㈠ 以下什么不能表明可能发生了水污染
饮用水有轻微的漂白粉气味不能表明可能发生了水污染。饮用水颜色浑浊、饮用水有悬浮内物、水温明显异常都容能能表明可能发生了水污染。
水污染是由有害化学物质造成水的使用价值降低或丧失,污染环境的水。污水中的酸、碱、氧化剂,以及铜、镉、汞、砷等化合物,苯、二氯乙烷、乙二醇等有机毒物,会毒死水生生物,影响饮用水源、风景区景观。
(1)焦化废水颜色扩展阅读:
污水中的有机物被微生物分解时消耗水中的氧,影响水生生物的生命,水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、硫醇等难闻气体,使水质进一步恶化。
废水从不同角度有不同的分类方法。据不同来源分为生活废水和工业废水两大类;据污染物的化学类别又可分无机废水与有机废水;也有按工业部门或产生废水的生产工艺分类的,如焦化废水、冶金废水、制药废水、食品废水等。
污染物主要有:
1、未经处理而排放的工业废水;
2、未经处理而排放的生活污水;
3、大量使用化肥、农药、除草剂而造成的农田污水;
4、堆放在河边的工业废弃物和生活垃圾;
5、森林砍伐,水土流失;
6、因过度开采,产生矿山污水。
㈡ 焦化废水出水COD高
在没有稀释的情况下,出水COD在300-400之间,大部分都是这样的,如果有专化产加工的废水的难降解有属机物成分会更高 缺氧反硝化能去除大量难降解有机污染物,所以,强化反硝化很重要
至于你说的出水cod不能下降 和前段时间相比 都是满负荷进水吗
我感觉问题可能处在O1段 DO要维持在较高的水平 保证足够的停留时间和较高的去除率 这样才不会对O2段造成抑制
一些难降解的物质可以在A段得到去除 也要有足够的时间
另外要是有条件的话 测一下BOD这样你更容易控制A O1 段
至于你说的二沉池出水比好氧池要高 这情况我也遇到过 但不明白到底是什么原因
你们的试验用水有没有经过蒸氨处理 70 怎么会这么低
水中酚类的含量是多少 这对系统是有抑制作用的 且显色
㈢ 焦化废水处理AO系统,污泥沉降比只有15,污泥浓度1.7g/l,二沉池出水COD 和色度偏高
不知道你预处理系统是什么样子,这个得综合判断,通过这个判断,你最好看下是不是菌咱发育不良,
㈣ 焦化废水厌氧水解处理颜色变化,是什么原因
你好:
这是化学反应的结果;
㈤ 污水脱色使用什么方法好谢了
污水脱色主要使用的5种方法:
1) 物理法:利用物理作用处理、分离和回收废水中的污染物。例如沉淀法(重力分离法)除去水中相对密度大于1的悬浮物; 过滤法(滤网 沙层 活性碳)可除去水中的悬浮物;蒸发法用于浓缩废水中不挥发性和可溶性物质,另外还有离心分离法、汽浮(浮选)法、 高梯度磁分离法等。
2)化学法:利用化学反应或物理化学作用处理回收可溶性废物或胶状物质。例如中和法用于中和酸性或碱性废水;萃取法利用可溶性废物在两相作用中溶解度不同的“分配”,回收酚类和重金属等;氧化还原法用来除去废水中还原性或氧化性污染物,杀灭天然水体中的病原菌。此外还有混凝法和化学沉淀法等。
3) 物理化学法:吸附法、离子交换法、萃取法、膜析法、蒸发法。
4)生物法:利用微生物的生化作用处理废水中的有机污染物。例如,生物过滤法和活性污泥法来处理生活污水或有机生产废水,使有机物转化降解成无机盐而得到净化。此外,还有生物膜法、生物塘法。
5) 污泥土地处理法:用于有机质处理。污水灌溉,慢速下渗,快速下渗。
污水处理一般采用:“物化沉淀(或气浮)+厌氧(或兼氧)+好氧+物化沉淀”的组合工艺,由此可以看出,第一步的物化沉淀采用的是一种絮凝脱色剂配合以PAM助凝,不仅通过絮凝有效去除40%以上的COD和其它如悬浮物、氨氮等,同时,其特有的脱色作用,第一步即可使废水达到无色或浅色!成本仅仅零点几元,为低成本运行奠定基础。在生化出水后,很多企业,其它各项指标均能达标,唯独色度存在,一般为浅黄色或棕色。
比如:焦化废水、印染废水。造纸废水等。有实力的单位可以采用活性炭过滤吸附或ClO2、O3氧化脱色甚至膜分离脱色。但是,大家都很清楚,这些都是投资大运行成本比较高的!我们通过对比实践,从众多的药剂中优选出一种专用生化出水脱色剂。根据不同出水的色度,添加量成本控制在最低的情况下,使出水色度完全达标。
㈥ 焦化废水缺氧池反硝化污泥颜色发红是啥原因
理工,是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类回的各种运用与组答合。理工事实上是自然、科学、和科技的容合。在西方世界里,理工这个词并不存在;理工在英文解释里,是自然(Science)与科技(Technology)的结合。理工二字最早是19世纪80年代,由当时的中国留学生从国外的Science和Technology翻译合成的。时至今日,但凡有人提起世界理工大学之最,人人皆推麻省理工学院和伦敦帝国理工学院。
物理学—研究自然界最一般的现象及其规律的科学
化学—研究物质的性质、组成、结构和变化的科学
生物学—研究有生命的个体的科学
工程—应用科学和技术的原理来解决人类问题的领域
㈦ 脱色剂可以用在哪方面的有色废水
脱色剂是专业用于有色废水的处理,是集脱色、絮凝、去除COD等多内种功能于一身的阳离子高分子容化合物。
脱色剂主要用于印染厂高色度废水的脱色处理、尤其适用于活性、酸性和直接染料废水的处理,也可用于纺织、颜料、油墨、造纸黑液、油田钻井等高色度工业废水的处理。
㈧ A-AO法在焦化废水处理中如何管理
A-A
O就是控制好指标,6.总结一下。使指标趋于稳定,比如说,夏季温度高了蒸氨后就要用换热器给废水降温。如果突然发生耗氧量上升,好氧池耗碱量上升,就需引起重视,降低进水负荷。
方法如下:
1.进生化系统之前的预处理工段。能够起到均质、调节的作用。事故池要大,确保能储存12小时以上的超指标废水。气浮去除的乳化油、悬浮物都是对生化池内有不利影响的所以气浮环节要舍得加药,
2.气浮一定要管理好。还有控制好刮板、排渣,避免杂质的复溶。
COD氨氮、挥发酚(有毒物质)硫化物(剧毒)氰化物(剧毒)温度、PH指标发生变化及时控制进水。很重要的一点就是要会根据颜色初步判断废水中什么指标超标,
3.做好进水指标监控。比如说颜色偏红,那么有可能酚类超标,如果颜色偏黑,那么悬浮物或者石油类超标,如果颜色偏绿,上海人论坛那么更要小心,有可能硫化物、硫代硫酸盐类超标。控制好生化池内的温度、ph溶解氧就可以了定期化验总磷,
4.做好上述进水控制和预处理后。好氧池前端总磷过低就需要适当投加磷酸氢二钠补充磷。要观察沉降速度,
5.好氧池污泥的观察。做SV30时候。上清液是否清澈。SVI也是非常重要的指标,要定期分析。
废水处理(wastewater treatment methods)就是利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源。
㈨ 焦化废水生化出水不达标,如何处理色度,COD
好氧生化出生不达标,问题不一定出在好氧生化段。如果好氧生版化段的污泥性状良好权,去除率已经达到一定水平。那说明你的问题出在前段。很可能是你废水预处理效果不好(物化处理)焦化废水可以提供一些物化工艺去除一部分色度、有机物同时增加可生化性。然后采用厌氧或则水解酸化等工艺去除部分COD 色度 如果到了好氧出生不达标在进行补救就比较麻烦了。有些厂家推广的氧化剂说是可以去除COD 色度等等 我也使用过一些效果不是很理想。作为应急装置我推荐活性炭吸附过滤。不过你还是必须从源头上找原因解决问题。
㈩ 用超声波预处理焦化废水,过程中暴气,氩气有用过的吗,有没有合适的条件
最好你自己看PDF,哪有清楚
超声波技术及其在水处理中的应用
龚安华罗亚田李端林
(武汉理工大学资源与环境工程学院,武汉,430070)
摘 要
本文综合了近几年的国外文献,讨论了超声波处理废水的机理、影响因素及应用领域,提出了
超声波在废水处理领域存在的一些问题。
关键词:超声波气穴自由基水处理应用
1 前言
由于生物处理对有些物质不能适用,这一传统
的水处理方法已经难以满足人们对于环境质量的严
格要求。于是一些新的水处理方法逐渐兴起,这些
方法有些是彻底地处理废水,有些是降低废水的毒
性以便进一步地生物处理。气穴技术就是其中之
一,它能够用来有效地破坏或者改变复杂化合物及
难以生物降解材料的结构。
超声波由于能产生气穴,从而能氧化分解传统方
法所不能处理的废水。这一特性使其在废水处理领域
有着广泛的应用前景。一般来说,产生气穴的方式有
四种:超声波、水力、粒子及光子。其中,利用超声波产
生气穴和基于这一原理的声化学反应器引起了人们的
广泛兴趣。自上个世纪60 年代声化学发展以来,用超
声波能量处理工业和生活污水得到了大量地应用。而
事实上,由于人们对降低有毒污染物的需求越来越来
高,超声波在水处理领域得到了不断地发展。许多研
究人员在实验室里利用超声波反应器完成了对用传统
的方法难以处理的物质[1] 。
2 超声波反应机理及影响因素
211 超声波反应机理
表1 不同化合物的降解[2 ]
反应物超声波化条件主要中间产物主要机理
苯酚20 、487kHz 、30W、空气、01 5mm 对苯二酚、萘酚、苯醌等自由基
22氯苯20kHz 、50W、空气、01 05mm 萘酚、32氯萘酚、氯化物自由基
32氯苯酚20kHz 、50W、空气、01 05mm 氯化对苯二酚、32氯萘酚、42氯萘酚自由基
42氯苯酚20kHz 、50W、空气、01 05mm 对苯二酚、氯化物自由基
2 ,42二氯苯酚氩气22氯苯酚、42氯苯酚、2 ,4 二氯苯酚自由基
硝基苯酚011mm 亚硝酸盐、硝酸盐、蚁酸等自由基和热解
氯苯20 、487kHz 、30W、空气、氩气,氧气、01 5mm 42氯苯、对苯二酚、乙炔自由基和热解
四氯化碳20 、500kHz、30W、空气、01 035mm 四氯乙烯、六氯甲烷热解
氯仿200kHz 、空气、氩气热解
超声波是指频率在2000Hz 以上的声波,它具
有声波的普遍特性。但是由于其频率高于一般声
波,因而就有一些特殊的性能。虽然超声波化学转
化的有关机理还不是很清楚,研究人员[2 ] 提出了以
下几种反应机理:热分解、羟基自由基氧化、等离子
化学和超临界氧化。热分解发生在气穴内部,主要
表现在当溶剂或待分解物渗透进入气泡后被分解。
事实上,往往在气泡里的能量不足以打断化学键,而
在水溶液中,主要的热分解反应是对水的分解。这
一热解反应导致了在气泡中产生了活性相对较高的
48 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
自由基,这些自由基会在气泡里或者气泡周围重新
结合。否则,在这些自由基进入溶液以后可能与一
些大分子接触从而氧化它们。羟基自由基氧化与热
解之间的比率取决于溶质的位置,要看是在气泡里
或者是界面层,还是在溶液里。但是,归根到底取决
于物质的物理化学性质。表1[2 ] 是一些物质的情况
反映。
当然,仍然有一些参数还不是很清楚。研究人
员[2 ] 提出决定化合物进入气泡的性质不是其蒸汽压
而是其疏水性。因此,亲水的化合物如苯酚和氯酚
可能会在溶液中或者界面处受到羟基的攻击。其它
的一些疏水性化合物如四氯化碳、苯和氯苯可能主
要是在气泡中热解。但是,其它的情况也有可能影
响降解的位置,也有些情况是一些机理的互相竞争。
总之,疏水性化合物和挥发性化合物易于被超声波
降解,而不挥发和亲水性化合物超声波是难以降解
的。
另一种反应的机理是等离子化学。这与超声波
发光与光致发光之间的关系和光化学与声化学之间
的关系相似。这种等离子的效应是由于对超声波能
量的吸收,从而在气泡中形成为等离子体。
以上提到的假设可以归结为超临界水的声化学
反应。事实上许多的研究人员都发现[ 2 ] ,在气泡和
溶液的界面层存在着超过临界条件的高温高压
(647 K、2211MPa) ,这使得媒介有流体的物理性质。
这些条件可通过改变溶质的溶解度和分散度来改善
反应。但是,超临界水的界面自由基只有几毫秒的
寿命和几毫米的范围。
212 反应的影响因素
超声波反应中,分解化合物的性质是决定反应
进程的主要因素。而其它反应条件对反应进程也有
不同程度的影响,其主要体现在对反应常数的影响。
研究人员[3 ] 在分解芳香族化合物时发现底物的起始
浓度和超声波的能量强度对反应速率有着不同程度
的影响。随着底物浓度的增加反应速率降低。这是
因为由于浓度的升高,导致比热容的降低,而比热容
降低导致了降解速率的降低。而当底物主要是在气
泡中分解时,降解速率取决于气泡的数量。而随着
超声波密度的增加,气泡的数量也会增加,从而提高
了反应的速率。
在反应体系中加入媒介气体对反应的进程也有
不同程度的影响。研究人员[2 ] 在用超声波分解二硫
化碳时发现,在不同的气体媒介中,其反应的速率为
He > 空气> N2O > Ar 。其在He 的反应体系中
的速率是在Ar 中的3 倍。气体的影响因素主要是
体现在对声化气泡间撞击上。气体的许多性质都可
以影响声化反应,如比热容、热导率和溶解性。比热
容影响反应的效果表现在高比热容的单原子比低热
容的多原子能产生更高的温度和压力。而低热导率
的气体降低了气体撞击热能的传递,从而降低了撞
击的温度。气体的溶解度也是一个影响的因素。气
体的溶解度越大,它就越可能扩散到气穴中。这些
溶解的气体为气穴的形成提供核心。
当然还有一些其它的因素如时间、水中干扰物
质、催化剂( TiO2 ) [ 2 、4 ] 等。许多研究表明,无论哪种
因素的影响,超声波反应器的经济性不能忽视。
3 超声波在水处理中的应用
超声波由于其独特的特性,有着广泛的应用范
围。但一般说来,单一的超声波处理并不能达到满
意的处理效果。目前的研究主要集中在超声波与其
它处理方法的联合处理废水。
311 强化生物处理
利用超声波技术可以改善污泥的固2液界面、加
强气体的传质和营养物传递,从而强化生物处理。
O1 Schlafer[5 ] 研究人员利用低功率超声波处理酿酒
工业废水,生物反应器获得了较好的处理效果。在
实验中,超声波功率为013W/ L 、频率25kHz。经过
超声波处理后的生物絮体浓度由0112g/ L 增加为
014g/ L ,处理效率提高了50 %。
宁平等[6 ] 利用超声波辐射2活性污泥联合处理
焦化废水,研究表明,当选择空气作为曝气气体,向
废水中曝气而不用超声波时,废水中CODCr 降解率
仅为45 %;在声能强度为11914kW/ m2 条件下,用
超声波时其降解率可达65 %; 当把超声波辐射2活
性污泥联合处理焦化废水时,CODCr 的降解率提高
到81 %。同时发现经超声波预处理后的废水中无
亚硝酸氮,而且加活性污泥后,其耗氧速率有明显的
降低,说明经超声波处理后的焦化废水对生物无毒
性。
第1 期 超声波技术及其在水处理中的应用49
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
312 处理造纸黑液
造纸黑液是由木质素与腐殖酸物质构成的色度
极暗、颜色很深的废液,对其进行处理一直是工业水
处理的难题之一。沈壮志[7 ] 等采用PFS/ H2 O2 与超
声波联合处理,通过对比发现,联合超声波处理后
CODCr的去除率提高了13 %左右、PFS 节约14 %、
H2O2节约50 —80 %。周珊[ 8 ] 等利用超声波技术与
组合高级氧化技术对造纸黑液进行处理。研究发现
在超声波辐照下,可以将造纸废液中大分子有机污
染物部分分解为小分子有机物。在温度30 ℃、p H
为6 条件下,单独超声波辐照4h ,CODCr 去除率为
1715 %、TOC 去除率为1317 %。但在US2H2 O2
2
FeSO4 工艺下辐照4h ,由于活性自由基的产生,使废
液CODCr 去除率高达4719 %、TOC 去除率高达
4518 %。
313 超声波2物理能场分解有机物
在水处理中物理能场的应用比较广泛,将超声
波和其它物理能场(光场、电场、磁场) 相联合是水处
理中的研究方向之一。E1Naff rechoux[9 ] 等将超声
波与紫外光联合处理生活污水分解有机物,研究认
为,在分解有机物过程中存在三种作用: 紫外光分
解、超声波形成羟基自由基氧化分解、紫外光分解空
气产生臭氧氧化分解。付荣英[10 ] 等利用超声波和
紫外光协同作用氧化降解邻氯苯酚,研究表明,紫外
光和H2O2 体系对邻氯苯酚的降解率仅为43 %。而
联合超声波后,降解率可达83 %。这说明超声波与
紫外光产生了协同作用。
超声波与电场联合是一种新型的水处理技术。
刘静[ 11 ] 等利用超声波和电场处理印染废水,在初始
浓度为370mg/ L 、p H = 2 、电压为5V 的最佳条件下
作用60min ,印染废水的脱色率可达9616 %。研究
发现单独超声波对印染废水的降解能力较弱,而超
声波2电场协同作用下的脱色率远大于单一电场作
用。
4 结论
超声波在水处理领域的应用虽然已经得到了人
们广泛地认识,但是有许多问题仍然有待解决。
411 超声波反应的条件控制比较困难。不同的底
物由于其不同物理化学性质,其最佳的分解条件是
不同的,尤其是考虑其经济性时。分解不同的底物
时,为使其达到最佳的分解效果,必须对超声波的强
度、分解时间、催化剂等条件进行试验。
412 到目前为止,超声波技术还没有大规模运用到
实践中,许多的应用都是在实验室里完成。这些试
验都是针对某一类底物,模拟该物质的溶液进行处
理。超声波有待进一步在实践中的考验。
413 超声波大规模应用的问题主要在设备上,研制
出能够连续处理废水、低能耗、大容量的超声波反应
器是关键所在。
参考文献
[ 1 ] Parag R. Gogate ; Sukti Mujumdar ;J agdish Thampi ,Dest ruction
of Phenol using sonochemical reactors : scale up aspect s and compari2
son of novel configuration wit h conventional reactors ,Separation and
Purification Technology ,2004 ,34 :25 —34
[ 2 ] Collins Appaw ; Yusuf G. Adewuyi ,Dest ruction of carbon disul2
fide in aqueous solutions by sonochemical oxidation ,Journal of Haz2
ardous Materials ,2002 ,90 :237 —249
[ 3 ] Yi jiang ; Christian Pet rier ; T. David Waite , Kinetics and mecha2
nisms of ult rasonic degradation of volatile chlorinated aromatics in a2
queous solutions ,Ult rasonic Sonochemisty ,2002 ,9 :317 —323
[ 4 ]Maria Papadaki ;Richard J . Emerya ;Mohd A. Abu2Hassan ;Alex
D′taz2Bustos ; Ian S. Metcalfe ;Dionissios Mantzavinos ,Sonocatalytic
oxidation processes for t he removal of contaminant s cotaining aro2
matic rings f rom aqueous effluent s ,Separation and Purification Tech2
nology ,2004 ,34 :35 —42
[ 5 ]O. Schlafer ;M. Sievers ; H. Klotzbucher ; T. I. Onyeche , Improve2
ment of biological activity by low energy ult rasound assisted bioreac2
tor ,Ult rasonics ,20003 ,8 :711 —716
[ 6 ]宁 平;徐金球;黄东宾;等,超声波辐射2活性污泥联合处理焦化
废水,环境科学,2003 ,3 (24) :65 —69
[ 7 ]沈壮志;程建政;兰从庆,超声波/ PFS 联合对造纸黑液处理的研
究,应用声学,2003 ,2 (22) :45 —48
[ 8 ]周 珊;吴晓晖;黄卫红;等,超声波降解造纸黑液的初步研究,工
业水处理,2002 ,10 (22) :26 —28
[ 9 ] E. Naff rechoux ; S. Chanoux ; Pet rier J . Suptil , Sonochemical and
Photochemical Oxidation of organic matter ,Ult rasonics Sonochemis2
t ry ,2000 ,7 :255 —259
[ 10 ]付荣英;陈 亮;胡牡丹;等,超声波波2光催化氧化降解邻率苯
酚的研究,环境污染与防治,2004 ,2 (26) :116 —118
[ 11 ]刘 静;谢 英;卞华松,超声波电化学法处理印染废水的实验
研究,上海环境科学,2001 ,3 (20) :151 —157
50 四川化工 第9 卷 2006 年第1 期
&; 1994-2006 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net