Ⅰ 岩土類型和性質
岩土體是地質災害的載體,地質災害一般都是通過岩土體的變形破壞而表現出來的,是地質災害成生的物質基礎。
受地殼運動的控制,「蘭—鄭—長」工程地段分布有不同年代、成因、物質成份和結構的岩土體,類型復雜多樣,工程地質性質各異,它們對地質災害的形成、分布和活動起著主導作用。岩土體分布出露的特點是:山區、丘陵以岩體為主,而高原、盆地、平原則以土體為主;管線經過地段絕大多數是土體。下面分別就岩體和土體討論其分布、類型、性質及對地質災害成生的制約。
(一)岩體
岩體在管線工程地段主要分布於甘肅、陝西段的關山—隴山,山西段的中條山、霍山和太原東山,河南段的大交口鎮—觀音堂、義馬—新安和大別山等地段,湖北、湖南段的大別山和江南丘陵地等地段,總長約300km,約占管線全長的10%。
參考國標《岩土工程勘察規范》(GB50021—2001)的規定,先將岩體按堅硬程度分大類,再由岩石的成因類型、岩性和工程性質,將本管道工程沿線的岩體劃分為4類7種(表4-1)。現作簡要討論。
1.堅硬岩類
按成因類型劃分為岩漿岩、變質岩和沉積岩3種亞岩類。
岩漿岩類管線地段分布於祁連山褶皺帶、秦嶺—大別山褶皺帶和揚子地台。分別有加里東期、華力西期、燕山期侵位的,其中祁連山褶皺帶三期皆有,岩性為花崗岩、石英閃長岩;秦嶺—大別山褶皺帶為燕山期花崗岩;揚子地台為加里東期和燕山期的花崗岩和花崗閃長岩。一般呈岩基和岩株狀產出,整體塊狀構造,緻密堅硬,物理力學性質均質,各向同性。應該說其工程性質優良,但在亞熱帶環境中化學風化強烈。地質災害一般不甚發育,以小型崩塌為主。
變質岩類在管線地段的祁連山褶皺帶、華北地台、秦嶺—大別山褶皺帶有分布。祁連山褶皺帶主要出露於關山—隴山地段,為中元古界隴山群和前震旦系,主要岩性為大理岩、黑雲母片麻岩、混合岩、結晶片岩。華北地台出露於山西支幹線的中條山、霍山、太原東山,為太古界涑水群和太岳山群,岩性為混合岩化的黑雲角閃斜長片麻岩、斜長角閃岩、大理岩、磁鐵石英岩、黑雲變粒岩、角閃變粒岩等,岩性復雜,風化較強。秦嶺—大別山褶皺帶出露於大悟一帶,為中上元古界紅安群含磷的變粒岩、大理岩和石英片岩夾片麻岩,抗風化能力較弱。由於受片麻理、片理及節理的影響,使岩體的工程地質性質呈明顯的各向異性和不均一性。地質災害不甚發育,一般以小型崩滑為主。
表4-1 岩體類型匯總表
沉積岩類在丘陵、山區分布較廣,在各大構造單元中皆有,其地質年代自中元古界至中生界早期幾乎皆有,岩性復雜多樣,主要有:中元古界熊耳群和汝陽群的安山玢岩、玄武岩、石英砂岩,新元古界洛峪群三教堂組的石英砂岩(以上均在河南境內);上元古界長城系、震旦系的石英砂岩、白雲岩、硅質岩、冰磧礫岩等;下古生界寒武系、奧陶系的中厚、厚層碳酸鹽岩;上古生界泥盆系的砂岩和碳酸鹽岩,石炭、二疊系的中厚、厚層狀灰岩和中生界三疊系碳酸鹽岩等(上古生界及中生界皆為揚子地台)。按岩性大類可劃分為火山噴出沉積岩、碎屑岩和碳酸鹽岩三大類。它們的共同特點是,層理構造發育且較厚,抗風化能力較強,但碳酸鹽岩具溶蝕性,岩溶較發育,工程地質性質具各向異性。上述這幾類岩性分布地段地質災害一般不甚發育,有小型崩滑和岩溶塌陷(覆蓋型岩溶地段)等地質災害。
2.較硬岩
按成因類型可劃分為變質岩和沉積岩兩大亞類。
變質岩類分布於祁連山褶皺帶、秦嶺—大別山褶皺帶和揚子地台中,岩性主要是較軟弱片岩和千枚岩、板岩。在祁連山褶皺帶的管線地段,新元古界長城系變質細砂岩、千枚岩;秦嶺—大別山褶皺帶信陽群、商城群的雲母石英片岩、綠色片岩、絹雲石英片岩、淺變質凝灰質砂岩等:揚子地台中元古界冷家溪群和新元古界板溪群的板岩、千枚岩、變質凝灰岩、變質砂岩等。上述各類岩體的共同特點是:片理、千枚理、板理等結構面發育,地面風化較強烈,殘坡積層厚度往往較大。岩體具明顯的各向異性,力學強度相對較弱。崩塌、滑坡和泥石流等山地地質災害較發育。
沉積岩類分布於華北地台和揚子地台中,華北地台岩性主要是上古生界和中生界粘土岩、鋁土岩頁岩、泥質粉砂岩、含煤層;揚子地台主要是泥盆系粉細砂岩、粘土岩、頁岩、泥灰岩。它們層理發育、薄層狀為主,遇水易軟化、崩解,風化也較強烈。由上述岩體組成的丘陵山區,地質災害較發育,主要有崩塌、滑坡、泥石流和採煤引起的地面塌陷和地裂縫災害(在山西、河南境內較突出)。
3.軟弱岩
這大類岩體主要是沉積岩類,較廣泛分布於各大地構造單元中生代晚期和新生代陸相盆地中,地質年代為白堊系、古近系和新近系。由於固結壓密程度低,岩體孔隙率高,強度小,變形大。岩性主要是河湖相的砂礫岩、砂岩和泥岩,夾淡水泥灰岩,含石膏、芒硝。岩石一般干單軸抗壓強度小於30MPa,而新近系岩石成岩性更差,接近於土體,干單軸抗壓強度不足於5MPa,屬極軟岩。這類岩石遇水易軟化崩解,抗風化能力亦低。但這類岩體出露地段地形起伏小,地質災害不發育,主要有膨脹性岩體的輕度脹縮變形災害,還存在采空塌陷災害。
4.軟硬相間岩
這大類岩體主要也是沉積岩類,較廣泛分布於華北地台和揚子地台的古生界和中生界地層中,一般是兩種強度和剛性差異較大的岩性相互成層或間夾;古生界常見的是灰岩與頁岩互層,砂岩與泥頁岩互層,中生界常見的是砂岩與泥頁岩互層。在外力作用下會發生層間錯動和脫開,而在地下水等作用下更會泥化而形成泥化夾層,層面間強度降低而成為典型的軟弱結構面。所以這類地層組合可以稱之為「易滑地層組合」,較易產生滑坡。此外,軟硬相間岩層差異風化顯著,「上硬下軟」組合的條件下,軟岩易形成岩龕,崩塌也較普遍。
(二)土體
土體在管線地段廣泛分布,約佔全長的90%。按地質成因,可劃分為殘積土、坡積土、洪積土、沖積土、淤積土和風積土等;按粒度成份,可劃分為碎石土、砂土、粉土和粘性土。對一些具有特殊成份和結構、工程性質也特殊的土,則可單獨劃分為特殊土,本管線工程的特殊土有黃土類土、膨脹土、鹽漬土和淤泥質土等。這里我們也參考國標《岩土工程勘察規范》(GB50021—2001)的規定,將土體劃分為碎石土、砂土、粉土、粘性土和特殊土5大類(表4-2)。以下分別就一般土和特殊土作簡要討論。
1.一般土體
一般土體包括各種成因類型的碎石土、砂類土、粉土和粘性土。
(1)碎石土:
碎石土指的是土中粒徑d>2mm的顆粒質量超過總質量50%的土。根據規定,碎石土可再劃分為礫質土、卵(碎)石土和漂(塊)石土,它們的粒徑分別>2mm、20mm或200mm的質量,超過總質量50%。一般沖積成因的碎石土分選性和滾圓度較好,位於河床和河流階地二元結構的下部,而其他成因的則較差。本工程各段情況是:甘肅段礫卵石佔45%~70%,粒徑一般 20~80mm,呈次圓—次稜角狀,一般分布於沖洪和平原表層之下。陝西段分布於渭河及其各支流以及山前洪積扇。河流沖積成因者在河漫灘和河床地段,在渭河幹流厚度可達20~40m,結構較均一;而洪積扇區則為大小混雜的砂卵石為主。山西段主要分布於汾河、龍鳳河和瀟河等山間河谷地段,以砂卵礫石為主,磨圓較好,級配良好。河南段主要分布在伊洛河、沙潁河等諸河流河谷區,以砂礫卵石為主。湖北—湖南段碎石土多分布於低山丘陵斜坡地帶,多為殘坡積成因,碎石成分隨母岩而變化。一般碎石土較疏鬆,孔隙比大,滲透性強,地基承載力高。
表4-2 土體類型匯總表
(2)砂類土:
砂類土指的是土中粒徑d>2mm的顆粒質量不超過總質量的50%,d>0.075mm的顆粒質量超過總質量50%的土;根據顆粒級配還可劃分為礫砂、粗砂、中砂、細砂和粉砂,一般是沖洪積成因的。此類土在本工程的情況是:甘肅段分布於洪積平原表層土之下,主要由粉細砂、中細砂組成,鬆散—中密狀態。陝西段分布於渭河及支流的漫灘、一級階地和古河道中,以中細砂和粉細砂為主,常含少量礫石,除河漫灘地段外,砂層均埋藏於細粒土之下,厚度不均一,多呈透鏡體狀,孔隙度大,滲透性強,中粗砂是良好的地基持力層,而飽水粉細砂則易產生震動液化。山西段分布於黃河、汾河及其較大支流的河床、河漫灘和階地,一般為砂礫石混合,厚度較大。也有在山前傾斜平原區前緣的洪積砂礫石,與細粒土組成多層結構。河南段分布除了與碎石土相同外,在沙潁河以南淮河平原各河流河漫灘和一級階地前緣地帶,表層之下為中細砂,稍密—中密狀態,厚度不穩定。砂類土一般級配較好,滲透性較強,一般是良好的地基持力層,但在地震烈度≥Ⅶ區需關注飽和粉細砂的震動液化問題。
(3)粉土和粘性土:
粉土和粘性土也可稱之為「細粒土」,前者是土中粒徑d>0.075mm的顆粒質量不超過總質量的50%,且塑性指數ⅠP≤10的土;而後者則ⅠP>10的土。這兩類土大量廣泛分布於鄭州—長沙段洪沖積平原和丘陵地段。具各種成因類型。一般洪沖積成因的土體較密實,孔隙比小,含水量相對較少,透水性弱,強度高,地基承載力高。而丘陵地帶的殘坡積成因者往往與碎石土混雜,土體孔隙性大,透水性相對較強,在久雨或強降雨時,易產生坡積層崩滑。
2.特殊土
(1)黃土類土:
黃土類土是第四紀時期特殊的大陸鬆散沉積物,它在世界各地分布廣而性質特殊。這類土在我國主要分布於西北、華北和東北地區,面積達60萬km2以上,以北緯34°~45°之間最為發育,這些地區位於我國西北沙漠區的外圍東部地區,具有大陸性乾旱少雨氣候的特點。黃土類土從早更新世(Q1)開始堆積,經歷了整個第四紀,直至現今還未結束。按地層時代及其基本特徵,黃土類土可分為3類:老黃土、新黃土和新近堆積黃土(表4-3)。老黃土是Q1、Q2時期堆積的,分別稱「午城黃土」和「離石黃土」,一般無濕陷性;新黃土一般是Q3時期堆積的,稱「馬蘭黃土」,也有Q4早期的,具濕陷性,分布面積最廣(約佔60%);新近堆積黃土一般是Q4晚期堆積的,濕陷性不一。各地黃土類土總厚度不一,陝甘黃土高原地區最厚,可達100~200m,河谷地區一般只有數米至30m左右,且主要是新黃土。黃土類土的成因一直是爭論的熱點問題,但普遍的看法是,風積成因是主要的,也有沖積、洪積、坡積、冰水堆積等成因類型。顆粒成份以粉粒為主,富含碳酸鈣,具大孔性,垂直節理發育,具濕陷性等特徵者,稱 「典型黃土」,而有些特徵不明顯者則稱「黃土狀土」。下面討論一下本管線工程黃土類土的特性。
本管線工程的黃土類土分布於蘭州—鄭州段(含山西支幹線)。不同地段黃土類土的粒度成份和結構有所不同,所以其物理力學指標和工程地質性質也有明顯差異。下面我們以Q3典型的濕陷性黃土為代表作分析。
首先是黃土的顆粒組成,將蘭州、西安、太原、洛陽四地作比較(表4-4)。可以看出它們的差異,總趨勢是:由西北往東南砂粒和粉粒含量愈來愈小,而粘粒含量則愈來愈大,而粉粒所佔比例最大是一致的。所以有人將西部黃土稱之為「砂黃土」,而東部為「粘黃土」。 黃土的顆粒組成對其濕陷性有一定影響,即砂粒含量愈多,濕陷性愈強,而粘性愈多則濕陷性愈弱。
表4-3 不同年代黃土的特徵
表4-4 濕陷性黃土的顆粒組成單位:%
各地濕陷性黃土的基本物理力學性質指標列於表4-5中。
由西往東的總趨勢是:土體的密度和天然含水率愈來愈大,液限和塑性指數也愈來愈大,孔隙比愈來愈小;而三項力學性質指標變化規律則不明顯。而且可看出,隴西和隴東地區指標相近似,關中地區與汾河流域也比較接近,而豫西地區與前面的4個地區則又有明顯差異。上述規律很重要,因為它與黃土的濕陷性相關的,即自西往東濕陷性逐漸變弱。
管線地段濕陷性黃土的濕陷系數(δs),經大量統計後匯總於表4-6中。從表中可看出,濕陷系數隴西地區最大,隴東地區次之,關中地區汾河流域再次之,而豫西則最小;而且高階地的濕陷系數要大於低階地。按有關規定,δs>0.015時,該黃土為濕陷性土;δs為0.015~0.03時濕陷性輕微,δs為0.03~0.07時濕陷性中等;δs>0.07時,濕陷性強烈。所以說,隴西和隴東地區黃土具中等—強烈濕陷性,關中地區和汾河流域黃土具中等濕陷性,而豫西地區黃土為輕微—中等濕陷性。
表4-5 各地濕陷性黃土基本物理力學性質指標
表4-6各地黃土濕陷系數(δs)統計表
濕陷性對黃土地區地質災害的成生和活動關系密切,地基的濕陷變形破壞本身就是黃土地區特殊的地質災害。此外由於黃土結構疏鬆,以及大孔性和垂直節理發育,潛蝕地質災害也很普遍。由於黃土的濕陷和潛蝕特性,還可誘發崩塌、滑坡和泥石流災害。
(2)膨脹土:
具有明顯遇水膨脹和失水收縮的土稱膨脹土。這類土在我國主要分布在南方山前丘陵、壠崗和二、三級階地上,大多數是晚更新世及以前的殘坡積、沖洪積和湖積物。從外表看,膨脹土一般呈紅、黃、褐、灰白等不同顏色,具斑狀結構,常含有鐵錳質或鈣質結核。土體常有網狀開裂,有臘狀光澤的擠壓面,類似劈理。土層表面常出現各種縱橫交錯的裂隙或龜裂現象,這與失水土體強烈收縮有關。膨脹土的脹縮特性,主要是土中含有較多的粘粒,一般粘粒含量高達35%以上,而且這些粘粒大部分為親水性很強的蒙脫石和伊利石等粘土礦物,膨脹收縮能力較強。天然狀態下,膨脹土一般緻密堅硬,天然含水率較小,所以土體常處於硬塑或堅硬狀態,壓縮性較低,強度較高;但在浸水膨脹後,強度明顯降低,壓縮性增大。膨脹土的這種脹縮特性,對工程建設會帶來危害。按我國有關規定,凡自由膨脹率δef大於40%者,即可定名為膨脹土,40%≤δef<65%為弱膨脹土,65%≤f<90%為中等膨脹土,δef≥90%為強膨脹土。
本管線工程的膨脹土主要分布於湖北境內的黃陂縣周港、應城支線和五里橋—賀勝橋—橫溝橋一帶:在河南境內的平頂山、周口西、郾城—駐馬店的沙汝河平原和確山—信陽北的低山丘陵也有零星分布。
湖北境內的膨脹土主要分布於高程30~45m的壠崗和崗間坳溝地帶,自然地形坡度平緩。土體時代為更新世,顏色呈棕黃、褐黃、棕紅色,土體平均自由膨脹率:周港一帶下更新統82%(最大99%),應城支線中更新統62%(最大109%),五里橋—賀勝橋一橫溝橋一帶上更新統44%(最大72%)。土體脹縮性危害主要導致當地居民低層建築牆體拉裂破壞,斜坡和水渠邊坡坍滑。
河南境內的膨脹土分布於淮河平原邊緣的平頂山東和確山—信陽北的低山丘陵,以及沙汝河平原之間的周口和郾城—駐馬店地段。土體時代為中、晚更新世,顏色呈棕黃、灰綠、棕紅色,乾燥時呈硬塑狀態,裂隙發育,含鐵錳質和鈣質結核,平均自由膨脹率43.5%。平頂山以膨脹破壞為主,而信陽多以收縮破壞為主,多發生在乾旱季節。
(3)鹽漬土:
土中易溶鹽含量大於0.5%的土稱為鹽漬土。由於它發育於地表土層中,與道路、低層建築等有關,主要是土的腐蝕作用以及鹽脹和溶陷作用對工程建設的危害。鹽漬土按地理分布可分為濱海鹽漬土、沖積平原鹽漬土和內陸鹽漬土等類型。我國鹽漬土主要分布在北方諸省區。鹽漬土的形成及其所含鹽的成分和數量與當地的地形地貌、氣候條件、地下水的埋藏深度和礦化度、土壤性質和人類活動有關;它的厚度並不大,一般分布於地表以下1.5~4m范圍內,且由地面至深部含鹽量逐漸減少。鹽漬土的形成一般是由於地下水埋深過淺(甚至出露地面),蒸發強烈而鹽分在地表的聚積所致。
鹽漬土的性質與所含鹽分和含鹽量有關。土中的鹽類主要是氯鹽、硫酸鹽和碳酸鹽三類,因此鹽漬土也相應地劃分為氯鹽漬土、硫酸鹽漬土和碳酸鹽漬土(表4-7)。鹽漬土中所含鹽分及其數量對土的工程地質性質影響很大。由於土成分的改變,影響了土的結構,從而影響了塑性、透水性、膨脹性、壓縮性、擊實性等性質。
表4-7 鹽漬土的分類
本管線工程的鹽漬土主要分布於甘肅段通渭以西、陝西段華縣—華陰地段和山西段的永濟市東北伍姓湖區(K48~K54)及清徐張花營村—榆次西榮(K451~K464)地段。
甘肅段通渭以西地段河谷平原一級階地潛水位埋深很淺,經測定,土壤中平均含鹽量3.4%,最大可達8%~15%,屬硫酸—氯型中—超鹽漬土。
陝西段華縣—華陰地段的鹽漬土是由於黃河三門峽水庫淤積和回水,引起潛水位壅高,使渭河南岸赤水河至方山河一級階地中部成為浸沒區,而導致土壤鹽漬化。但近年來當地大量開采地下水,潛水位埋深增大,鹽漬化已幾近消失。
山西段永濟伍姓湖區地勢低窪(比周邊低5~8m),表層土由粉質粘土和粉土組成,潛水位埋深0~3m,土中含鹽量1.06%~1.18%,類型為硫酸—氯型,屬中鹽漬土。清除張花營村—榆次西地段地勢較周邊略低,表層土為粉土,潛水位埋深0.2~3m,土中含鹽量0.44%~1.12%,類型為氯—硫酸鹽型,屬弱—中鹽漬土。硫酸鹽結晶膨脹以及腐蝕作用,對管道將有一定危害。
(4)淤泥質土:
淤泥質土是指在水流緩慢甚或靜水環境中沉積,有微生物參與作用的條件下,含較多有機質,而疏鬆軟弱的粘性土,它是近代在濱海、湖泊、沼澤、河彎、廢河道等地區沉積的未經固結的一種特殊土。從外觀看,這類土常呈灰、灰藍、灰綠和灰黑等顏色,污染手指並有臭味。土中含有大量親水性強的粘土礦物(蒙脫石和伊利石佔多數),有機質含量較多(一般含量 5%~15%),天然孔隙比大於1,天然含水率大於液限。其結構形式常為蜂窩狀或棉絮狀,疏鬆多孔,壓縮性很強,地基承載力很低。我國淤泥質土的地理分布基本上可分為兩大類:一類是沿海沉積的,另一類是內陸和山區湖沼盆地沉積的。前者分布穩定而厚度大,後者常零星分布且厚度小。
本管線工程的淤泥質土主要分布於湖北—湖南段。管道經過長江等13條大中型河流的沖湖積平原低窪地段,有較大范圍的淤泥質軟土分布,有機質含量大於1.5%,岩性為淤泥、淤泥質粘土和淤泥質粉土,呈軟塑—流塑狀,天然含水率多大於35%,最高達133%,孔隙比1~2.02,最高達3.12,壓縮系數一般大於0.5MPa-1,最高可達3.68MPa-1,凝聚力一般9.8~29.4k Pa,內摩擦角6°~15°,地基承載力,天然狀態下一般為25~55k Pa,常導致建築物過量沉降和不均勻沉降。很顯然,這類土體對管溝開挖影響較大,常導致溝坡坍塌擠出而不易成形。此外,對場站地基穩定性也有影響。
Ⅱ 工程地質勘察重點和難點探究
(1)針對場地工程地質條件工作重點採取的措施
採用工程鑽探、觸探、原位測試(包括標准貫入試驗、靜力觸探試驗、動力觸探試驗等)等多種勘察方法有機結合,輔以必要的其它鑽探方法,如井探、槽探方法,查明場地地層的分布規律,尤其是個別岩土層的埋深、厚度及空間分布規律,以及風化岩的風化程度等等,達到點、面結合,資料相互印證的目的。
針對軟土等易擾動的特性和粘性土遇水易軟化等特點,把野外觀察、野外測試與室內試驗結合起來,充分利用原狀土十字板試驗、靜力觸探試驗等原位試驗手段,綜合評價場地岩土層的物理力學性質,特別是淤泥層、粘性土層的水理、物理、力學性質、尤其是排水固結特徵。
通過抽水試驗,准確測定場地水文地質參數。
(2)針對提供全面的設計參數,提出相關建議及注意事項等工作重點採取的措施
定性與定量分析相結合,對場地各岩土層的工程地質性質進行分析評價,應用統計數學分析方法,分析評價場地各岩土層岩土參數的空間變化規律,為本工程設計和施工提供准確的岩土工程設計參數。
(3)針對天然地基評價等工作重點採取的措施
通過標准貫入試驗、地震安全性評價,對場地砂土液化作出評價,並根據場地土岩性及承載力大小評價場地土類型,劃分場地類別,提供抗震設計參數。
通過鑽探、原位測試、室內試驗等綜合手段,提供地基處理所需參數,避免差異沉降及地基變形問題。
(4)針對場地填土的分布、成分及密實程度以及工程性質的評價等工程難點採取的措施
根據填土性質採用鑽探、動力觸探、室內試驗等手段綜合勘察,填土的室內試驗除一般物理力學性質試驗外,著重密度、壓縮性等項目,以查明填土密實度等工程性質。鑽探時還應注意區分素填土與新近堆積粘性土的區別。用擊實試驗查明填土壓實後的工程性質。
(5)針對確保勘察成果准確性採取的措施
我單位在歷次工程地質勘察工作中,已形成一整套齊全完善的、能夠適應各種不同類型的勘察任務的工作方法和經驗,針對確保勘察成果准確性的問題,採取的主要措施為:發揮我單位技術優勢,召集具有較高學術造詣、經驗豐富的工程專家組成專家組,在勘察准備階段指導勘察人員對前期已有勘察成果進行系統的分析,確定本次勘察任務的重點工作內容、必須採用的新技術和新工藝。在數據的分析整理階段和相關結論的確定階段,邀請專家組,主持專題討論,進行技術把關,確保勘察結論的准確可靠。
(6)針對本項目測量工作重、難點主要對策和措施
建議建立E級GPS控制網作為本工程的首級平面控制網。
選派經驗豐富,技術水平較高的人員組成測量作業組,並配置我單位技術先進、性能卓越的設備儀器用於本項目的測量。
Ⅲ 短時強降水為何容易致使地面坍塌
這是因為暴雨之後的地下水位又會快速下降,這時候就是反過來,地下空洞中氣壓降低,上面的土層被大氣壓力向下壓,依然導致土層向下垮塌。
特別是在夏秋雨水集中的季節,如果發生長時間的強降雨,那麼地下土壤中水分的流動和沖刷作用就會非常明顯,土體流失現象加劇。同時,強降雨會加重對路基主體和地面表層土壤的沖蝕,形成地面雨水流動通道的加大和變形,可能會造成地下一定空間內土壤緻密性下降甚至空洞的情況,在表層雨水積聚、土壤以及其他重物的共同壓力作用下,形成路面突然塌陷的情況。
4、過度開采地下水,也與地面塌陷關聯緊密
由於過度開采地下水會造成地下水位嚴重下降,出現的空隙很難在短期時間內得到恢復,進而使上覆地層重量只能作用在含水介質所構成的骨架上,支撐力不足,地面就會發生沉降或出現塌陷。
從上面可以看出,引發城鎮內部路面塌陷的原因非常復雜,對於一些誘發的自然因素,我們當然很難從根本上加以抑制,但是可以通過人為的干預、補救以及預防措施,來最大限度地降低發生塌陷的風險。比如,我們可以提高道路規劃的科學性、增強道路施工的規范性、增加地下管道鋪設和管理的合理性、嚴格道路使用的分類管理和限制措施等等,來提升道路的安全性。
Ⅳ 抗震樁基使用范圍
下列條件可以使用管樁
1)抗震設防烈度不大於7度地區的一般工業與民用建(構)築物基礎工程。當用於抗震設防烈度8度的地區時,僅適用於厚度較薄的中等及以下液化土場地、且結構高度不超過24m的多層建(構)築物。
2)主要承受豎向受壓的低承台樁基礎。當用作承受豎向拉力、水平荷載為主的樁基工程時,應根據具體情況另行設計。
3)多層和結構高度不大於80m的高層建(構)築物樁基礎。
4)素填土、雜填土、淤泥質土、粉土、粘性土、稍密及中密的砂土等場地。
5)微腐蝕性、弱腐蝕性場地;特殊情況下,具有中等腐蝕性場地如需採用管樁基礎,應根據地方經驗,進行防腐蝕設計。
6)設計年限為50年及以下的管樁基礎工程。
下列條件不宜採用管樁
1)樁端持力層以上覆蓋層中含有不適宜作樁端持力層且管樁又難以貫穿的堅硬夾層。
2)管樁難以貫入、岩面埋藏較淺且傾斜度較大的場地。
3)樁端持力層以上覆蓋有較厚的軟土層(如淤泥、淤泥質土、欠固結土、鬆散填土等);或有效樁長范圍內有較厚的中等及以上液化土層的場地,且樁端直接支承在中風化、微風化岩層上;或中風化岩面上只有較薄的強風化岩層。
4)樁端持力層為遇水易軟化且埋藏較淺的風化岩層。
5)軟土地基的樁基周邊地面承受較大范圍的地面堆載或承受局部較大水平荷載的樁基工程。
6)基岩面上沒有合適持力層的岩溶場地。
7)管樁沉樁施工對周邊環境有嚴重影響時。
下列條件下不應採用管樁
1)地下水或場地土對管樁的混凝土、鋼筋及外露鐵件有強腐蝕作用的場地。
2)樁端持力層以上的覆蓋土層中含有較多難以清除且有嚴重影響沉樁的障礙物(如孤石、塊石等)或難以穿越的堅硬夾層(如硬塑性粘土層、密實的砂層等)。
3)抗震設防類別為特殊設防類(甲類)的高層建築。
4)位於坡地、岸邊、液化擴展地段的承受較大水平荷載的基礎工程。
Ⅳ 礦山地質環境問題的成因分析
礦業開發或多或少會對地質環境造成影響破壞,有些礦山地質環境問題的產生具有必然性,有些礦山地質環境問題的產生則與礦業行為的規范程度關系密切,總而言之,導致湖南省礦山地質環境問題產生的因素主要有采礦行為、采選冶及治理技術以及自然因素。
一、采礦行為因素
礦業開發活動過程中,地下開採掘進及主動放頂、礦山地面工程建設、露天采場開挖及表土剝離等采礦行為,很難避免采空地面變形、地下水位下降、土地資源佔用破壞等礦山地質環境問題的發生,這是礦業活動的基本屬性所致。但規范的礦業活動或礦業活動過程中事先主動採取有效的礦山地質環境防護措施,將大大減少或消除采礦活動對礦山地質環境的破壞程度,即使產生破壞,其恢復治理也較容易。綜合分析,目前湖南省因采礦行為不恰當而導致大量環境問題發生的主要方面有:
1.過度開采、掠奪式開采
受「大礦大開,小礦放開,有水快流,大力鼓勵民營經濟發展」思想的影響,礦業發展無序,高峰時期,湖南省各類礦山近兩萬處。據不完全統計,1998年,湖南省各類大小礦山達12417座,且還有不少非法開采、民采礦硐。一些礦山企業或私人團伙見礦就采,盲目亂采濫挖,越層越界,不留設甚至偷采保安礦牆(柱)等現象十分嚴重,導致全省礦山地質環境問題急劇爆發,為早期礦山地質環境問題惡化的主要原因。
2.環保意識薄弱,過度追求經濟效益
為了追求經濟效益最大化,歷史上,不顧環境和他人利益,開采過程中不重視環境的保護及預防。主要表現為:廢渣隨意堆放而不惜佔用農田、水庫、河谷;廢水肆意排放而不採取任何凈化措施;居民區、重要設施區及基本農田下方開采而不留設保安礦柱,形成超深、超寬的采空區;不合法采礦權人或非法個人盜采保安礦柱等。
3.礦山地質環境保護方面技術人員匱乏
現有的眾多小礦山,或無環境保護方面的技術員,或已有的技術人員水工環專業知識欠缺,對礦床水文地質條件、工程地質條件及其復雜性等開采技術條件不了解或認識不足,對可能引發的地質環境問題不會科學合理採取相應的預防措施,不自覺造成了對礦山地質環境的破壞,這是造成湖南省礦山地質環境問題的一個重要因素。
4.地方保護主義思想過重
在一些地方,礦產資源開發成為當地的主要經濟支柱,是地方財政的最大來源。歷史時期,部分地方政府和部門片面理解「發展才是硬道理」,存在「先發展起來,再改善生態和保護環境」的錯誤認識,對礦產資源管理秩序整頓、關停小礦山、保護礦山地質環境的要求執行不力,加重了礦山地質環境的破壞。
二、技術因素
1.礦山采、選技術落後,加劇了礦山地質環境問題的發生
受礦產資源稟賦條件限制,礦山開采技術落後,採用落後的「崩塌法」、「放大炮」等開采技術,造成了地面塌陷、崩塌、滑坡等地質災害。部分井下開采礦山的探水技術落後,對老窯、老采空區、岩溶管道探測不完全而發生突水突泥事故,從而造成地面塌陷的發生。選礦工藝簡單落後,如省內曾存在大量土法采選金礦、土法煉汞、煉砷、煉硫、煉礬、煉鉛鋅、氰化選礦的礦山,對礦山地質環境造成了污染。全省很多礦產資源,特別是有色金屬資源,共(伴)生礦多、貧礦多,由於選礦技術落後,資源綜合利用水平低,總回收率僅40%左右,綜合利用水平低,不僅浪費資源,增加固體廢棄物排放量,而且增加了尾砂中重金屬的排放,加重了環境影響的程度。
2.廢渣、廢水綜合利用程度低,礦山地質環境恢復治理技術落後
礦業活動過程中有大量廢渣、廢水排放,對其綜合利用,不僅能變廢為寶,節約資源,而且能有效保護礦山地質環境。湖南省礦山廢渣、廢水的綜合治理率不高,礦山廢渣綜合利用率為26.83%,廢水綜合利用率為11.89%。同時,目前全省礦業廢渣、廢水綜合治理利用的技術水平較低,方法工藝較落後。礦山地質環境恢復治理是一項專業性和技術性很強的工作,但當前礦山地質災害防治和礦區土地復墾技術研究還很薄弱。如地面變形監測可有效預防地面塌陷、采空地面變形對地面設施的破壞,但目前地面變形監測尚處於探索研究階段,而沒有一套完整經濟適用的監測技術體系及早掌控地面形變。就土地復墾而言,采礦廢水、廢渣造成的以重金屬污染為代表的水土污染治理難度大,目前沒有形成一套普適性的治理技術來恢復治理已污染破壞的土地,致使已破壞土地的恢復治理進度十分緩慢。
三、資金因素
歷史上,由於采礦權人追求經濟效益最大化,往往不主動對礦山地質環境破壞的風險進行及時防控。即使問題已經產生,但並不投入足夠的資金進行治理恢復,從而導致大量的環境問題遺留。雖然近十年國家及地方政府和采礦權人對礦山地質環境問題已投入了大量的治理資金進行治理,但歷史欠賬多,治理面積有限。
四、自然因素
礦業活動破壞了礦山地質環境平衡條件是造成礦山地質環境問題的根本原因,但湖南省礦山地質環境條件脆弱是礦業活動容易導致礦山地質環境問題加劇的另一因素。
(一)氣象與水文
湖南省降水量豐富,但年分布不均,全省多年平均降水量為1426.6mm,最大可達3089mm。由於大氣降水豐沛,雨量集中,常出現暴雨,日最大降雨量達423.1mm。降雨是湖南礦山產生崩塌、滑坡、泥石流、地面塌陷及水土流失的一個重要因素。氣候條件十分有利於岩石的風化作用,許多礦區岩石風化強烈,降低了岩體的完整性和穩定性;同時,強烈的風化作用也降低了廢石堆的穩定性,容易產生礦山地質災害。湖南季風變化大,夏、秋季乾燥風大,是尾礦庫產生揚塵污染的原因之一。地表水系發育,河網密布,許多礦區地表水與地下水之間具有水力聯系,地表水往往成為礦井充水、突水的主要來源。尤其是極端天氣的出現,如久旱逢暴雨,隨之產生大量的礦山地質環境問題。
(二)地形地貌
地形強烈切割的深溝大川是崩塌、滑坡最有利的發生地段;各級階地和剝夷面間的斜坡地帶,崩塌、滑坡也十分發育;上下陡、中間緩的折線山坡,當山坡上部成馬蹄形環狀地形且匯水面積大時,易產生沿基岩面滑動的土層滑坡。湖南有色金屬礦床多產於崇山峻嶺之中,復雜的地形條件易發生崩塌、滑坡、泥石流地質災害。
(三)礦床地質環境條件
湖南省能源礦產賦礦層主要為二疊系龍潭煤系、石炭系測水煤系,其次為二疊系吳家坪煤系、二疊系黔陽煤系、上三疊統、下侏羅統含煤岩系等。各含煤岩系岩性主要為粉砂岩、頁岩、泥岩夾砂岩或互層,頁岩、泥岩力學強度低,礦井工程地質條件大多為中等至差;而龍潭煤系北型、吳家坪煤系、黔陽煤系頂板、底板或頂底板為岩溶發育且富含岩溶地下水的碳酸岩鹽,斷裂構造發育且導水性強,水文地質條件及礦區構造大多復雜。建築材料礦山的石膏礦產主要賦存層位有下石炭統梓門橋組、白堊系、古近—新近系,其中梓門橋組含膏岩系直接頂板為岩溶發育中等至強烈的梓門橋組上段灰岩,間接頂板為岩溶強發育的壺天群,水文地質條件大多為復雜至中等,白堊系及古近—新近系含膏岩系岩性多為泥岩、粉砂岩,岩石固結程度較低,岩體力學強度低,礦床工程地質條件大多較差。湖南省柿竹園多金屬礦、黃沙坪、寶山、水口山鉛鋅礦、七寶山金銀黃鐵礦等主要有色金屬礦床均為接觸交代型礦床,其容礦層位均為岩溶發育的碳酸岩鹽,水文地質條件復雜,花垣鉛鋅礦賦礦層位亦為寒武系下統清虛洞組灰岩,地下河等岩溶極發育。當開采上述礦產資源時,由於工程地質條件差,易引發采空區地面變形礦等礦山地質災害;水文地質條件復雜,則易產生岩溶地面塌陷,並導致含水層結構破壞。這也是湖南省采空區地面變形災害主要與測水煤系煤礦山、龍潭煤系(南型)煤礦山、石膏礦山有關及岩溶塌陷、含水層結構破壞主要與龍潭煤系(北型)、吳家坪煤系、黔陽煤系煤礦山、柿竹園多金屬礦、黃沙坪、寶山鉛鋅礦、七寶山多金屬礦等有色金屬礦山有關的重要因素。
湖南省露天開采礦山絕大多數為砂石黏土礦山,花崗岩、石灰岩、石英岩等採石場,風化程度高,當節理、裂隙發育,開采形成較陡峻的臨空面時,易發生崩塌;采砂場、磚瓦廠、高嶺土礦、紅土型金礦、淋積型錳礦開采對象為第四系土(砂)體,土體力學強度低,遇水易軟化,采場邊坡易發生崩滑現象;此外,石煤礦大多露天開采,部分沉積型鐵礦、磷礦也有露天開采礦山,賦礦層位主要為震旦系至寒武系的江口組、陡山沱組、小煙溪組,岩性多為板岩、炭質板岩、砂質板岩,除層理外,板理、劈理均較發育,淺部風化節理十分發育,采場邊坡易發生滑坡與崩塌。同時,采場剝離廢石及采礦廢石量較大,往往成為泥石流的物質來源。
有色金屬及石煤礦山的廢渣、廢水中含大量重金屬元素及放射性元素,化工鹽類礦山廢渣、廢水中含鹵族元素,中高硫煤礦山及硫鐵礦山廢渣、廢水中含大量黃鐵礦,均是礦山水土污染的污染物來源。
Ⅵ 特殊岩土災害
(一)黃土濕陷和潛蝕
1.濕陷性土類型及其分布
評估區濕陷性土分黃土和黃土狀土兩類。濕陷性黃土主要分布於黃土梁峁及丘陵區,集中表現在上更新統風積馬蘭黃土中,一般淺部均具濕陷性,且以自重濕陷為主,濕陷土層厚度在各地差異較大,一般在5~15m左右。黃土狀土主要分布於榆中、定西、內官等山前盆地、河(溝)谷平原地帶以及蘭州西固、天水北道一、二級階地上,一般淺部多具濕陷性,以非自重濕陷為主,濕陷土層厚度一般在2~5m左右。天水一帶試驗資料表明(表5-10),黃土濕陷性具有隨著深度的增加而逐漸減弱的規律。
2.濕陷性土基本特徵
濕陷性黃土質地均一,垂直節理發育,結構疏鬆,粒度成分以粉土為主(表5-11),具大孔隙,孔隙度多在52.0%~56.4%,壓縮系數大於0.07MPa-1,屬中等壓縮性,黃土含水量高,多在8%~24%(表5-12)。
濕陷性黃土狀土多為沖洪積物,具水平層理,夾砂性土或淤泥質土透鏡體,粒度成分中粘粒和砂粒含量明顯增高,結構較疏鬆,孔隙度和壓縮系數均較大,屬中~高壓縮性土。
黃土中易溶鹽含量較高,
(二)鹽漬土的鹽脹和腐蝕
鹽漬土主要分布於通渭以西的河(溝)谷漫灘及其支溝溝腦有地下水溢出或者地下水淺埋地段,一般呈條帶狀。由於這一地區淺層地下水為鹹水—微鹹水,蒸發強度較大,常形成局部鹽漬土。
表5-10 天水黃土濕陷系數隨深度變化一覽表
鹽漬土岩性以粉土、粘性土和粉細砂為主,厚度小於2m,屬原生鹽漬土,以硫酸一氯化物型為主。該類土有一定的脹縮性並對混凝土、鋼材等具有侵蝕性。
通渭以西的河(溝)谷區地下水礦化度普遍較高,硫酸鹽含量1200~1500mg/L,對混凝土具中等侵蝕性。通渭以東高礦化水分布區為葫蘆河河谷及清水河河谷,硫酸鹽含量 1000~1200mg/L,對混凝土也具中等侵蝕性。
(三)膨脹岩的脹縮
評估區第四系基底層普遍是新近系、白堊系粘土岩。泥岩中多夾有石膏層,在不同的環境下結構和物理性質會發生較大變化。該基底層在天然狀態下結構緻密,多呈堅硬—硬塑狀態,壓縮性小,抗剪強度高,遇水後易發生膨脹軟化,失水干縮。含水後的粘土岩具塑性,強度明顯降低,如天水市一帶新近系泥岩乾燥狀態內聚力0.5~0.9MPa,內摩擦角34°~41°,但飽和狀態下內聚力為零,內摩擦角11°~14°。本次調查中,凡有岩層露頭的地段,表面風化裂隙發育,岩體呈碎裂狀,並在坡腳有大量的被剝落的泥岩碎塊堆積。
表5-11 濕陷性土顆粒分析一覽表
表5-12 黃土、黃土狀土的物理力學性質指標成果表
表5-13 黃土中的易溶鹽含量一覽表
綜上所述,本區地質災害類型多、分布廣、發育特徵各異,其中崩塌、滑坡、泥石流和黃土濕陷災害點多面廣,是主要的地質災害,其他僅有小范圍或零星分布。
Ⅶ 防止持力層被地下水軟化是什麼意思
土木工程結構設計中,在地基基礎設計時,直接承受基礎荷載的土層稱為持力層。
在土力學計算中,持力層受到的壓力是持續減少的,到若干深度以後壓力就可以忽略不計,具體深度要經過計算才知道。承受壓力的這一部分叫作持力層,持力層以下的部分叫作下卧層。也就是說,根據承受荷載的不同,持力層和下卧層也是不同的。
而地下水的長時間存在會對持力層形成常見的軟化、侵蝕和靜水壓力、動水壓力作用及其滲透破壞等問題,使得持力層內部粘聚力降低、摩擦角減小,從而導致承載能力降低,發生不均勻沉降;同時,當地下水的動水壓力大於土粒的浮容重或地下水的水力坡度大於臨界水力坡度時,就會產生流沙、潛蝕;當建築物基礎底面位於地下水位以下時,地下水對基礎底面產生靜水壓力,即產生浮托力,從而影響基礎穩定性。
Ⅷ 片麻岩與花崗岩的區別
用鎬可挖,膠結不緊的礫岩,有時還包括粒徑20mm~200mm的碎石。(3)砂礫,表示土越密實,如氣溫變化使岩石脹縮導致破裂等,硅質砂岩。工程上把土的干密度作為評定土體密實程度的標准,有風化裂隙發育:結構部分破壞,干鑽不易鑽進、30%以上稱濕土。(6)軟石,土可分為八類,單位為 。二:一類土(松軟土),鍬鎬易開挖,僅節理面有渲染或略有變色,以百分數表示,這種性質稱為土的可松性,沿斷裂破碎帶和易風化岩層、土的工程性質1:土的干濕程度用含水量表示,土就越濕:飽和單軸極限抗壓強度在40Mpa以下的各類松軟的岩石,包括塊狀風化:飽和單軸極限抗壓強度在40~100Mpa的各類較堅硬的岩石,包括土狀風化。注、漂石。最後,按照岩石分化程度不同可以分為、閃長岩,以後雖經回填壓實,如硬玄武岩。3:粒徑20mm~200mm的碎石,有時還包括塊石、土的滲透性土的滲透性指水流通過土中孔隙的難易程度、二類土(普通土),可形成風化較劇的岩層。含水量越大:亞粘土:土的干密度越大、全風化。斷層交會處還可形成風化囊。6、卵石、土的可松性自然狀態下的土經開挖後。土的可松性程度用可松性系數表示。但由於岩體中岩性並不均一,軟玄武岩,干鑽易鑽進、五類土(軟石),其含量在10%以內:結構大部分破壞、八類土(特堅石)。4、圓礫含量大於50%:粒徑2mm~20mm的角礫,水在單位時間內穿透土層的能力稱為滲透系數,以控制基坑底壓實及填土工程的壓實質量、輕亞粘土,其體積因鬆散而增大,軟而節理較多的石灰岩等。5%以下稱干土,礦物成分顯著變化,干鑽可鑽進、三類土(堅土)、殘積土。下面來介紹一下、塊石土及漂石土,已成土狀,其含量在10%以內、圓礫含量(指重量比,堅實的石灰岩,五至八類為岩石。(8)堅石,有少量風化裂隙、泥質頁岩。岩體風化分為、地質構造。(2)粘土。一般情況下、四類土(砂礫堅土):結構基本未變。一至四類為土,包括淤泥。3,包括礓石及粒狀風化,所以岩體風化的情況並不一定完全符合一般規律的工程分類及性質一,白雲岩。注,堅實的泥灰岩,如硅質頁岩。岩體風化的速度和程度取決於岩石的性質和結構,如鹽岩:土的滲透性大小取決於不同的土質,來解決一下自己的問題、正長岩、花崗岩等。地下水的流動以及在土中的滲透速度都與土的滲透性有關、粘土、土的工程分類在建築施工中,可用鎬挖,岩體破碎、石英岩:①物理風化、六類土(次堅石)。就是如何選擇有關土質岩層的定額、片麻岩、中風化,干鑽不易鑽進。5:粒徑不大於2mm的砂類土、強風化:粒徑2mm~20mm的角礫,但尚可辨認、白雲岩,沿節理面有次生礦物,稱為土的天然密度。(4)礫石。註:飽和單軸極限抗壓強度在100Mpa以上的各類堅硬的岩石。(1)砂土,且有斷裂存在,具可塑:1。另外,石灰岩、七類土(堅石)、砂岩,岩體的風化程度呈現出由表及裡逐漸減弱的規律。(7)次堅石:結構基本破壞、土的含水量土的含水量 是土中水的質量與固體顆粒質量之比、粗粒花崗岩,如低價鐵的黃鐵礦在水參與下變為高價鐵的褐鐵礦、土的密度(1)土的天然密度土在天然狀態下單位體積的質量,用 表示、微風化、氣候條件、正長岩等,岩石風化,其體積仍不能恢復原狀;③生物風化、5%—30%稱潮濕土。用鎬難挖。(5)卵石。2、大理岩,下同)小於或等於50%,有殘余結構強度、黃土。岩體 風化厚度一般為數米至數十米。4,如植物根系可使岩石的裂隙擴張等:組織結構全部破壞、地形條件:岩質新鮮偶見風化痕跡。(2)土的干密度單位體積中土的固體顆粒的質量稱為土的干密度,按照開挖的難易程度。在這兩種情況下深度可超過百米。2,對施工越不利,風化裂隙發育,包括塊狀風化、未風化;②化學風化,岩體被切割成岩塊、人類活動的影響等、卵石含量大於10%,較堅實的泥灰岩
Ⅸ 我國山區岩土體基本特徵
我國山區各時代地層均有分布,岩石類型齊全,沉積岩、岩漿岩、變質岩一應俱全,各種成因類型土及特殊土也均有分布。岩土體是各類地質災害形成的物質基礎,也是油氣管道重要載體。也是環境地質的重要方面。岩體、土體基本特徵分述如下。
1.4.1岩體的基本特徵
岩體根據建造類型、結構特徵和強度特徵分為如下類型(參見我國主要岩土體類型圖)。
1.4.1.1岩漿岩建造
1)堅硬塊狀各類侵入岩岩組
該岩組主要岩石有花崗岩、閃長岩、花崗閃長岩、輝長岩、橄欖岩等等。岩石本身工程地質性質極好,干抗壓強度一般在10×104kPa以上,最高可達26×104kPa左右,軟化系數一般在0.8以上。
2)堅硬層狀中酸性噴出岩岩組
該岩組以中生代中酸性火山噴出岩為主,主要為火山熔岩,火山碎屑岩。分布主要有3個地帶:一為大興安嶺—燕山帶;二為東北的東部山區至山東一帶;三為東南沿海一帶。
該岩組岩石岩性堅硬、干抗壓強度一般在(12~22)×104kPa之間,軟化系數一般在0.8以上,個別在0.8以下,從岩體結構上看,一般為層狀或塊狀。
3)堅硬具氣孔狀的塊狀基性噴出岩岩組
主要包括上二疊紀的峨眉山玄武岩和新生代的各期玄武岩。峨眉山玄武岩廣泛分布在四川的西部,貴州的西部及雲南的東部地區,厚度可達幾米到1700餘米。
新生代玄武岩分布有內蒙到遼西一帶的漢諾壩玄武岩;雲南騰沖、潞西一帶中新世杏仁狀安山玄武岩;東北地區、東南沿海地區和廣東雷瓊一帶,新近紀末沿斷裂帶溢出的玄武岩。在吉林的白頭山地區分布著中心噴發式玄武岩,通稱高位玄武岩,覆蓋了整個長白山區。在海南北部、雷州半島、河北的黃驊及山東的無棣,分布著晚新近紀至全新世的玄武岩。第四紀以來,在台灣的北部和澎湖列島區,分布有上新世到更新世的玄武岩;在河北的井陘雪花山、蔚縣、山西東部的平定、昔陽一帶,河南的伊山、山東的臨朐、山旺、昌樂一帶都見有早、中更新世的玄武岩。在全新世時期內,吉林的白頭山地區,又發生了第二次玄武岩噴發,稱低位玄武岩。東北德都地區從更新世以來,發生過多次鹼性玄武岩的噴發,直到近代的1719~1721年間的一次噴發,才形成了五大連池。有釣魚島及其附近也分布有第四紀玄武岩。
該組玄武岩岩性堅硬,有的具氣孔構造,干抗壓強度一般在120~180MPa,軟化系數一般在0.8~0.9之間。
4)軟硬相間的層狀火山碎屑岩岩組
該岩組岩石主要為中生代火山碎屑岩,力學強度差異很大,常常形成軟硬相間結構。主要分布在東北山地、燕山山地、東南沿海以及四川峨邊、石棉、米易、元謀、攀枝花和金川一帶。其干抗壓強度有的在3×104kPa以下,有的在(3~8)×104kPa之間,有的在8×104kPa以上,最高達(12~18)×104kPa,軟化系數變化范圍也較大,在0.6~0.8之間。
1.4.1.2碎屑岩建造
1)以堅硬層狀碎屑岩為主的岩組
該岩組包括各地質時代的碎屑岩,是分布最廣泛的一個岩組。包括礫岩、砂岩、頁岩等。岩性較硬,干抗壓強度一般在(8~18)×104kPa之間,甚至更高,軟化系數為0.8~0.9。本岩組特點:岩性比較復雜,大多數岩石強度高,岩組層理發育,有的還夾有薄層軟弱層,特別是有的軟弱夾層遇水易軟化,致使岩組穩定性受到影響。但在大多數情況下本岩組工程地質條件較好。
2)以較堅硬層狀碎屑岩為主的岩組
該岩組主要包括中、新生代陸相紅色地層,岩性主要為礫岩、砂岩、粘土岩、泥灰岩等,主要分布在南方中新生代紅色盆地中。
該岩組岩石強度主要決定於膠結物的成分及其賦予狀態。其膠結物成分主要為泥質和鈣質,干抗壓強度一般在(3~8)×104kPa之間,個別在10×104kPa以上。岩石軟化系數較低,一般在0.6~0.7之間。本岩組中岩石強度較低,遇水易軟化,而且易於風化。
3)以軟弱層狀碎屑岩為主的岩組
本組包括中、新生代陸相碎屑岩,岩性主要為粘土岩、頁岩、砂岩及礫岩。分布不甚廣泛,主要見於中、新生代盆地中,岩石強度較低,一般抗壓強度為(1~3)×104kPa,軟化系數一般為0.3~0.4。主要為泥質膠結。因此,遇水極易軟化,而且易於風化。
4)碎屑岩夾碳酸鹽岩岩組
該組包括各地質時代的碎屑岩夾碳酸鹽岩岩組,主要分布在四川、雲南、貴州、新疆、青海、湖北、湖南、甘肅等省(區),其他地方也有零星分布。碳酸鹽岩岩層所佔比例一般在30%以下。該組的砂岩干抗壓強度一般為(1.6~8)×104kPa,軟化系數變化很大,為0.14~0.93。由於岩石的岩性和組合關系不同,因而工程地質特徵變化亦大,盡管從總體上來說該岩組屬於碎屑岩類,但碳酸鹽岩夾層也不能忽略。
1.4.1.3碳酸鹽岩建造
1)以堅硬層狀碳酸鹽岩為主的岩組
該岩組包括各地質時代的各類碳酸鹽岩,主要分布在我國的廣東、廣西、貴州、雲南、湖南、四川、遼寧、河北、山西等省(區)。其餘地方分布較分散,連續性差。岩石類型主要為石灰岩和白雲岩。岩性緻密堅硬,厚層狀至薄層狀。本岩組特點是岩溶發育,且其分布地區的岩溶現象和岩溶地貌也十分發育。在岩溶現象發育地區工程地質條件比較復雜。岩石本身強度高,一般在(8~15)×104kPa之間,軟化系數一般為0.5~0.6。本岩組除岩溶發育外,往往夾有軟弱層面和軟弱夾層,影響岩體穩定。
2)碳酸鹽岩夾碎屑岩岩組
該組包括各地質時代的碳酸鹽岩夾碎屑岩,主要分布在廣西、雲南、貴州、廣東、四川、湖南等地,另外遼寧、河北、甘肅、新疆分布亦較多。其餘地方雖有零星分布,但連續性差。該組碳酸鹽岩岩層所佔比例一般為50%~70%,雲南較高為70%~90%。該組灰岩和白雲岩的干抗壓強度一般都大於10×104kPa,軟化系數為0.7~0.9。岩石中因常常含有泥質或其他雜質,成分不很純凈,加上夾有非碳酸鹽岩,所以岩溶發育程度一般屬於中等。溶隙、溶洞規模一般很小,比較均一;其工程地質特徵大體同純灰岩、白雲岩相似,只是在程度上有所差異。
1.4.1.4變質岩建造
1)堅硬塊狀變質岩岩組
本岩組岩石主要為各時代深變質混合岩,片麻岩等。主要在遼東山地、山東半島、燕山、太行山、五台山、秦嶺等地廣泛分布。岩體呈塊狀結構,干抗壓強度一般在(13~21)×104kPa之間。軟化系數一般為0.8~0.9。
山區油氣管道地質災害防治研究
2)以堅硬軟弱相間的片狀、板狀變質岩為主的岩組
本組主要包括各地質時代變質的片岩、板岩、千枚岩。分布比較廣泛。岩體主要為片狀結構、板狀結構、千枚狀結構。岩石強度差異較大,干抗壓強度低者為(2~5)×104kPa,高者達15×104kPa以上。軟化系數一般為0.5~0.7。
1.4.2土體的工程地質特徵
1.4.2.1粗粒土
1)礫質土
礫質土分布比較廣,主要分布在各大盆地邊緣的山前洪積扇、大型河床、冰川前緣地帶,如在松遼平原山前地帶、松花江河床、華北平原山前地帶以及青藏高原都有礫質土分布。從成因上看,其主要為洪積、沖洪積和冰水沉積物。
2)砂質土
我國砂質土主要分布在塔里木盆地、准噶爾盆地、柴達木盆地、內蒙古高原、松遼盆地等沙漠區和松花江、黃河、長江等大河流的階地上,以及黃淮海平原等地。
成因主要為風成、沖積、沖洪積以及少量海相沉積。
我國沙漠區砂質土多形成各種類型砂丘,特別是流動沙丘,對工程危害較大。
各種地下水位以下的淺層砂質土,易形成砂土液化,是工程上應引起注意的問題。
1.4.2.2細粒土
粘性土主要分布在我國東部各大平原和盆地,沿海地帶以及各大河流階地,大湖的周邊。其成因主要為沖積、沖洪積、湖積、海積及冰川沉積類型。
粘性土工程地質性質較好,由於成因條件和埋藏條件不同,各地粘性土工程地質性質也各異,因此出現的工程地質問題也不相同。在實際工作中應根據工程類型和具體工程地質條件,確定它們的工程地質性質指標。
1.4.2.3特殊土
1)軟弱粘性土
是指那些含水量高,承載力低,呈軟塑一流塑狀態的粘性土,包括淤泥及淤泥質土,前兩者的有機質含量分別為大於8%和5%~8%。
軟弱粘性土在我國分布也比較廣,主要分布在大型湖泊周邊,河流入海處,海岸地帶。
軟弱粘性土成因類型主要有:海相沉積(包括濱海相、瀉湖相、三角洲相),湖泊沉積,河灘沉積和沼澤沉積。
2)鹽漬土
土層內平均易溶鹽的含量大於0.5%時,一般稱為鹽漬土。土中含鹽量大於0.5%時,土的物理力學性質受鹽分的影響而改變,當含鹽量大於3%時,則土的物理力學性質主要受鹽分和鹽種類的控制,所以應進行土的含鹽量及含鹽類別的劃分。
我國鹽漬土主要分布於乾旱地區的內陸盆地,如柴達木盆地、內蒙古高原及青藏高原鹽湖周圍,松遼平原及華北平原;其次是濱海地區。
鹽漬土按含鹽量類型可分為:
(1)氯鹽類鹽漬土:這類鹽溶解度大致相同,有較大的吸濕性,具有保持水分的能力,結晶時體積不膨脹。
(2)硫酸鹽類鹽漬土:硫酸鹽的最大特點是結晶時要結合一定數量的水分子。如硫酸鈉從溶液中結晶為芒硝(Na2SO4·10H2O)時,結合10個水分子,因此結晶時體積膨脹,當失去水分時,體積縮小,所以硫酸鹽類鹽漬土又稱松脹鹽漬土。
(3)碳酸鹽鹽漬土:碳酸鹽類一般在土中含量較小,但碳酸鈉的水溶液具有較大的鹼性反應,它使粘土顆粒間的膠結產生分散作用。
3)膨脹土
膨脹土是指粘粒成分主要由強親水性粘土礦物組成,液限WL>40%,且脹縮性能較大的粘性土,即使在一定的荷載作用下仍具有脹縮性能,具有吸水膨脹,失水收縮和反復脹縮變形的特點,因此,有人也稱為脹縮土,一般自由膨脹率Fs>40%者,定為膨脹土。
我國膨脹土分布較廣,四川、雲南、廣西、湖北、安徽、河南、河北、陝西、山東、貴州、山西和廣東都有分布。從地質時代的分布上看,主要為新近紀和第四紀的產物,從成因上看,其主要為湖相沉積、冰水沉積、洪沖積、殘坡積物。
我國膨脹土所含粘土礦物以蒙脫石和伊利石為主。湖積膨脹土中粘土礦物以蒙脫石—伊利石為主;沖積和冰水沉積膨脹土中粘土礦物以伊利石為主,含有蒙脫石和少量高嶺石,而碳酸鹽岩殘積的紅粘土的粘土礦物則以多水高嶺石為主。
4)多年凍土
我國多年凍土主要分布在東北大、小興安嶺,西部高山及青藏高原等地,總面積約為215萬平方千米,占總國土面積的22.3%,各地凍土面積見表1-7。
表1-7 我國多年凍土區的面積單位:萬km2
東北多年凍土區海拔不高,主要為丘陵山地、屬高緯度多年凍土。西部高山高原多年凍土區,緯度不高,地勢高亢,深居內陸,屬低緯度高海拔的高山高原凍土。
根據粒度成分估計的可能凍脹性類型,可劃分強凍脹土、中等凍脹土及微凍脹土。
強凍脹土,主要是細粒粘性土形成的多年凍土。
中等凍脹土系由砂性土形成的多年凍土。
微凍脹土主要由含砂礫石、礫石等粗碎屑土形成的多年凍土。
當然,凍脹性與含水量大小有直接關系,實際工作中可根據含水量再進行細分。
5)黃土
我國是世界上黃土最發育的國家,黃土分布廣,厚度大,地層完整。
我國黃土主要分布在北緯33°~47°之間,其分布受到山系走向的控制。南以秦嶺、伏牛山、大別山為界。我國黃土分布面積為63.1萬km2,約占國土面積的6.6%。
我國黃土分布地區氣候乾燥,年平均降水量250~500mm。我國黃土一般分布在海拔200~2200m之間,黃河中游是黃土最發育地區,構成了著名的黃土高原。
黃河中游黃土厚度最大。在六盤山以西,華家嶺—馬寒山一線以北到蘭州附近以及白於山以西,黃土厚度在200~300m之間。六盤山以東到呂梁山西側,黃土厚度在100~200m之間。祁連山、天山、阿爾金山等山系的北麓,黃土厚度在50m以下。華北平原的黃土系與其他沖積層間互沉積,厚度不大。
黃土地區地貌形態主要為塬、梁、茆。河谷階地黃土呈順河延伸的平台;山麓地帶呈帶狀分布。
我國黃土從早更新世晚期至全新世都有沉積。
我國黃土成因各家說法不一,多數主張風成說,也有主張多成因說、水成說等。
根據黃土的濕陷性質,我國黃土可分為兩類,一類為濕陷性黃土,一類為非濕陷性黃土。我國工程界以黃土濕陷系數為標准來劃分,一般以濕陷系數0.02為劃分標准,大於0.02為濕陷性黃土,小於0.02為非濕陷性黃土。大量數據表明,我國全新世黃土和上更新世黃土一般具濕陷性質,中更新世和下更新世黃土通常不具有濕陷性,松遼平原黃土狀土劃為非濕陷性黃土。
我國濕陷性黃土面積約為43萬km2,工程地質問題比較復雜。除具有濕陷性外,我國黃土地區水土流失嚴重,滑坡、崩坍、泥石流等地質災害也較發育。
Ⅹ 預應力混凝土管樁不宜在什麼條件下應用
下列地質條件下不宜選用預應力混凝土管樁:
1、土層中夾有難以消除的孤石、障礙物;
2、含有不適宜作持力層且管樁又難以貫穿的堅硬夾層;
3、基岩面上沒有合適持力層的岩溶地層;
4、非岩溶地區基岩以上的覆蓋層為淤泥等松軟土層,其下直接為中風化岩層或微風化岩層或中風化岩面上只有較薄的強風化岩層;
5、樁端持力層為遇水易軟化且埋藏較淺的風化岩層;
6、對管樁的混凝土、鋼筋及鋼構件有強腐蝕作用的岩土層(含地下水)。
預應力混凝土管樁可分為後張法預應力管樁和先張法預應力管樁。 先張法預應力管樁是採用先張法預應力工藝和離心成型法製成的一種空心筒體細長混凝土預制構件,主要由圓筒形樁身、端頭板和鋼套箍等組成。
管樁按混凝土強度等級或有效預壓應力分為預應力混凝土管樁和預應力高強混凝土管樁。預應力混凝土管樁代號為PC,預應力高強混凝土管樁代號為PHC,薄壁管樁代號為PTC。PC樁的混凝土強度不得低於C60,薄壁管樁強度等級不得低於C60,PHC樁的混凝土強度等級不得低於C80。
PC樁和PTC樁一般採用常壓蒸汽養護,一般要經過28天才能施打。而PHC樁,脫模後進入高壓釜蒸養,經10個大氣壓、180度左右的蒸壓養護,混凝土強度等級達C80從成型到使用的最短時間只需一兩天。