直径小于至50μm的颗粒。

由钢铁材料制成的输水管件腐蚀时,铁氧化形成FeO胶体,FeO与凯得菲(KDF)接触,也可以发生氧化还原反应,FeO最终形成Fe2O3固体沉淀在凯得菲(KDF)表面,可用反冲洗方法将它们去除,化学反应式如下:

Zn + FeO = ZnO + Fe

2Fe + 3O2=2Fe2O3

(5)减少矿物质结垢

凯得菲(KDF)处理介质对碳酸钙垢的作用有两上方面。

①一方面,根据PH、二氧化碳浓度和碳酸钙溶解度之间的关系,当二氧化碳从溶液中除去时,PH值升高,因而使碳酸钙的溶解度降低。凯得菲(KDF)通过电化学反应也使水的PH值升高,降低碳酸钙的溶解度,结果使碳酸钙垢容易析出。

②另一方面,由于凯得菲(KDF)处理介质中锌离子的溶出,水中的锌离子含量有所增加,水中锌离子的存在能改变垢的晶体生长机理,使水中的碳酸钙垢以文石的结晶形态产生沉淀,在容器的器壁上形成软垢,而不是结晶为方解石型的硬垢。曾有人研究过水中杂质存在对方解石结晶生长的影响,研究发现,即使锌离子的浓度很低时,也能阻止方解石结晶的形成。

通过试验可以进一步证明,凯得菲(KDF)处理介质防止矿物硬垢的形成和积累,主要是阻止方解石形态碳酸钙的结晶。采用扫描电子显微镜和X射线衍射进行结晶学研究证明,未经凯得菲(KDF)处理的水中产生的硬垢是一些相对大的、具有规则形态的针状钙盐和镁盐的结晶,这些盐类质地坚硬、溶解度低、具有网状结构,是玻璃石灰石垢,经过凯得菲(KDF)处理介质的水中结成的垢,从根本上改变了碳酸钙(镁)结晶的形态,垢形相对变小,外观平坦呈圆形、颗粒形和棒形,都是由不坚硬的粉状成分组成的,这些成分不会粘附于金属、塑料或陶瓷的表面,很容易用物理过滤方法将它们除去。

(6)抑制微生物繁殖

凯得菲(KDF)处理介质不是通过一种机理、而是几种机理控制微生物的生长繁殖,通过每一种的单独作用或协同作用来达到抑制微生物的作用。主要机理包括:氧化还原电位的变化,氢氧根离子和过氧化氢的形成,介质中锌的溶出等。在一般情况下,凯得菲(KDF)处理介质作为反渗透膜的预处理手段时,能够抑制细菌、藻类等微生物的繁殖,从而防止了微生物对膜的破坏。

①氧化还原电位的变化

水通过凯得菲(KDF)处理介质时,其氧化还原电位从+200mV变化到-500mV,在一般情况下,各种类型的微生物只能在特定的氧化还原电位下生长,电位的大幅度变化,能破坏细菌的细胞,从而控制了微生物的生长。但是,水的氧化还原电位变化很小,用凯得菲(KDF)控制细菌,必须使细菌与凯得菲(KDF)直接接触,凯得菲(KDF)对细菌的抑制作用主要发生于凯得菲(KDF)与水接触面上,所以仅靠氧化还原电位的变化并不能完全控制微生物。

②氢氧根离子和过氧化氢

在凯得菲(KDF)将二价铁氧化到三价铁的过程中会产生氢氧根离子和过氧化氢,这就可以抑制那些在低氧化电位时尚能存活,但对氢离子和过氧化氢敏感的微生物,但是氢氧根离子和过氧化氢的寿命短,只是在过滤过程中具有高的反应活性,对微生物的抑制效果比较明显,在流出水中的残余效应比较小。

③锌离子对微生物的控制

凯得菲(KDF)处理介质中释放出来的锌对微生物有明显的控制作用,锌能阻止酶的合成,从而影响有机体的正常生长,达到抑制微生物繁殖的目的.另外,凯得菲(KDF)介质通过阻止叶绿素合成而控制藻类生长,锌离子的存在从本质上降低了有机体从光合作用生产食物的能力,这将显著影响细菌的生长。

二、凯得菲(KDF)的可应用范围

凯得菲(KDF)可广泛应用于预处理、主处理与废水处理设备中。它们多与活性碳颗粒过滤器,碳块或管内过滤器共同使用,也可单独使用。

用凯得菲(KDF)介质进行水的预处理是一种简单、低耗的方法。对于微滤、超滤、反渗透膜、离子交换树脂、颗粒状活性碳,凯得菲(KDF)介质能够保护这些昂贵易损的水处理组件不受氯、微生物、结垢影响。此外,凯得菲(KDF)介质能去除高达98%的重金属,如Pb、Cd、Ce、Ag、Ar、Al、Se、Cu、Hg,另外,借助沉淀在凯得菲(KDF)介质上发生的氧化还原反应还可以降低水中碳酸盐、硝酸盐和硫酸盐。

影响膜分离工艺效率的主要问题是各种污染物在膜表面的沉积,造成膜表面孔的堵塞,这已是无可争议的事实。凯得菲(KDF)介质与微滤、超滤、反渗透膜、离子交换树脂、颗粒状活性碳相比,在提高水处理效率和持续保持高效方面具有更多的优势,消耗更低。

(1)去除市政饮用水中的余氯

凯得菲(KDF)处理介质正日益被用来替代或与活性碳过滤器联合使用,去除市政自来水中的余氯(可高达99%),其主要特点是使用寿命长。进行凯得菲(KDF)介质预处理可延长颗粒活性炭的使用寿命,并保护活性炭层(床)免受细菌污染。使碳的去污能力提升到原来的15倍,并且凯得菲(KDF)使更小型的碳过滤器的使用成为可能,从而降低了使用成本。

(2)保护反渗透装置

反渗透膜很容易受氯腐蚀。凯得菲(KDF)介质可代替活性炭处理以保护反渗透(RO)免受氯气、细菌污染。活性炭过滤器也可有效地去除余氯,但是由于活性炭在高氯水中会很快吸附饱和,所以在操作时必须严格控制水中氯气的浓度,而且活性炭过滤床容易孳生细菌。凯得菲(KDF)处理介质除氯率高。有抑制微生物繁殖的作用,因而可为反渗透膜提供了稳定、长期的保护。

(3)抑制冷却水中细菌及藻类的繁殖、减少结垢

冷却塔及水冷式热交换器中的水常被加温并曝于空气——因而成为细菌、藻类繁殖的绝好温床(例如LEGIONELLA(军团菌)可得自冷却塔)。传统化学方法通过投加药剂控制冷却塔中藻类及细菌生长、其费用昂贵,后续污水处理成本也高。凯得菲(KDF)处理介质处理冷却水成本低,可有效控制藻类及细菌生长,不使用对环境有害的化学物质。另外,经凯得菲(KDF)介质处理后的水可减少硬水垢的生成。

(4)凯得菲(KDF)处理介质与其它净水系统

凯得菲(KDF)介质可以控制颗粒活性碳层或活性碳滤芯内细菌、藻类和繁殖。当活性碳与凯得菲(KDF)处理介质一起使用时,活性碳去除有机杂质及余氯的能力增强。

凯得菲(KDF)处理介质也可以代替渗银活性炭。从而降低成本。也避免了渗银活性炭银的毒性造成的潜在危险。

(5)去除有害重金属及其他可溶性重金属离子

凯得菲(KDF)介质,可单独用来从水中除去铅、汞、砷等有害重金属以达到满足饮用水的要求。以除砷为例,美国《水工业》杂志1994年第4期报导,当进水含砷量为5mg/l,凯得菲(KDF)过滤处理后水中含砷量为0.01mg/l,去除率达99.7%。在应用凯得菲(KDF)除砷时,毋须投加药剂,所需设备也较简单,仅需配备一台凯得菲(KDF)过滤器,处理过程也十分迅速,其过滤速度是一般采用石英砂的机械过滤器的三倍,因而设备占地面积也较小。

三、凯得菲(KDF)的其他优点

凯得菲(KDF)处理介质的高寿命

所有的水处理介质都具有一个有效期。硅砂(SiO2)无疑是寿命最长的过滤介质,其次就是使用凯得菲(KDF)处理介质。有两种情况会降低凯得菲(KDF)的使用寿命,每一种都有很长的时间。第一种是水中余氯的含量比锌的溶解量要大得多时,余氯浓度为0.55ppm的市政自来水通过凯得菲(KDF)仅产生0.25ppm的锌,除去10ppm的氯,其锌的含量也不会超标。第二种是凯得菲(KDF)的物理降解,如腐蚀、磨擦或消耗,但是物理作用对凯得菲(KDF)使用寿命影响很小,据保守估计使用寿命在10年以上。

提供高质量家庭用水

天然无毒的高纯铜锌合金凯得菲(KDF)减少了饮用水与其它家庭用水中的细菌、重金属、氯及其它有害成份,使用户看不到氯的影响,如片状皮肤干燥、头发粗糙、浴缸蓬头中的青苔、绿藻的减少,从而得到口感更好,杂味更少的水质。

四、 总结

KDF已经在国外水处理行业中得到普遍使用,但国内企业应用较少,我公司通过不断的尝试,使其成功的国产化,且已批量出口,凯得菲(KDF)在我公司自有产品中使用,有良好的使用效果,并通过了北京市防疫站的鉴定,从国内外用户反馈来看,也达到了国外同类产品的水平。可以预见,随着国内企业对凯得菲(KDF)的逐步认识,凯得菲(KDF)在国内水处理行业中必将得到更加广泛的应用。

参考资料:香凝桃溪

I. 制药废水的处理方法有哪些

(1)吸附法
该方法是指在不改变污水理化性质的前提下清除污染物,其原理是污染物附着在吸附剂上,由于重力作用致使其下沉形成沉淀。此法中常用的吸附剂为活性炭、天然矿物材料、高炉滤渣等。

由于活性炭颗粒比较小,接触面积较大,因此吸附效果较好。当然吸附效果和体系的值也有关系,吸附时间越长,吸附效果越好,在需要的情况下可以对吸附剂进行了相应的处理,

(2)混凝法
通过投加化学药剂,使其产生吸附、中和微粒间电荷、压缩扩散双电层而产生的凝聚作用,破坏了废水中胶体的稳定性,使胶体微粒相互聚合、集结,在重力作用下沉淀,并予以分离除去。

(3)膜分离法
膜分离法是个物理过程,有过滤和浓缩作用,能处理高浓度、生化性差或传统方法难以处理的制药废水。

(4)电解法
电解法是通过借助外加电流的作用,产生一系列化学反应,使废水中的有害杂质以转化的形式而被去除。它是通过两极产生的新生态的氧和新生态的氢,使废水中污染物得到净化。

以上就是关于废水处理的方法,不会污染环境又可以不会那么浪费。希望我的回答对你有帮助!

J. 用化学沉淀法处理含砷废水时有没有砷蒸汽形成,形成的蒸汽对人体的伤害

用化学沉淀法处理含砷废水,主要是利用硫化钠深沉淀大部分砷,以及石灰铁盐法吸附聚沉残砷。此过程没含砷蒸汽生成,自然也不存在“蒸汽对人体的伤害”。

阅读全文

与砷废水处理相关的资料

热点内容
焦化废水臭氧催化氧化 浏览:353
简易自制蒸馏水实验 浏览:33
电镀工业废水处置多少钱 浏览:332
污水处理厂污泥含铜 浏览:396
降低膜蒸馏温度极化 浏览:353
反渗透电导高6 浏览:217
阴阳离子交换膜耐酸碱性 浏览:283
净水器安装网上怎么找活动 浏览:284
反渗透cod是测的什么 浏览:4
黔西污水流出来打什么电话 浏览:602
ro膜对bod去除率 浏览:75
回乳用党参 浏览:58
纯水处理专利怎么写 浏览:577
油烟净化器怎么测量效率 浏览:326
机油滤芯中间螺纹孔大小怎么算 浏览:117
成都纯水处理厂家 浏览:470
喷淋塔的废水怎么处理 浏览:731
废水处理污泥特点 浏览:813
广州污水提升器多少钱报价 浏览:405
怎么拒绝推销净水器的还能让他不高兴 浏览:600