⑴ 污水处理厂里面污水池散发臭气的量(每平方米散发的量)大约是多少有相关的计算公式吗
表1 臭气浓度控制参考值
序号 控制项目 一级标准 二级标准
1 氨 1.5 4.0
2 硫化氢 .06 .32
3 甲硫醇 .007 .02
4 甲硫醚 .07 .55
5 臭气浓度(倍数) 20 60
6 甲烷气(厂区最高浓度) 5 5
7 氯气 .4 .6
表2 污水处理厂构筑物脱臭通量
设施名称 通风量 备注
沉沙池 二层盖板作业空间 3~5次/小时
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时 在漏斗上加盖办事为3~5次/小时
泵房 3~5次/小时或根据发热量计算 考虑内燃机用气
鼓风机房 3~5次/小时或根据发热量计算
电气室 根据发热量计算
发电机房 3~5次/小时 考虑内燃机用气
初沉池 二层盖板作业空间 3~5次/小时
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时
曝气池 二层盖板作业空间 3~5次/小时
非作业空间 1.2×曝气空气量
厂房式盖板作业空间 3~5次/小时
加氯机房 5~7次/小时
污泥浓缩池 二层盖板作业空间 3~5次/小时+1.5×曝气空气量
非作业空间 1~3次/小时
厂房式盖板作业空间 5~10次/小时
污泥浓缩机房 3~10次/小时 热处理时采用其他方法
一般机械室 3~5次/小时
管廊 3~5次/小时
2.1 土壤脱臭技术
2.1.1土壤脱臭原理及特点
土壤脱臭机理主要可分为物理吸附和生物分解两类,恶臭气体-如胺类、硫化氢、低级脂肪酸等水溶性臭气类,被土壤中的水分吸收去除,而非溶性臭气则被土壤表面物理吸附继而被土壤中微生物分解。土壤脱臭法特点:① 维护管理费用低,效果与活性炭脱臭同等,② 处理1m2的臭气需2.5~3.3 m2土地;③ 但不适于降暴雨、下大雪地区;对于高温、高湿和水分、尘土、微尘等气体须予处理。
2.1.2 土壤和参数
设计土壤脱臭时选择的土壤指标应是:腐殖土为好,亚粘土等红土需掺入鸡粪、垃圾和污泥肥料进行改良后使用;矿质土和粘土不宜。土壤水分40~70%为宜。过于干燥的土壤需装设水喷淋器。种植草坪土壤表面保持倾斜,作为防降暴雨的措施。
日本经验得出:
臭气通过土壤中速度:2mm ~17mm/s;
设计一般选为5mm/s;
有效土壤厚度为50 cm;
臭气与土壤接触时间为1分40秒;
臭气通过活性炭速度:30cm~40cm/s;
有效厚度为40cm;
臭气与活性碳接触时间为1秒。
2.1.3 工程范例
(1)日本某处土壤脱臭床
臭气风量:600m3/min
臭气与土壤接触时间:2.7m3/m2min
需土壤面积:1580m2
(2)我国某处污泥脱水机房土壤脱臭床
脱水机房容积:V=450m3
设换气周期:每小时3次(20min)
换臭气量:22.5m3/min(450m3/20min)
脱臭负荷:设2.7m3(臭气)/m2(土)min
需土壤面积(计算值):8.3m2
(设计值):25m2
结构设计(自土壤表层向下)
2.3 高能离子脱臭技术
2.3.1 技术简介及工作原理
高能离子净化系统是瑞典的高新技术,它能有效地清除空气中的细菌、可吸入颗粒物、硫化合物等有害物质。使人的嗅觉感受到模拟自然的清新空气。它的核心装置是BENTAX离子空气净化系统,其工作原理是置于室内的离子发生装置发射出高能正、负离子,它可以与室内空气当中的有机挥发性气体分子(VOC)接触,打开VOC分子化学键,分解成二氧化碳和水;对硫化氢、氨同样具有分解作用;离子发生装置发射离子与空气中尘埃粒子及固体颗粒碰撞,使颗粒荷电产生聚合作用,形成较大颗粒靠自身重力沉降下来,达到净化目的;发射离子还可以与室内静电、异味等相互发生作用,同时有效地破坏空气中细菌生存的环境,降低室内细菌浓度,并将其完全消除。最终的效果是使室内空气变得象雨后森林般的纯净。
高能离子净化系统在欧洲诸国应用于医院、办公楼、公众大厅等,以空气净化以致达到模拟自然森林空气清新的效果。近些年逐步开发应用于污水处理厂和污水提升泵房的脱臭方面,法国、英国、苏格兰、瑞典等国的应用实例很多。
2.3.2 天津市某污水厂试验效果
(1)试验场地
脱臭中试场地选择在天津市某污水处理厂污泥处置实验室内,臭源是脱水污泥处置过程中产生的臭气。
(2)试验条件:
①污泥中试实验室
总容积:30m3 (3×4×2.5m3) ;
污泥发酵仓直径φ600mm,长3m;
臭气测试点与发酵仓的水平距离为1m;
高能离子净化系统主机及通风系统置于室内。
②臭气源
260kg脱水污泥投入到回转式污泥发酵仓中;
为了加强臭气强度,污泥采用了太阳能加热。
③高能离子净化系统
离子机规格型号:2—E—S气流:0.42m3/s
空气处理量:1500m3/h 功率:22w
为离子发射系统配套的通风系统;
④ 测试项目
负离子浓度;VOC(有机污染)气体总量;
H2S、O2、CO、CH4浓度。
⑤ 试验数据分析及评价
9小时连续运行,臭源VOC浓度周期性变化从25~100ppm,室内则从15~16.7ppm逐渐衰减到0~1ppm;室内测点离子浓度始终保持在160~170Ions/cm3;H2S气体浓度也保持为0。
试验结果变化曲线见图1及2。
⑥ 试验结果评价
A试验所采用的VOC测定仪,离子检测计和有毒有害气体测定仪都是先进的便携式仪器,灵敏度很高,能保证数据的可靠性;
B试运行是污泥发酵仓及太阳能加热后的污泥臭气,臭气强度高,通过BENTAX离子空气净化系统净化,仅1小时后,VOC浓度降低至零,离子浓度升高,H2S气体由4.0ppm减小到0,人员嗅觉感觉臭味明显下降。负载试验是在脱水污泥处置臭源条件下进行的,臭源VOC浓度从25~100ppm,室内测点则从15~16.7ppm逐渐衰减到0~1ppm;离子浓度始终保持在160~170 Ions/cm3;H2S气体浓度也保持为0。
技术结论意见为:通过利用高能离子除臭,在上述试验条件下,除臭效果技术上是可行的。
C 经济分析
在本实验条件下,高能离子净化系统对污水厂脱水污泥臭气的净化效果较显著,运行成本分析如下:
24小时运行耗电量仅为0.53kwh;
单位空间耗电量为0.018 kwh/m3.d;
按每度电0.45元计算
净化1立方米臭气的成本约为0.0081元/m3.d;
污泥脱水车间以1000 m3为计;
则运行成本直接耗电费用为8.1元/d。
⑵ 环境空气中的臭气浓度执行什么标准
我国正式颁布的国家大气环境质量标准《环境空气质量标准》中规定,污染物浓版度权限值的一级、二级和三级标准分别用于3类不同的环境空气质量功能区:
一类区为自然保护区、风景名胜区和其他需要特殊保护的地区;一类区执行一级标准;
二类区为城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区;二类区执行二级标准;
三类区为特定工业区,三类区执行三级标准。
一级标准为优,二级标准为良好,三级标准为轻微污染或轻度污染。
⑶ 污水处理臭气处理,国家是怎样规定的
臭气强度是与其浓度的高低分不开的,《恶臭防治法》将两者结合起来确定了臭气强度的限制标准值。大量采用归纳法计算得出的数据表明,恶臭的浓度和强度的关系符合韦伯定律
⑷ 污水处理恶臭活性炭用多少
湿式催化氧化法处理高浓度有机废水活性炭催化剂是通过对活性炭进行深度改性后负载金属催化剂,使活性炭拥有良好的催化性能和稳定性,作为湿式催化氧化法处理工业废水的催化剂,能够在较低的温度及较小的压力下对高浓度有机废水处理效果理想。对高浓度难生物降解工业废水有机物COD、色素、异味的去除有良好表现,广泛应用于各种场所的高浓度有机废水的降解治理。 工业废水除COD活性炭催化剂用于催化氧化法去除各种工业废水中的COD。如染料废水COD的去除,石油化工工业废水等各行业工业废水降COD,去除率可达到95-99%。
湿式催化氧化法是在湿式空气氧化法基础上发展起来的。湿式空气氧化法是美国的Zimmer-man在1994年开发的,又称WAO法。在WAO法中加入催化剂的处理方法则称之为湿式催化氧化法,简称WACO法。 湿式催化氧化法是一种处理高浓度难降解有机废水颇有潜力的方法。它是指在高温(200~280℃)、高压(2~8 MPa)下,以富氧气体或氧气为催化剂,利用催化剂的催化作用,加快废水中有机物与氧化剂间的呼吸反应,使废水中的有机物及含N、S等毒物氧化成CO2、N2、SO2、H2O,达到净化之目的。对高化学含氧量或含生化法不能降解的化合物的各种工业有机废水,COD 及NH3-N去除率达到99% 以上,不再需要进行后处理,只经一次处理即可达排放标准。本公司在活性炭内载入催化氧化物质,使活性炭催化剂的活性大大增加,改性后的活性炭比普通活性炭去除率大大提高。对工业废水脱色,除臭效果理想,对有机物杂质,重金属的吸附有良好表现。 此系列活性炭也适用于负载Tio2纳米材料光催化技术应用于流化床催化氧化处理废水.
⑸ 有没有人知道污水处理厂恶臭污染物浓度和臭气强度对应表的出处
污水处理指为使污水达到排水某一水体或再次使用的水质要求,并回对其进行净化的过程。答
按污水来源分类,污水处理一般分为生产污水处理和生活污水处理。生产污水包括工业污水、农业污水以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和有机物的复杂混合物,包括:①漂浮和悬浮的大小固体颗粒;②胶状和凝胶状扩散物;③纯溶液。
按水污的质性来分,水的污染有两类:一类是自然污染;另一类是人为污染。当前对水体危害较大的是人为污染。水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。污染物主要有:⑴未经处理而排放的工业废水;⑵未经处理而排放的生活污水;⑶大量使用化肥、农药、除草剂的农田污水;⑷堆放在河边的工业废弃物和生活垃圾;⑸水土流失;⑹矿山污水。
⑹ 污水处理中为什么格栅间臭气浓度高
城市污水处理厂散发的臭气严重影响了四周居民的生活环境。最近的国家标准规定了城市污水处理厂4种废气的排放标准,包括硫化氢、氨气、甲烷及臭气浓度。因此除臭是所有城市污水处理厂共同面临的问题。如何有效的去除臭气需要对污水厂各处理构筑物臭气的散发情况进行调查与分析,由此选择合适工艺与规模。然而目前这方面的资料很少,尤其是在国内没有人做过这方面的调查。
硫化氢的嗅觉阈值很低只有0。0005mg/m3,在城市污水处理系统中硫化氢是最主要的臭气组成【1】。Gostelow和Parsons根据硫化氢的散发情况评定污水处理厂的臭气分布情况,发现二者之间存在很大联系【2】。因此,可以根据硫化氢的散发情况近似估计城市污水处理厂的臭气分布情况。此外,在污水处理过程中当PH值较高时还会有大量的氨气产生。对于大部分污水厂来说一般PH值趋于中性,因此很少有氨气散发。对于那些进水氨氮很高需要进行中和处理的污水处理设施会有大量的氨气产生。
⑺ 污水处理设施 产生的臭气 怎么处理
1 生物除臭原理
生物除臭系统采用了液体水洗吸收和生物降解处理的组合工艺。恶臭气体首先被液体(水)有选择地吸收形成混合污水,再通过微生物的作用将其中的污染物降解。
先将人工筛选的特种微生物菌群固定于填料上,当污染气体经过填料表面时,可从恶臭气体中获得营养源的那些微生物菌群,在适宜的温度、湿度、pH 值等条件下,会快速生长、繁殖,并在填料表面形成生物膜。当臭气通过其间,有机物被生物膜表面的水层吸收后被微生物吸附和降解,得到净化再生的水被重复使用。恶臭气体被去除的实质是恶臭气体作为营养物质被微生物吸收、代谢及利用。
2 生物除臭的工艺流程
除臭系统整个工艺流程大体可以分为4 步:
(1)将气浮池的恶臭气体加盖收集,用引风机加压后送至生物滤池。
(2)恶臭气体进入生物滤池,在循环水的喷淋润湿下,恶臭气体同水接触并溶解到水中。
(3)水溶液中的恶臭成分被微生物吸附、吸收,进入微生物细胞的恶臭成分作为营养物质为微生物所分解、利用,从而使污染物得以去除。
(4)处理后的气体达标排放。
3 进气污染物指标
除臭系统的进气污染物指标如表1 所示。
表1 进气污染物指标
Tab. 1 Indexes of pollutants in inlet air
4 主要设备及性能参数
生物除臭系统装置包括生物除臭装置主体(生物滤池)、加湿循环系统、生物滤料、滤床灌溉系统、离心风机、循环泵、电控柜、自控仪器仪表及处理后排放管道等。生物除臭系统装置的自控装置可监测进气流量、温度、滤床的压降、循环水系统的pH 值、流量、温度等参数,以确保除臭装置在最佳状态下运行。
4.1 臭气收集系统
对于敞开式池体产生的恶臭气体需进行加盖收集,庆阳石化公司生物除臭收集系统覆盖材质采用的是玻璃钢,支撑采用骨架钢管桁架。
4.2 生物除臭系统
生物除臭系统包括预处理系统和生物滤池,两者为一体化设备。主体采用封闭式的生物滤池,点源排放形式,池体材质为玻璃钢。设备内部带有中碱C-glass 乙烯酯内衬,设备内部的滤料承托层采用38 mm× 38 mm(单个孔径)的玻璃钢格栅板。生物滤池设计表面负荷:150 m3 /(m2·h),停留时间:25 s,预处理部分空池流速:0.25 m/s,生物滤池部分空池流速:0.05 m/s。
生物除臭系统包括以下几部分:
(1)预处理系统
预处理系统尺寸为L × W × H = 2.0 m × 6.0 m ×2.8 m,自下而上为0.5 m循环水层、0.7 m布气层(气室)、1 m填料层(乱堆)、0.6 m喷淋层,总高度为2.8 m。外携控制水箱1 个,尺寸为1.0 m×0.5 m× 0.6 m,采用DN 100 mm UPVC 管道与设备内循环水层连接,循环水箱内置仪器仪表,以便于实现对补水、温度、pH 值、排水等的自动控制。
该预处理部分为逆向喷淋填料塔形式,喷淋采用立式(不锈钢304)离心泵,喷淋水量为15 m3/h,喷淋水循环利用,直至pH 值小于3 时排出。
(2)生物滤池系统
生物滤池系统尺寸为L × W × H = 11.0 m × 6.0m × 2.8 m,自下而上为0.3 m排水层、0.6 m布气层(采用穿孔布气管布气)、1.4 m填料层(乱堆)、0.5m喷淋层,总高度为2.8m。外携喷淋水箱1 个,尺寸为1.0 m× 0.5 m× 0.6 m,喷淋水箱内置仪器仪表,以便于实现对补水、温度等的自动控制。该喷淋系统为间歇喷淋形式,每隔4 h 喷淋1 次,1 次喷淋40 s,由于用水量少,并且含有大量生物膜残片,因此该喷淋水不回用,直接排出至污水场进口。
该生物滤池部分加湿采用立式(不锈钢304)离心泵,喷淋水量为8 m3/h。
在布气层设置2 条DN 400 mm 布气管,玻璃钢材质,均匀在管壁上打孔,孔径为Φ 10 mm。
生物除臭系统采用的滤料为高效火山岩、腐殖树皮、泥炭、腐殖木屑的混合体,其中80%为无机部分(高效火山岩),20%为有机部分,填料总体积为93 m3。
(3)控制系统和在线监测系统
控制系统及在线监测系统由现场仪器仪表及PLC 配电柜组成,通过对进气流量计、温度传感器、压力传感器、加热器仪器仪表及PLC 的相关参数的设定来实现对总进气的控制;通过控制进水电动球阀、排水电动球阀、液位传感器、加热器、pH 计、温度传感器等来实现对循环水系统的控制;通过对排气口硫化氢、氨气等在线探头的数据控制来实现达标排放或者超标报警,从而实现整个生物除臭系统的自动运行及在线监测。
(4)排放系统
生物除臭装置采用集中排放,排放口的设置高度为10 m,保证气体排放符合GB 14554—93《恶臭污染物排放标准》中二级标准的要求。
5 运行效果
单机试车及各项准备工作完成后,开始用循环水泵对滤料进行清洗,待清洗干净后,滤料已润湿。然后投加微生物,此时保证pH 值为5 ~ 7,温度控制在20 ~40 ℃;用引风机供风,变频调速为总进气量的60%,保证微生物的供氧量;同时向生物滤池中投加少量硫磺,以改善开车期间污染气体浓度过低造成的微生物养分少的情况。同时定期给生物滤池喷水循环,使微生物载体处在一种湿润的环境中;随着污染物浓度增大,生物膜开始成长并适应,生物过滤系统转入正常运行。
生物除臭装置自2010 年10 月15 日运行至今,经监测分析,尾气完全达到GB 14554—93 中二级排放标准的要求。尾气检测分析数据如表2 所示。
表2 尾气检测分析数据
Tab. 2 Results of exhaust gas detection
6 影响生物过滤除臭效果的因素
6.1 填料
填料是生物过滤工艺的核心,是微生物的载体。因此,它必须满足以下几点:容许生长的微生物的种类丰富;为微生物提供较大的栖息生长比表面积;营养成分合理(N、P、K 和微量元素);具有良好的吸水性,自身无异味;吸附性好,结构均匀,空隙率大;材料易得、价格便宜;耐老化,运行、养护方便。
6.2 温度
温度是影响微生物活性的重要因素,在15 ~40 ℃范围内,生物菌种的活性会随着温度的升高而增加。庆阳石化公司设置生物过滤滤池厂房,在厂房内设置了采暖设备,还在循环液箱内设置了电加热器,即当恶臭气体温度过低时,通过加热循环喷淋液、气液传质的方式来调节温度,以保障微生物的活性。
6.3 湿度
湿度是影响微生物活性的另一重要因素,也是生物过滤设备重要的控制参数。众多试验表明,当进气湿度在80% ~ 95%时,生物膜的状态良好。
因此增加润湿喷淋系统,保证进气湿度。
6.4 pH 值
生物过滤装置内的最佳pH 值为5 ~ 7。由于微生物降解会产生酸性物质,装置内pH 值会逐渐降低,可通过喷淋水的方式来调节pH 值
⑻ 污水站排气筒高度17米,测臭气浓度如何评价,按20米还是15米
污水站排气筒高度17米,侧侧气浓度评价当然是按20米啦,按20米比较好啊,根据这个比例来说的话。
⑼ 环境空气中的臭气浓度执行什么标准
环境空气中的臭气浓度执行什么标准
我国正式颁布的国家大气环境质量标准《环境空气质量标准》中规定,污染物浓度限值的一级、二级和三级标准分别用于3类不同的环境空气质量功能区:
一类区为自然保护区、风景名胜区和其他需要特殊保护的地区;一类区执行一级标准;
二类区为城镇规划中确定的居住区、商业交通居民混合区、文化区、一般工业区和农村地区;二类区执行二级标准;
三类区为特定工业区,三类区执行三级标准。
一级标准为优,二级标准为良好,三级标准为轻微污染或轻度污染。