導航:首頁 > 純水知識 > 正辛醇飽和的超純水

正辛醇飽和的超純水

發布時間:2022-07-16 14:18:55

A. 油水分配系數與脂溶性的關系

油的極性小,水的極性大,按照相似相溶的原理,極性大的溶質在極性大的溶劑裡面分配系數就大,反之亦然。

油水分配系數試驗中必須使用分析純的正辛醇和蒸餾水 (或 重蒸餾水 ,不能使用直接從離子交換器中得到的去離子水)。 試驗前 ,正辛醇與水需經預飽和處理 ,即在試驗溫度下 ,採用兩個大儲液瓶。

分別裝入正辛醇與足量的水 ,水與足量的正辛醇 ,置於恆溫振盪器中振搖24h後 ,靜置足夠長的時間使兩相完全分離 ,以分別得到水飽和的正辛醇 、正辛醇飽和水 。

分配系數分配比:

分配比的含義:將溶質在有機相中的各種存在形式的總濃度CO和在水相中的各種存在形式的總濃度CW之比,稱為分配比.用D表示:分配比除與一些常數有關以外,還與酸度、溶質的濃度等因素有關,它並不是一個常數。

示例:CCl4——水萃取體系萃取OsO4在水相中Os(VIII)以OsO4,OsO5和HOsO5三種形式存在。在有機相中以OsO4和(OsO4)4兩種形式存在。

B. 試論土壤中氮、磷、鉀的測定原理與方法

第五章 土壤全氮的測定(凱氏蒸餾法)

5.1 方法提要 樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮。鹼化後蒸餾出來的氨用硼酸吸收,以酸標准溶液滴定,計算土壤全氮含量(不包括硝態氮)。
包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化成銨態氮。
5.2 適用范圍 本方法適用於各類土壤全氮含量的測定。
5.3 主要儀器設備
5.3.1 消化管(與消煮爐、定氮儀配套),容積250mL。
5.3.2 定氮儀。
5.3.3 可控溫鋁錠消煮爐(升溫不低於400℃)。
5.3.4 半微量滴定管,10mL。
5.3.5 分析天平(精確到0.0001g)。
5.4 試劑
5.4.1 硫酸 [ρ(H2SO4)=1.84g•mL-1];
5.4.2 硫酸標准溶液 [c(1/2H2SO4)=0.01mol•L-1]或鹽酸標准溶液[c(HCl)=0.01mol•L-1]:配製及標定參見附錄1。
5.4.3 氫氧化鈉溶液 [ρ(NaOH)=400g•L-1 ]:稱取400g氫氧化鈉溶於水中,稀釋至1L。
5.4.4 硼酸—指示劑混合液。
硼酸溶液 [ρ(H3BO3)=20g•L-1]:稱取硼酸20.00g溶於水中,稀釋至1L。
混合指示劑:稱取0.5g溴甲酚綠和0.1g甲基紅於專用玻璃研缽中,加入少量95%乙醇,研磨至指示劑全部溶解後,加95%乙醇至100mL。使用前,每升硼酸溶液中加5mL混合指示劑,並用稀酸或稀鹼調節至紅紫色(PH約4.5)。此液放置時間不宜過長,如在使用過程中PH有變化,需隨時用稀酸或稀鹼調節。
5.4.5 加速劑:稱取100g硫酸鉀,10g硫酸銅(CuSO4•5H2O),1g硒粉於研缽中研細,必須充分混合均勻。
5.4.6 高錳酸鉀溶液[ρ(KMnO4)=50g•L-1 ]:稱取25g高錳酸鉀溶於500mL水,貯於棕色
瓶中。
5.4.7 硫酸溶液(1:1)。
5.4.8 還原鐵粉:磨細通過0.149mm孔徑篩。
5.4.9 辛醇。
5.5 分析步驟
5.5.1 稱樣:稱取通過0.25mm(60號篩)孔徑篩的風干試樣0.3g(含氮約1mg,精確到0.0001g)。
5.5.2 土樣消煮:①不包括硝態和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加入2.0加速劑,加水約2mL濕潤試樣,再加8mL濃硫酸,搖勻。將消化管置於控溫消煮爐上,用小火加熱,約200℃,待管內反應緩和時(約10~15min),加強火力至375℃。待消煮液和土粒全部變為灰白稍帶綠色後,再繼續消煮1h,冷卻,待蒸餾。在消煮試樣的同時,做兩份空的試驗,空白試驗除不加土壤外,其他操作和試樣一樣。
②包括硝態氮和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加1mL高錳酸鉀溶液,輕輕搖動消化管,緩緩加入2mL 1:1硫酸溶液,不斷轉動消化管,放置5 min後,再加入1滴辛醇。通過長頸漏斗0.5g (±0.01g) 還原鐵粉送入消化管底部,瓶口蓋上彎頸漏斗,轉動消化管,使鐵粉與酸接觸,待劇烈反應停止時(約5min),將消化管置於控溫消煮爐上緩緩加熱45 min(管內土液應保持微沸,以不引起大量水分丟失為宜)。停止加熱,待消化管冷卻後,加2.0g加速劑和8 mL濃硫酸,搖勻。按「不包括硝態和亞硝態氮的消煮」的步驟,消煮至試液完全變成黃綠色,再繼續消煮1 h,冷卻,蒸餾。在消煮試樣的同時,做兩份空白試驗。
5.5.3 氨的蒸餾和滴定:蒸餾前先按儀器使用說明書檢查定氮儀,並空蒸0.5 h洗凈管道。待消煮液冷卻後,向消化管內加入約60 mL水和35 mL 400 g•L-1氫氧化鈉溶液,搖勻,置於定氮儀上。於三角瓶中加入25 mL 20 g•L-1 硼酸—指示劑混合液,將三角瓶置於定氮儀冷凝器的承接管下,管口插入硼酸溶液中,以免吸收不完全。蒸餾5 min,用少量的水洗滌冷凝管的末端,洗液收入三角瓶內。每測完1個樣後用空試管裝清水清洗約2min。
用0.01 mol•L-1硫酸(或0.01 mol•L-1鹽酸)標准溶液滴定餾出液,由藍綠色至剛變為紅紫色。記錄所用酸標准溶液的體積。空白測定所用酸標准溶液的體積,一般不得超過0.4 mL。
5.6 結果計算
土壤全氮(N),g •kg-1 = [c•(V-V0) ×0.014/m] ×1000
V0——滴定空白時所用酸標准溶液的體積,mL;
c——酸標准溶液的濃度,mol•L-1;
0.014——氮原子的毫摩爾質量;
m——風干試樣質量,g;
1000——換算成每千克含量。
平行測定結果用算術均值表示,保留小數點後兩位。
5.7 精密度 平行測定結果允許相差:
土壤含氮量(g •kg-1) 允許絕對相差(g •kg-1)
>1 ≤0.05
1~0.6 ≤0.04
<0.6 ≤0.03
5.8 注釋
①因試樣烘乾過程中可能使全氮量發生變化,因此土壤全氮用風干樣品測定。如果需要提供烘乾基含量,可測定土壤水分進行折算。折算公式為:
土壤全氮(烘乾基),g •kg-1 =土壤全氮(風干基),g •kg-1×100/[100-ω(H2O)]
式中:ω(H2O)——風干土水分含量,%。
②試樣的粒徑,這里採用0.25mm孔徑篩,但如果含氮量高,稱量<0.5g時,則應通過0.149mm孔徑篩。
③一般土壤中硝態氮含量不超過全氮含量的1%,故可忽然不計。如硝態氮含量高,則要用高錳酸鉀和鐵粉預處理,硝態氮的回收率在90%以上。
④某些還原鐵粉會有大量氮,在試劑選擇上應注意。
⑤消煮的溫度應控制在360~400℃范圍內,此時,消煮的土液保持微沸,硫酸蒸汽在消化管上部1/3處冷凝流回。超過400℃土液將劇烈沸騰,硫酸蒸汽達到消化管頂部甚至溢出,將引起硫酸銨的熱分解而導致氮素損失。
⑥蒸餾時間一般為5 min,但由於儀器型號及蒸餾電流設置不同,應首先作試驗確定,即用納氏試劑逐分鍾檢查蒸餾液中是否含有銨。
第六章 鹼解氮的測定(鹼解擴散法)

6.1 方法原理 在擴散皿中,用1.0mol/LNaOH水解土壤,使易水解態氮(潛在有效氮)鹼解轉化為NH3,NH3 擴散後為H3BO3 所吸收。H3BO3 吸收液中的NH3 再用標准酸滴定,由此計算土壤中鹼解氮的含量。
6.2 主要儀器
擴散皿、半微量滴定管、恆溫箱。
6.3 試劑
6.3.1 1.0mol/LNaOH 溶液。稱取NaOH (化學純)40.OGg溶於水,冷卻後稀釋至1L。
6.3.2 20 g••L-1 H3BO3---指示劑溶液。同5.4.4。
6.3.3 0.005mo 1/L(1/2H2SO4)標准溶液。量取H2SO4(化學純)2.83mL,加蒸餾水稀釋至5000mL,然後用標准鹼或硼酸標定之,此為0.0200mo1/L(1/2H2SO4)標准溶液,再將此標准液准確地稀釋4倍,即得0.0050mo1/L(1/2H2SO4)標准液(注1)。
6.3.4 鹼性膠液。取阿拉伯膠40.0g 和水50mL在燒杯中熱溫至70—80 ℃ 攪拌促溶,約1h後放冷。加入甘油20mL和飽和K2CO3水溶液20mL,攪拌、放冷。離心除去泡沫和不溶物,清液貯於具塞玻瓶中備用。
6.3.5 FeSO4•7H2O粉末。將FeSO4•7H2O(化學純)磨細,裝入密閉瓶中,存於陰涼處。
6.3.6 Ag2SO4飽和溶液。存於避光處。
6.4 操作步驟(注2)
稱取通過18號篩(1mm)風干土樣2.00g,置於潔凈的擴散皿外室,輕輕旋轉擴散皿,使土樣均勻地鋪平。
取H3BO3—指示劑溶液2mL放於擴散皿內室,然後在擴散皿外室邊緣塗鹼性膠液,蓋上毛玻璃(注3),旋轉數次,使皿邊與毛玻璃完全黏合。再漸漸轉開毛玻璃一邊,使擴散皿外室露出一條狹縫,迅速加入1 mol/L NaOH溶液10.0mL,立即蓋嚴,輕輕旋轉擴散皿,讓鹼溶液蓋住所有土壤。再用橡皮筋圈緊,使毛玻璃固定。隨後小心平放在40±1℃恆溫箱中,鹼解擴散24±0.5h後取出(可以觀察到內室應為藍色)內室吸收液中的NH3用0.005或0.01mol/L(1/2H2SO4)標准液滴定(注4)。
在樣品測定的同時進行空白試驗,校正試劑和滴定誤差。
6.5 結果計算
鹼解氮(N)含量(mg/kg)=[ c(V-VO)×14.0] ×10³/m
式中:C¬¬——0.005mol/L (1/2H2SO4)標准溶液的濃度(mol•L-1);
V——樣品滴定時用去0.005mol•L-1(1/2H2SO4)標准液體積(mL);
V0——空白試驗滴定時用去0.005mol••L-1(1/2H2SO4)標准液體積(mL);
14.0——氮原子的摩爾質量(g/mol-l);M—樣品質量(g);
10³——換算系數。
兩次平行測定結果允許絕對相差為5mg•kg-1。
6.6 注釋
注1:如要配非常准確的0.005mol•L-1/2H2SO4 標准液,則可以吸取—定量的NH4+-N標准溶液,在樣品測定的同時,用相同條件的擴散法標定。例如,吸取5.00mg•kg-1NH4+-N標准溶液(含NH4+—N 0.250mg)放入擴散皿外室,鹼化後擴散釋放的NH3經H3BO3吸收後,如滴定用去配好的稀標准H2SO4 液3.51mL,則標准H2SO4的農度為:
c(1/2H2SO4) = [0.00025/(3.51×0.014)]= 0.00508mol/L
注2:如果要將土壤中NO3-—N 包括在內,測定時需加FeSO4.7H2 O粉,並以Ag2SO4為催化劑,使NO3-—N還原為NH3。而FeSO4 本身要消耗部分NaOH,所以測定時所用NaOH溶液的濃度須提高。例如2g土加1.07mol•L-1 NaOH 10mL 、FeSO4.7H2O 0.2g 和飽和Ag2SO4溶液0.1mL進行鹼解還原。
注3:由於膠液的鹼性很強,在塗膠液和洗滌擴散時,必須特別細心,慎防污染內室,造成錯誤。
注4:滴定時要用小玻璃棒小心攪動吸收液,切不可搖動擴散皿。
第七章 M3法土壤有效磷、速效鉀的測定

7.1 方法原理 M3浸提劑中的0.2mol/L HOAc—0.25 mol/L NH4NO3形成了pH2.5的強緩沖體系,並可浸提出交換性K、Ca、Mg、Fe、Mn、Cu、Zn等陽離子;0.015 mol/L NH4F—0.013 mol/L HNO3可調控P從Ca、Al、Fe無機磷源中的解吸;0.001mol/L EDTA可浸出螯合態Cu、Zn、Mn 、Fe等,因此,M3浸提劑可同時提取土壤中有效的磷、鉀、鈣、鎂、鐵、錳、銅、鋅、硼等多種營養元素。
7.2 試劑與儀器
7.2.1 試劑
7.2.1.1 硝酸銨
7.2.1.2 氟化銨
7.2.1.3 冰乙酸
7.2.1.4 硝酸
7.2.1.5 乙二胺四乙酸
7.2.1.6 酒石酸銻鉀
7.2.1.7 鉬酸銨
7.2.1.8 硫酸
7.2.1.9 抗壞血酸
7.2.1.10 磷酸二氫鉀
7.2.1.11 M3貯備液[c(NH4F)=3.75 mol/L+ c(EDTA)=0.25 mol/L]:稱取氟化銨(分析純)138.9g溶於約600mL去離子水中,搖動,再加入乙二胺四乙酸(EDTA)73.1g,溶解後用去超純水定容至1000mL,充分混勻後貯存於塑料瓶中(在冰箱內可長期使用),可供5000個樣次使用,如工作量不大,可按比例減少貯備液數量。
7.2.1.12 M3浸提劑:用1000mL或2000mL量筒量取2000mL去離子水,加入5000mL塑料桶中,稱取硝酸銨100.0g,使之溶解,加入20.0mL M3貯備液,再加入冰乙酸(即17.4 mol/L)57.5 mL和濃HNO3 (HNO3,68%~70%,分析純)4.1mL,用量筒加水稀釋至5000mL,充分混合均勻,此液pH應為2.5±0.1(貯存於塑料瓶中備用,可供100個樣次使用)。
7.2.1.13 鉬銻抗試劑:稱取酒石酸銻鉀[K(SbO)C4H4O6•1/2H2O,分析純]0.5g溶於100mL
去離子水,配製成0.5%的溶液。另稱取鉬酸銨[(NH4)6 Mo7O24•4H2O,分析純]10.0g溶於450mL水中,慢慢地加入153 mL濃H2SO4(分析純),邊加邊攪動。再將100mL 0.5%酒石酸銻鉀溶液加入鉬酸銨溶液中,最後加水至1000mL,充分搖勻,貯存於棕色瓶中,此為鉬銻貯備液。
臨用前(當天)稱取抗壞血酸(即維生素C,分析純)1.5g溶於100mL鉬銻貯備液中,混勻,此為鉬銻抗試劑,有效期24h,如保存於冰箱中則有效期較長。上述試劑中H2SO4的濃度為5.5 mol/L(1/2 H2SO4),鉬酸銨為1%,酒石酸銻鉀為0.05%,抗壞血酸為1.5%。
7.2.1.14 磷工作溶液[(P)=5mg/L]:稱取105℃烘乾2h的磷酸二氫鉀(KH2PO4,分析純)0.2195g,置於400mL去離子水中,加入濃H2SO45mL(防長黴菌,可使溶液長期保存),轉入1000mL容量瓶中,用水定容。此溶液為50 mg/L P標准溶液。准確吸取此貯備溶液25.00mL,稀釋至250mL,即為5 mg/L P標准溶液(此稀溶液不宜久存)。
7.2.1.15 K貯備液[(K)=100mg/L]:准確稱取氯化鉀KCl,105~110℃乾燥2h,分析純)01907g,溶於去離子水中,定容至1000 mL,搖勻後待用。
7.2.2 儀器
7.2.2.1 分光光度計。
7.2.2.2 火焰光度計。
7.2.2.3 恆溫振盪機(溫度控制25±℃)。
7.2.2.4 原子吸收分光光度計。
7.3 浸提步驟
用量樣器量取5.00 mL風干土壤(過2mm尼龍篩),同時稱量並記錄其質量,於100mL塑料瓶中,加入50.0mL M3浸提劑,蓋嚴後於往復振盪機(振盪強度為180r/min)上振盪5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
另一種方法是:選用攪拌方法代替振盪提的方法:用量樣器量取5.00mL風干土壤(過2mm尼龍篩),同時稱量並記錄其質量,用加液器加入50.0mL M3浸提劑,用攪拌器攪拌5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
7.4 浸出液中有效養分的定量
7.4.1 M3有效磷的測定
准確吸取2.00~10.00mL土壤浸出液(依肥力水平而異)於50mL容量瓶中,加水至約
30mL,加入5.00mL鉬銻抗試劑顯色,定容搖勻。顯色30 min後,在880nm處比色。如冬季氣溫較低時,注意保持顯色時溫度在150C以上,最好在恆溫室內濕色,以加快顯色速度。測定的同時做空白校正。
工作曲線:准確吸取5mg/L P標准溶液0、1.00、2.00、 4.00 、6.00 、8.00mL,分別放入50 mL容量瓶中,加水至約30 mL,加入5.00 mL鉬銻抗試劑顯色,定容搖勻。顯色30min後,在880nm處比出色。
結果計算:
土壤M3-P,mg/L(或mg/kg)=[ρ(P)×V×D]/ [V0或(M)]
式中:
ρ——待測液中P濃度,μg/mL;
V——顯色液體積,50mL;
D——分取倍數,浸出液體積/吸取濾液體積;
V0(或M)——土樣體積,mL或土樣質量,g。
7.4.2 M3速效鉀的測定
M3浸出液中鉀可直接用火焰光度計測定。
工作曲線:准確吸取100 mg/L K標准貯備液0、1.00、2.50、5.00、10.00、15.00、20.00mL,分別放入50 mL容量瓶中,用M3浸提劑定容,搖勻,即得0、2.00、5.00、10.00、20.00、30.00、40.00μg/mL K標准系列溶液。
結果計算:
土壤M3-K,mg/L(或mg/kg)=[ρ(K)×V]/[V0(或M)]
式中:ρ(K)——待測液中K濃度,μg/mL;
V——浸提劑體積,mL;
V0(或M)——土樣體積,mL或土樣質量,g。
7.5 注釋
7.5.1 為了避免F—以CaF2形態沉澱的再吸附,應將浸提液劑的 pH控制在2.9 以下。配製Mehlich3浸提劑時應盡量准確,這樣可不必每次都測定pH。因為溶液中的F容易對玻璃電極或復合電極造成損壞。
7.5.2 玻璃皿不會造成污染,但橡皮塞尤期是新塞子會嚴重引起Zn的污染,建議最好使用塑料瓶盛試液。如果同時測定大量與微量元素,玻、塑器皿最好事先在0.2% A1Cl3 •6H2O
或8%~10% HC1溶液中浸泡過夜,洗凈後備用,以防微量元素的污染。
7.5.3 M3法的土壤浸出液常帶顏色,有粉紅色、淡黃色或橙黃色,深淺不一,因土而異。粉紅色可能與Mn含量高或浸提出的某些有機物有關,黃色可能與Fe含量高或有機物質有關。溶液顏色可加入活性C脫色,但會對Zn造成污染,故以不加活性C為宜。
7.5.4 注意浸提溫度的控制。冬季氣溫較低時,可採取一些保溫措施。
7.5.5 比色液中NH4+ 和EDTA濃度時對P比色均有干擾,NH4+ 多時生成藍色沉澱,EDTA多時不顯色或生成白色沉澱(EDTA酸)。試驗表時,在一般鉬銻搞比色法的條件下NH4+ 不得大於0.01 mol/L)。
7.5.6 研究發現,若在工作曲線中分別加入一定量的M3浸提劑,顯色後很快會在較高P濃度的各地出現沉澱,從而影響測定結果的准確性.故選用空白校正的方法消答試劑的誤差,即:根據未知樣品所吸取浸出的體積,相應地做空白測定(不加顯色劑),再從未知樣品的結果中扣除空白值。
7.5.7 若浸出液中鉀的濃度超出測定范圍,應用M3浸提劑稀釋後再測定。
7.5.8 使用AAS法測定有效Ca, Mg時,浸出液需要用M3浸提劑適當稀釋1~20倍後方可測定,可根據具體情況確定稀釋倍數。
7.5.9 如果條件具備,可直接用電感耦合等離子發射光譜儀(ICP—AES)進行測定,而不需要稀釋;而且在同一浸出液中可同時測定P、K、Na、Ca、Mg、Fe、 Mn、CU、Zn、B等多種元素。
7.5.10 使用AAS法測定有效微量元素Fe、Mn、CU、Zn時,浸出液需要M3浸提劑適當稀釋後方可測定。一般測Fe時,可稀釋1~10倍;測Mn時,可稀釋2~10倍;測CU、Zn一般不需要稀釋。可根據具體情況確定稀釋倍數。

C. 如何測油水分配系數logP值

一般都採用搖瓶法。以正辛醇為油相,以你要測葯物比較易溶的溶劑為水相,也可以用水。先相互飽和24小時。完了將葯物溶解在飽和好的正辛醇中,與一定體積的水相混合,體積比是任意選擇的。振盪72小時。分別測葯物在正辛醇和水腫的含量。利用濃度比來求LOGP。

隨著數據採集和測試技術的進步,科學家擁有大量數據,但這仍然不能滿足所有數據需要,於是共享數據就成為人們的要求。由於Internet的普及,藉助網路來實現數據共享成為一種現實可行的方法。

預處理

試驗中必須使用分析純的正辛醇和蒸餾水 (或 重蒸餾水 ,不能使用直接從離子交換器 中得到的去離子水)。 試驗前 ,正辛醇與水需經預飽和處理 ,即在試驗溫度下 ,采 用兩個大儲液瓶 ,分別裝入正辛醇與足量 的水 ,水與足量 的正辛醇 ,置於恆溫振盪器 中振搖 24h後 ,靜 置足夠長 的時間使兩相完全分離 ,以分別得到水飽和的正辛醇 、正辛醇飽和水 。

D. 水,苯,四氯化碳,酒精,汽油的密度排序

所以按相對密度來排是:

四氯化碳 〉水 〉苯 〉酒精 〉汽油

四氯化碳

1、物質的理化常數
國標編號 61554
CAS號 56-23-5
中文名稱 四氯甲烷
英文名稱 carbon tetrachloride;tetrachloromethane
別 名 四氯化碳
分子式 CCl4 外觀與性狀 無色有特臭的透明液體,極易揮發
分子量 153.84 蒸汽壓 13.33kPa(23℃)
熔 點 -22.6℃ 沸點:76.5℃ 溶解性 微溶於水,易溶於多數有機溶劑
密 度 相對密度(水=1)1.60;相對密度(空氣=1)5.3 穩定性 穩定
危險標記 14(有毒品) 主要用途 用於有機合成、致冷劑、殺蟲劑。亦作有機溶劑

2、對環境的影響
四氯化碳屬高蓄積性物,在哺乳動物的肝部可產生蓄積,對鮭魚可致肝癌。

一、健康危害

侵入途徑:吸入、食入。
健康危害:對眼睛、皮膚、粘膜和呼吸道有強烈的刺激作用。吸入可能由於喉、支氣管的痙攣、水腫、炎症,化學性肺炎、肺水腫而致死。中毒表現有燒灼感、咳嗽、喘息、喉炎、氣短、頭痛、惡性循環心和嘔吐。

二、毒理學資料及環境行為

急性毒性 :LD502350mg/kg(大鼠經口);5070mg/kg(大鼠經皮);LC5050400mg/m3,4小時(大鼠吸入);人經口29.5ml,死亡;人吸入320g/m3,5~10分鍾後死亡;人吸入150~200g/m3,1/2~1小時有生命危險;人吸入15g/m35分鍾後眩暈、頭痛、失眠,脈率快;人吸入1~2g/m3,30分鍾後輕度惡心、頭痛,脈率和呼吸加快;人吸入0.6~0.7g/m3,可耐受3小時。
亞急性和慢性毒性:動物吸入400ppm,7小時/天,5天/周,173天,部分動物127天後勤部死亡,肝腎腫大,肝脂肪變性,肝硬化,腎小管上皮退行性病變。
致突變性:微生物致突變:鼠傷寒沙門氏菌20ul/L。DMA損傷:小鼠經口335umol/kg。
生殖毒性:大鼠經口最低中毒劑量(TDL0):2g/kg(孕7~8天),引起植入後死亡率增加。大鼠經口最低中毒劑量(TDL0)3619mg/kg(雄性,10天),引起睾丸、附睾和輸精管異常。
致癌性:IARC致癌性評論:動物陽性,人類可疑。小鼠經口1250mg/kg/日×78周,肝細胞癌發病率增高。
致畸性:大鼠吸入300~1000ppm/日(妊娠期6~15天)對胚胎有致畸作用;三代繁殖試驗大鼠吸入50~400ppm,無胎毒和致畸作用。

污染來源:生產四氯化碳的有機化工廠、石油化工廠等企業都可能產生四氯化碳污染。四氯化碳用作油類、脂肪、真漆、假漆、硫磺、橡膠、蠟和樹脂的溶劑、冷凍劑、薰蒸劑、織物的乾洗劑、金屬洗凈劑、殺蟲劑。也用於電子工業用清洗劑、油質、香料的浸出劑、萃取劑等行業。四氯化碳常用於合成碳氟化合物,生產氯化有機化合物,半導體生產,製造氟里昂等行業。

危險特性:本品不會燃燒,但遇明火或高溫易產生劇毒的光氣和氯化氫煙霧。在潮濕的空氣中逐漸分解成光氣和氯化氫。
燃燒(分解)產物:光氣、氯化物。

3、現場應急監測方法
水質檢測管法;直接進水樣氣相色譜法
快速檢測管法;攜帶型氣相色譜法《突發性環境污染事故應急監測與處理處置技術》萬本太主編
氣體速測管(德國德爾格公司產品)

4、實驗室監測方法

監測方法 來源 類別
頂空氣相色譜法 GB/T17130-1997 水質
吡啶-鹼比色法 《空氣中有害物質的測定方法》(第二版),杭士平主編 空氣
氣相色譜法 《固體廢棄物試驗與分析評價手冊》中國環境監測總站等譯 固體廢棄物
氣相色譜法 《農葯殘留量氣相色譜法》國家商檢局編 糧食
色譜/質譜法 美國EPA524.2方法 水質

5、環境標准
中國(TJ36-79) 車間空氣中有害物質的最高容許濃度 25[皮]mg/m3
中國(GB5749-85) 生活飲用水水質標准 3μg/L
中國(GHZB1-1999) 地表水環境質量標准(I、II、III類水域特定值) 0.003mg/L
中國(GB8978-1996) 污水綜合排放標准 一級:0.03mg/L
二級:0.06mg/L
三級:0.5mg/L
日本(1993) 環境標准 地面水:0.002mg/L
廢水:0.02mg/L
土壤浸出液:0.002mg/L
嗅覺閾濃度 200ppm

6、應急處理處置方法
一、泄漏應急處理

迅速撤離泄漏污染區人員至安全區,並進行隔離,嚴格限制出入。
⑴四氯化碳為無色液體,發生於地面上的污染事故緊急處理方法同三氯甲烷:
①迅速用土、沙子或其它可以取到的材料築成壩以阻止液體的流動,特別要防止其流入附近的水體中,用土壤將其覆蓋並將其吸收。也可以在其流動的下方向挖一坑,將其收集在坑內以防四處擴散,然後將液體收集到合適的容器中。
②在處理過程中不要用鐵器(如鐵勺、鐵容器、鐵鏟等),應改用其它工具,因為鐵有助於四氯甲烷分解生成毒性更大的光氣。有條件的話,操作人員在處理過程中應戴上防毒面具,或其它防護設備。
③將受污染的土壤清除剝離後集中進行處理,有以下幾種方法可視情況選用:
a.加熱土壤並加水,使四氯甲烷生成甲酸、一氧化碳和鹽酸;
b.將濃鹼液加入到土壤中使其與四氯甲烷反應生成一氧化碳;
c.將稀的氫氧化鈉或氫氧化鉀加入土壤中,使其與四氯甲烷反應生成甲酸鈉或甲酸鉀;
以上操作應避免在光照條件下進行。
d.對土壤進行焚燒處理,要保證完全燃燒,以防止光氣產生。
⑵由於四氯化碳在環境中很穩定,故三氯甲烷的一些處置技術均不適用於它,只可利用其易揮發的特點進行自然或人工強制性揮發至大氣中。當有大量氣態四氯化碳揮發彌散時,應疏散污染源下風向的人群,以防中毒。
⑶水體中受到污染時的處理處置技術同三氯甲烷:當四氯甲烷液體進入水體後,應設法阻斷受污染水域與其它水域的通道,其方法為築壩使其停止流動;開溝使其流向另一水體(如排污渠)等等。由於四氯甲烷屬揮發性鹵代烴類,對受其污染的水體最為簡便易行處理方法是使用曝氣(包括深進曝氣)法,使其迅速從水體中逸散到大氣中。另外,處理土壤的幾種方法也可酌情使用。
廢棄物處置方法:用焚燒法。廢料同其它燃料混合後焚燒,燃燒要充分,防止生成光氣。焚燒爐排氣中的鹵化氫通過酸洗滌器除去。此外,還應考慮用蒸餾法提純並回收四氯化碳。

二、防護措施

呼吸系統防護:空氣中濃度超標時,應該佩戴直接式防毒面具(半面罩)。緊急事態搶救或撤離時,佩戴空氣呼吸器。
眼睛防護:戴安全護目鏡。
身體防護:穿插防毒物滲透工作服。
手防護:戴防化學品手套。
其它:工作現場禁止吸煙、進食和飲水。工作畢,沐浴更衣。單獨存放被毒物污染的衣服,洗後備用。實行就業前和定期的體檢。

三、急救措施

皮膚接觸:脫去被污染的衣著,用肥皂水和清水徹底沖洗皮膚。就醫。
眼睛接觸:提起眼瞼,用流動清水或生理鹽水沖洗。
吸入:迅速脫離現場至空氣新鮮處。保持呼吸道通暢。如呼吸困難,給輸氧。如呼吸停止,立即進行人工呼吸。就醫。
食入:飲足量溫水,催吐,洗胃。就醫。

滅火方法:消防人員必須佩戴氧氣呼吸器、穿全身防護服。滅火劑:乾粉、二氧化碳。禁止用水。



水(H2O)是由氫、氧兩種元素組成的無機物,在常溫常壓下為無色無味的透明液體。水是最常見的物質之一,是包括人類在內所有生命生存的重要資源,也是生物體最重要的組成部分。水在生命演化中起到了重要的作用。人類很早就開始對水產生了認識,東西方古代樸素的物質觀中都把水視為一種基本的組成元素,五行之一;西方古代的四元素說中也有水。

水的性質
水在常溫常壓下為無色無味的透明液體。在自然界,純水是非常罕見的,水通常多是酸、鹼、鹽等物質的溶液,習慣上仍然把這種水溶液稱為水。純水可以用鉑或石英器皿經過幾次蒸餾取得,當然,這也是相對意義上純水,不可能絕對沒有雜質。水是一種可以在液態、氣態和固態之間轉化的物質。固態的水稱為冰;氣態叫水蒸汽。水汽溫度高於374.2℃時,氣態水便不能通過加壓轉化為液態水。
在20℃時,水的熱導率為0.006 J/s•cm•K,冰的熱導率為0.023 J/s•cm•K,在雪的密度為0.1×103 kg/m3時,雪的熱導率為0.00029 J/s•cm•K。水的密度在3.98℃時最大,為1×103kg/m3,溫度高於3.98℃時,水的密度隨溫度升高而減小 ,在0~3.98℃時,水不服從熱脹冷縮的規律,密度隨溫度的升高而增加。水在0℃時,密度為0.99987×103 kg/m3,冰在0℃時,密度為0.9167×103 kg/m3。因此冰可以浮在水面上。
水的熱穩定性很強,水蒸氣加熱到2000K以上,也只有極少量離解為氫和氧,但水在通電的條件下會離解為氫和氧水。具有很大的內聚力和表面張力,除汞以外,水的表面張力最大,並能產生較明顯的毛細現象和吸附現象。純水有極微弱的導電能力,但普通的水含有少量電解質而有導電能力。
水本身也是良好的溶劑,大部分無機化合物可溶於水。
在-213.16℃,水分子會表現出現厭水性。

水的來源
地球是太陽系九大行星之中唯一被液態水所覆蓋的星球。地球上水的起源在學術上存在很大的分歧,目前有幾十種不同的水形成學說。有觀點認為在地球形成初期,原始大氣中的氫、氧化合成水,水蒸氣逐步凝結下來並形成海洋;也有觀點認為,形成地球的星雲物質中原先就存在水的成分。另外的觀點認為,原始地殼中硅酸鹽等物質受火山影響而發生反映、析出水分。也有觀點認為,被地球吸引的彗星和隕石是地球上水的主要來源,甚至現在地球上的水還在不停增加。

對氣候的影響
水對氣候具有調節作用。大氣中的水汽能阻擋地球輻射量的60%,保護地球不致冷卻。海洋和陸地水體在夏季能吸收和積累熱量,使氣溫不致過高;在冬季則能緩慢地釋放熱量,使氣溫不致過低。
海洋和地表中的水蒸發到天空中形成了雲,雲中的水通過降水落下來變成雨,冬天則變成雪。落於地表上的水滲入地下形成地下水;地下水又從地層里冒出來,形成泉水,經過小溪、江河匯入大海。形成一個水循環。
雨雪等降水活動對氣候形成重要的影響。在溫帶季風性氣候中,季風帶來了豐富的水氣,形成明顯的干濕兩季。
此外,在自然界中,由於不同的氣候條件,水還會以冰雹、霧、露水、霜等形態出現並影響氣候和人類的活動。

對地理的影響
地球表面有71%被水覆蓋,從空中來看,地球是個藍色的星球。水侵蝕岩石土壤,沖淤河道,搬運泥沙,營造平原,改變地表形態。
地球表層水體構成了水圈,包括海洋、河流、湖泊、沼澤、冰川、積雪、地下水和大氣中的水。由於注入海洋的水帶有一定的鹽分,加上常年的積累和蒸發作用,海和大洋里的水都是鹹水,不能被直接飲用。某些湖泊的水也是含鹽水。世界上最大的水體是太平洋。北美的五大湖是最大的淡水水系。歐亞大陸上的裏海是最大的鹹水湖。
地球上水的體積大約有 1 360 000 000 立方公里. 當中
海洋佔了的1 320 000 000立方公里(或97.2%)。
冰川和冰蓋佔了25 000 000立方公里(或1.8%)。
地下水佔了13 000 000立方公里(或者0.9%)。
湖泊,內陸海,和河裡的淡水佔了250 000 立方公里(或0.02%)。
大氣中的水蒸氣在任何已知的時候都佔了13 000立方公里(或0.001%)。

對生命的影響
地球上的生命最初是在水中出現的。水是所有生物體的重要組成部分。人體中水佔70%;而水母中98%都是水。水中生活著大量的水生植被等水生生物。
水有利於體內化學反應的進行,在生物體內還起到運輸物質的作用。 水對於維持生物體溫度的穩定起很大作用。

水的種類
不同的學科對水有著一些不同的稱呼:
根據水質的不同,可以分為:
軟水:硬度低於8度的水為軟水。
硬水:硬度高於8度的水為硬水。硬水會影響洗滌劑的效果,硬水加熱會有較多的水垢

飲用水根據氯化鈉的含量,可以分為:
淡水。
鹹水
此外還有:生物水:在各種生命體系中存在的不同狀態的水。
天然水:
土壤水:貯存於土壤內的水
地下水:貯存於地下的水
超純水:純度極高的水,多用於集成電路工業
結晶水:又稱水合水。在結晶物質中,以化學鍵力與離子或分子相結合的、數量一定的水分子。
重水的化學分子式為D2O,每個重水分子由兩個氘原子和一個氧原子構成。重水在天然水中占不到萬分之二,通過電解水得到的重水比黃金還昂貴。重水可以用來做原子反應堆的減速劑和載熱劑。
超重水的化學分子式為T2O,每個重水分子由兩個氚原子和一個氧原子構成。超重水在天然水中極其稀少,其比例不到十億分之一。超重水的製取成本比重水還要高上萬倍。
氘化水的化學分子式為HDO,每個分子中含一個氫原子、一個氘原子和一個氧原子。用途不大。

與水相關的化學反應
水的電離與溶液pH值
水是一種極弱的電解質,它能微弱地電離: H2O+H2O↔H3O++OH- 通常H3O+簡寫為H+
水的離子積 Kw=[H+][OH-]
25度時,Kw=1×10-14
pH=-log10([H+])
pH<7,溶液為酸性,pH=7,溶液為中性,pH>7,溶液為鹼性。

能溶於水的酸性氧化物或鹼性氧化物都能與水反應,生成相應的含氧酸或鹼。酸和鹼發生中和反應生成鹽和水。水在電流的作用下能夠分解成氫氣和氧氣。鹼金屬和水接觸會發生燃燒。
在催化劑的作用下,無機物和有機物能夠與水進行水解反應:
有機物的水解:有機物分子中的某種原子或原子團被水分子的氫原子或羥基(-OH)代換,例如乙酸甲酯的水解:
無機物的水解:通常是鹽的水解,例如弱酸鹽乙酸鈉與水中的H+結合成弱酸,使溶液呈鹼性:
此外,水本身也可以作為催化劑。

淡水短缺問題與對策
地球上水總儲量約為1.36x1018m3,但除去海洋等鹹水資源外,只有2.5%為淡水。淡水又主要以冰川和深層地下水的形勢存在,河流和湖泊中的淡水僅佔世界總淡水的0.3%。
世界氣象組織於1996年初指出:缺水是全世界城市面臨的首要問題,估計到2050年,全球有46%的城市人口缺水。對於水資源稀少的地區來說,水已經超出生活資源的范圍,而成為戰略資源,由於水資源的稀有性,水戰爭爆發的可能性越來越高。
為讓全世界都關心淡水資源短缺的問題,第47屆聯合國大會確定每年3月22日為世界水日。

水的利用
水是人類生活的重要資源,特別是農業需要大量水進行灌溉,人類文明的起源大多都在大河流域。早期城市一般都在水邊建立,以解決灌溉、飲用和排污問題。在人類日常生活中,水在飲用、清潔、洗滌等方面的作用不可或缺。
隨著科學技術的發展,人們興修水利,與水澇害和洪水等自然災害作斗爭。因此形成了一些專門與水有關的研究領域,如水力學,水文科學,水處理等,甚而產生了以水為生的產業水產業。
工業生產和化工生產大量使用這種廉價的原料。但未經處理的廢水的任意排放就會造成水污染。為了解決這一問題,污水的處理就變得十分必要。 (見水污染和污水處理。)

古代世界觀中的水
在文明的早期,人們開始探討世界各種事物的組成或者分類,水在其中扮演了重要角色。古代西方提出的四元素說中就有水;佛教中的四大也有水;中國古代的五行學說中水代表了所有的液體,以及具有流動、潤濕、陰柔性質的事物。

水崇拜
在人類的童年時期,對於水兼有養育與毀滅能力、不可捉摸的性情,產生了又愛又怕的感情,產生了水崇拜。通過賦予水以神的靈性,祈禱水給人類帶來安寧、豐收和幸福。
中國傳統上的龍王就是對水的神格化。凡有水域水源處皆有龍王,龍王廟、堂遍及全國各地。祭龍王祈雨是中國傳統的信仰習俗。

還有口語化
形容人沒有出息,或者是做事不夠好。
例如:你雜這么水的那。(你雜這么差勁那。)

高山流水
古代琴曲。戰國時已有關於高山流水的琴曲故事流傳,故亦傳《高山流水》系伯牙所作。樂譜最早見於明代《神奇秘譜(朱權成書於1425年)》,此譜之《高山》、《流水》解題有:「《高山》、《流水》二曲,本只一曲。初志在乎高山,言仁者樂山之意。後志在乎流水,言智者樂水之意。至唐分為兩曲,不分段數。至來分高山為四段,流水為八段。」兩千多年來,《高山》、《流水》這兩首著名的古琴曲與伯牙鼓琴遇知音的故事一起,在人民中間廣泛流傳。
《高山流水》取材於「伯牙鼓琴遇知音」,有多種譜本。有琴曲和箏曲兩種,兩者同名異曲,風格完全不同。
隨著明清以來琴的演奏藝術的發展,《高山》、《流水》有了很大變化。《傳奇秘譜》本不分段,而後世琴譜多分段。明清以來多種琴譜中以清代唐彝銘所編《天聞閣琴譜》(1876年)中所收川派琴家張孔山改編的《流水》尤有特色,增加了以「滾、拂、綽、注」手法作流水聲的第六段,又稱「七十二滾拂流水」,以其形象鮮明,情景交融而廣為流傳。據琴家考證,在《天聞閣琴譜》問世以前,所有琴譜中的《流水》都沒有張孔山演奏的第六段,全曲只八段,與《神奇秘譜》解題所說相符,但張孔山的傳?滓言鑫�哦危�笄偌葉嗑荽似籽葑唷?
另有箏曲《高山流水》,音樂與琴曲迥異,同樣取材於「伯牙鼓琴遇知音」。現有多種流派譜本。而流傳最廣,影響最大的則是浙江武林派的傳譜,旋律典雅,韻味雋永,頗具「高山之巍巍,流水之洋洋」貌。
山東派的《高山流水》是《琴韻》、《風擺翠竹》、《夜靜鑾鈴》、《書韻》四個小曲的聯奏,也稱《四段曲》、《四段錦》。
河南派的《高山流水》則是取自於民間《老六板》板頭曲,節奏清新明快,民間藝人常在初次見面時演奏,以示尊敬結交之意。這三者及古琴曲《高山流水》之間毫無共同之處,都是同名異曲。

典 故
傳說先秦的琴師伯牙一次在荒山野地彈琴,樵夫鍾子期竟能領會這是描繪「巍巍乎志在高山」和「洋洋乎志在流水」。伯牙驚曰:「善哉,子之心與吾同。」子期死後,伯牙痛失知音,摔琴斷弦,終身不操,故有高山流水之曲。
春秋時代,有個叫俞伯牙的人,精通音律,琴藝高超,是當時著名的琴師。俞伯牙年輕的時候聰穎好學,曾拜高人為師,琴技達到水平,但他總覺得自己還不能出神入化地表現對各種事物的感受。伯牙的老師知道他的想法後,就帶他乘船到東海的蓬萊島上,讓他欣賞大自然的景色,傾聽大海的波濤聲。伯牙舉目眺望,只見波浪洶涌,浪花激濺;海鳥翻飛,鳴聲入耳;山林樹木,鬱郁蔥蔥,如入仙境一般。一種奇妙的感覺油然而生,耳邊彷彿咯起了大自然那和諧動聽的音樂。他情不自禁地取琴彈奏,音隨意轉,把大自然的美妙融進了琴聲,伯牙體驗到一種前所未有的境界。老師告訴他:「你已經學了。」
一夜伯牙乘船游覽。面對清風明月,他思緒萬千,於是又彈起琴來,琴聲悠揚,漸入佳境。忽聽岸上有人叫絕。伯牙聞聲走出船來,只見一個樵夫站在岸邊,他知道此人是知音當即請樵夫上船,興致勃勃地為他演奏。伯牙彈起贊美高山的曲調,樵夫說道:「真好!雄偉而莊重,好像高聳入雲的泰山一樣!」當他彈奏表現奔騰澎湃的波濤時,樵夫又說:「真好!寬廣浩盪,好像看見滾滾的流水,無邊的大海一般!」伯牙興奮色了,激動地說:「知音!你真是我的知音。」這個樵夫就是鍾子期。從此二人成了非常要好的朋友。

五行之一。五行以腎屬水,故常腎、水並稱。此外還用於指病名或指水腫病的病理機制。
氫和氧的化合物。化學分子式為H2O 。在自然界 ,純水是罕見的,水通常是多酸、鹼、鹽等物質的溶液。純水是用鉑或石英器皿經過幾次蒸餾取得的。水是一種可以在液態 、氣態和固態之間轉化的物質。轉化的條件是溫度和壓力。標准大氣壓時,水的冰點為0℃、沸點為100℃。當水汽溫度高於374.2℃時 ,氣態水便不能轉化為液態水 。液態水的比熱容為 4.18 焦耳/(克·攝氏度),冰的比熱容約為 2.09焦耳/(克·攝氏度)。在1個標准大氣壓和100℃情況下,水的汽化熱為 2253.02 焦耳/克 ,在常溫常壓下為 2441.12 焦耳/克,水汽凝結成液態水時放出相同的熱量。在0℃和1個標准大氣壓時,冰的融解熱為333.146焦耳/克 ,當水凝成冰時放出相同的熱量。水從固態直接轉變為氣態時所吸收的熱量稱升華熱,升華熱等於汽化熱與融解熱之和。在20℃時,水的熱導率為0.006焦耳/( 秒·厘米·攝氏度 ),冰的熱導率為0.023焦耳/(秒·厘米·攝氏度),當雪的密度為0.1千克/升時 ,雪的熱導率為0.00029焦耳/(秒·厘米·攝氏度)。水的密度在3.98℃時最大 ,為1千克/升,溫度高於3.98℃時,水的密度隨溫度升高而減小 ,在0~3.98℃時,水一反熱脹冷縮的規律,密度隨溫度的升高而增加。水在0℃時,密度為0.99987千克/升 ,冰在0℃時,密度為0.9167千克/升 。水的熱穩定性很強,當水蒸氣加熱到2000K以上,也只有極小部分離解為氫和氧。凡是能溶於水的酸性氧化物或鹼性氧化物,都能與水反應,生成相應的含氧酸或鹼。純水有極微弱的導電能力。水的酸鹼性用pH值表示,天然水的pH值為6.8~8.5。水具有很大的內聚力和表面張力,除汞以外 ,水的表面張力最大,並能產生毛管現象和吸附現象。
水能調節氣候。大氣中的水汽能攔阻地球輻射量的 60%,保護地球不致冷卻。海洋和陸地水體在夏季能吸收和積累熱量,使氣溫不致過高,在冬季能緩慢地釋放熱量,使氣溫不致過低。水侵蝕岩石土壤,沖淤河道,搬運泥沙,營造平原,改變地表形態。水使地球產生生命,它是一切有機體的主要組成部分,全球動植物和40 億人體內含有約11200億噸水 。人類社會依賴水而生存發展。古代,人類對水取利避害,適應水而生存;近代,人類對水興利除害,興建工程,開發水利,控制水害;現代,隨著社會和生產的發展,地球上可資利用的水日趨短缺,水體受到污染,嚴重影響人類生存的環境,人類逐漸認識到水是一種重要資源和環境因素,從而在更高的水平上開始對水開展了新的興利避害活動。
世界氣象組織1996年初指出:缺水是全世界城市面臨的首要問題,估計到2050年, 世界2/3以上的人口將生活在城市,而全球有46%的城市人口缺水,必須平衡社會經濟發展和城市淡水供應管理二者之間的關系,進行水資源的儲存 、輸送和管理的大規模工程建設。
------------------------------------------------------------------
水是論壇上沒有太大價值的帖子的總稱,每一篇這樣的帖子都被稱為「水帖」,發水帖的行為稱為「灌水」,某些跟帖多而且都是水帖的帖子稱為「水樓」,經常占著位置不說話叫「潛水」。有的論壇喜歡高發帖量,鼓勵灌水,然而學術論壇一般是禁止灌水的





拼音:běn

部首:艹,部外筆畫:5,總筆畫:8 ; 繁體部首:艹,部外筆畫:5,總筆畫:11

五筆86&98:ASGF 倉頡:TDM

筆順編號:12212341 四角號碼:44234 UniCode:CJK 統一漢字 U+82EF

基本字義

● 苯

běnㄅㄣˇ

◎ 一種有機化合物,無色液體,有特殊的氣味,可從煤焦油,石油中提取,是多種化學工業的原料和溶劑。

漢英互譯

◎ 苯

benzene

English

◎ benzene; luxuriant

詳細字義

◎ 苯 běn

〈形〉

詞性變化

◎ 苯 běn

〈名〉

無色、揮發、可燃的毒性液體芳烴C 6 H 6 [benzene],遇火燃燒。商品是從煤的煉焦(如從焦爐氣的輕油中)或從某些石油餾份通過催化脫氫獲得,主要用於有機合成

常用片語

◎ 苯胺 běn』àn

[aniline] 一種油狀有毒液體胺C 6 H 5 NH 2 ,純品無色,可由(例如靛藍或煤的)毀餾製得,但是現在常用還原硝基苯或氯苯和氨高壓反應製得,主要用於有機合成(例如染料、葯物、橡膠、化學試劑和炸葯)和作溶劑;氨基苯

◎ 苯基 běnjī

(1) [phenyl]∶一價基C 6 H 5 —,由苯去掉一個氫原子而衍生

(2) [phenyl group]∶即C 6 H 5 —基

◎ 苯乙烯 běnyǐxī

[styrene] 分子式為C 6 H 5 CH=CH 2 的有機化合物,通常為無色而芳香的液體。用來製造塑料、合成橡膠等

康熙字典

【申集上】【艹字部】 苯

【唐韻】布忖切,音畚。【玉篇】苯䔿,草叢生也。【晉書·衛恆傳】禾卉苯䔿以垂穎。詳䔿字注。

[其他相關拓展]

苯(C6H6)在常溫下為一種無色、有甜味的透明液體,並具有強烈的芳香氣味。苯可燃,有毒,也是一種致癌物質。

化學上,苯是一種碳氫化合物也是最簡單的芳烴。它難溶於水,易溶於有機溶劑,本身也可作為有機溶劑。苯是一種石油化工基本原料。苯的產量和生產的技術水平是一個國家石油化工發展水平的標志之一。苯具有的環系叫苯環,是最簡單的芳環。苯分子去掉一個氫以後的結構叫苯基,用Ph表示。因此苯也可表示為PhH。

中文名稱: 苯

英文名稱: benzene

CAS No.: 71-43-2

分子式: C6H6

分子量: 78.11

理化特性

主要成分: 純品

外觀與性狀: 無色透明液體,有強烈芳香味。

熔點(℃): 5.5

沸點(℃): 80.1

相對密度(水=1): 0.88

相對蒸氣密度(空氣=1): 2.77

飽和蒸氣壓(kPa): 13.33(26.1℃)

燃燒熱(kJ/mol): 3264.4

臨界溫度(℃): 289.5

臨界壓力(MPa): 4.92

辛醇/水分配系數的對數值: 2.15

閃點(℃): -11

引燃溫度(℃): 560

爆炸上限%(V/V): 8.0

爆炸下限%(V/V): 1.2

溶解性: 不溶於水,溶於醇、醚、丙酮等多數有機溶劑。

主要用途: 用作溶劑及合成苯的衍生物、香料、染料、塑料、醫葯、炸葯、橡膠等。

健康危害: 高濃度苯對中樞神經系統有麻醉作用,引起急性中毒;長期接觸苯對造血系統有損害,引起慢性中毒。急性中毒:輕者有頭痛、頭暈、惡心、嘔吐、輕度興奮、步態蹣跚等酒醉狀態;嚴重者發生昏迷、抽搐、血壓下降,以致呼吸

E. 尿素中含氮量如何測定磷酸二銨中含氮量如何測定含磷量如何測定鉀肥中鉀含量如何測定

1、尿素中含氮量的測定方法2、磷酸二銨中含氮量測定方法現在主要是化學法甲醛法滴定,可參考國家標准,編號:GB 2442-1981

3、鉀肥中鉀含量的測定方法主要是四苯硼酸鈉沉澱法或者用儀器火焰光度計測定

具體只能用現有規范,下面是一個可參考的行業標准:

含氮量的測定方法
5.1 方法提要 樣品在加速劑的參與下,用濃硫酸消煮時,各種含氮有機化合物,經過復雜的高溫分解反應,轉化為銨態氮。鹼化後蒸餾出來的氨用硼酸吸收,以酸標准溶液滴定,計算全氮含量(不包括硝態氮)。
包括硝態和亞硝態氮的全氮測定,在樣品消煮前,需先用高錳酸鉀將樣品中的亞硝態氮氧化為硝態氮後,再用還原鐵粉使全部硝態氮還原,轉化成銨態氮。
5.2 適用范圍 本方法適用於全氮含量的測定。
5.3 主要儀器設備
5.3.1 消化管(與消煮爐、定氮儀配套),容積250mL。
5.3.2 定氮儀。
5.3.3 可控溫鋁錠消煮爐(升溫不低於400℃)。
5.3.4 半微量滴定管,10mL。
5.3.5 分析天平(精確到0.0001g)。
5.4 試劑
5.4.1 硫酸 [ρ(H2SO4)=1.84g•mL-1];
5.4.2 硫酸標准溶液 [c(1/2H2SO4)=0.01mol•L-1]或鹽酸標准溶液[c(HCl)=0.01mol•L-1]:配製及標定參見附錄1。
5.4.3 氫氧化鈉溶液 [ρ(NaOH)=400g•L-1 ]:稱取400g氫氧化鈉溶於水中,稀釋至1L。
5.4.4 硼酸—指示劑混合液。
硼酸溶液 [ρ(H3BO3)=20g•L-1]:稱取硼酸20.00g溶於水中,稀釋至1L。
混合指示劑:稱取0.5g溴甲酚綠和0.1g甲基紅於專用玻璃研缽中,加入少量95%乙醇,研磨至指示劑全部溶解後,加95%乙醇至100mL。使用前,每升硼酸溶液中加5mL混合指示劑,並用稀酸或稀鹼調節至紅紫色(PH約4.5)。此液放置時間不宜過長,如在使用過程中PH有變化,需隨時用稀酸或稀鹼調節。
5.4.5 加速劑:稱取100g硫酸鉀,10g硫酸銅(CuSO4•5H2O),1g硒粉於研缽中研細,必須充分混合均勻。
5.4.6 高錳酸鉀溶液[ρ(KMnO4)=50g•L-1 ]:稱取25g高錳酸鉀溶於500mL水,貯於棕色
瓶中。
5.4.7 硫酸溶液(1:1)。
5.4.8 還原鐵粉:磨細通過0.149mm孔徑篩。
5.4.9 辛醇。
5.5 分析步驟
5.5.1 稱樣:稱取通過0.25mm(60號篩)孔徑篩的風干試樣0.3g(含氮約1mg,精確到0.0001g)。
5.5.2 土樣消煮:①不包括硝態和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加入2.0加速劑,加水約2mL濕潤試樣,再加8mL濃硫酸,搖勻。將消化管置於控溫消煮爐上,用小火加熱,約200℃,待管內反應緩和時(約10~15min),加強火力至375℃。待消煮液和土粒全部變為灰白稍帶綠色後,再繼續消煮1h,冷卻,待蒸餾。在消煮試樣的同時,做兩份空的試驗,空白試驗除不加 外,其他操作和試樣一樣。
②包括硝態氮和亞硝態氮的消煮:將試樣送入乾燥的消化管底部,加1mL高錳酸鉀溶液,輕輕搖動消化管,緩緩加入2mL 1:1硫酸溶液,不斷轉動消化管,放置5 min後,再加入1滴辛醇。通過長頸漏斗0.5g (±0.01g) 還原鐵粉送入消化管底部,瓶口蓋上彎頸漏斗,轉動消化管,使鐵粉與酸接觸,待劇烈反應停止時(約5min),將消化管置於控溫消煮爐上緩緩加熱45 min(管內土液應保持微沸,以不引起大量水分丟失為宜)。停止加熱,待消化管冷卻後,加2.0g加速劑和8 mL濃硫酸,搖勻。按「不包括硝態和亞硝態氮的消煮」的步驟,消煮至試液完全變成黃綠色,再繼續消煮1 h,冷卻,蒸餾。在消煮試樣的同時,做兩份空白試驗。
5.5.3 氨的蒸餾和滴定:蒸餾前先按儀器使用說明書檢查定氮儀,並空蒸0.5 h洗凈管道。待消煮液冷卻後,向消化管內加入約60 mL水和35 mL 400 g•L-1氫氧化鈉溶液,搖勻,置於定氮儀上。於三角瓶中加入25 mL 20 g•L-1 硼酸—指示劑混合液,將三角瓶置於定氮儀冷凝器的承接管下,管口插入硼酸溶液中,以免吸收不完全。蒸餾5 min,用少量的水洗滌冷凝管的末端,洗液收入三角瓶內。每測完1個樣後用空試管裝清水清洗約2min。
用0.01 mol•L-1硫酸(或0.01 mol•L-1鹽酸)標准溶液滴定餾出液,由藍綠色至剛變為紅紫色。記錄所用酸標准溶液的體積。空白測定所用酸標准溶液的體積,一般不得超過0.4 mL。
5.6 結果計算
全氮(N),g •kg-1 = [c•(V-V0) ×0.014/m] ×1000
V0——滴定空白時所用酸標准溶液的體積,mL;
c——酸標准溶液的濃度,mol•L-1;
0.014——氮原子的毫摩爾質量;
m——風干試樣質量,g;
1000——換算成每千克含量。
平行測定結果用算術均值表示,保留小數點後兩位。
5.7 精密度 平行測定結果允許相差:
含氮量(g •kg-1) 允許絕對相差(g •kg-1)
>1 ≤0.05
1~0.6 ≤0.04
<0.6 ≤0.03

6.1 方法原理 在擴散皿中,用1.0mol/LNaOH水解,使易水解態氮(潛在有效氮)鹼解轉化為NH3,NH3 擴散後為H3BO3 所吸收。H3BO3 吸收液中的NH3 再用標准酸滴定,由此計算 中鹼解氮的含量。
6.2 主要儀器
擴散皿、半微量滴定管、恆溫箱。
6.3 試劑
6.3.1 1.0mol/LNaOH 溶液。稱取NaOH (化學純)40.OGg溶於水,冷卻後稀釋至1L。
6.3.2 20 g••L-1 H3BO3---指示劑溶液。同5.4.4。
6.3.3 0.005mo 1/L(1/2H2SO4)標准溶液。量取H2SO4(化學純)2.83mL,加蒸餾水稀釋至5000mL,然後用標准鹼或硼酸標定之,此為0.0200mo1/L(1/2H2SO4)標准溶液,再將此標准液准確地稀釋4倍,即得0.0050mo1/L(1/2H2SO4)標准液(注1)。
6.3.4 鹼性膠液。取阿拉伯膠40.0g 和水50mL在燒杯中熱溫至70—80 ℃ 攪拌促溶,約1h後放冷。加入甘油20mL和飽和K2CO3水溶液20mL,攪拌、放冷。離心除去泡沫和不溶物,清液貯於具塞玻瓶中備用。
6.3.5 FeSO4•7H2O粉末。將FeSO4•7H2O(化學純)磨細,裝入密閉瓶中,存於陰涼處。
6.3.6 Ag2SO4飽和溶液。存於避光處。
6.4 操作步驟(注2)
稱取通過18號篩(1mm)風干土樣2.00g,置於潔凈的擴散皿外室,輕輕旋轉擴散皿,使土樣均勻地鋪平。
取H3BO3—指示劑溶液2mL放於擴散皿內室,然後在擴散皿外室邊緣塗鹼性膠液,蓋上毛玻璃(注3),旋轉數次,使皿邊與毛玻璃完全黏合。再漸漸轉開毛玻璃一邊,使擴散皿外室露出一條狹縫,迅速加入1 mol/L NaOH溶液10.0mL,立即蓋嚴,輕輕旋轉擴散皿,讓鹼溶液蓋住所有 。再用橡皮筋圈緊,使毛玻璃固定。隨後小心平放在40±1℃恆溫箱中,鹼解擴散24±0.5h後取出(可以觀察到內室應為藍色)內室吸收液中的NH3用0.005或0.01mol/L(1/2H2SO4)標准液滴定(注4)。
在樣品測定的同時進行空白試驗,校正試劑和滴定誤差。
6.5 結果計算
鹼解氮(N)含量(mg/kg)=[ c(V-VO)×14.0] ×10³/m
式中:C¬¬——0.005mol/L (1/2H2SO4)標准溶液的濃度(mol•L-1);
V——樣品滴定時用去0.005mol•L-1(1/2H2SO4)標准液體積(mL);
V0——空白試驗滴定時用去0.005mol••L-1(1/2H2SO4)標准液體積(mL);
14.0——氮原子的摩爾質量(g/mol-l);M—樣品質量(g);
10³——換算系數。
兩次平行測定結果允許絕對相差為5mg•kg-1。
6.6 注釋
注1:如要配非常准確的0.005mol•L-1/2H2SO4 標准液,則可以吸取—定量的NH4+-N標准溶液,在樣品測定的同時,用相同條件的擴散法標定。例如,吸取5.00mg•kg-1NH4+-N標准溶液(含NH4+—N 0.250mg)放入擴散皿外室,鹼化後擴散釋放的NH3經H3BO3吸收後,如滴定用去配好的稀標准H2SO4 液3.51mL,則標准H2SO4的農度為:
c(1/2H2SO4) = [0.00025/(3.51×0.014)]= 0.00508mol/L
注2:如果要將 中NO3-—N 包括在內,測定時需加FeSO4.7H2 O粉,並以Ag2SO4為催化劑,使NO3-—N還原為NH3。而FeSO4 本身要消耗部分NaOH,所以測定時所用NaOH溶液的濃度須提高。例如2g土加1.07mol•L-1 NaOH 10mL 、FeSO4.7H2O 0.2g 和飽和Ag2SO4溶液0.1mL進行鹼解還原。
注3:由於膠液的鹼性很強,在塗膠液和洗滌擴散時,必須特別細心,慎防污染內室,造成錯誤。
注4:滴定時要用小玻璃棒小心攪動吸收液,切不可搖動擴散皿。

有效磷、速效鉀的測定

7.1 方法原理 M3浸提劑中的0.2mol/L HOAc—0.25 mol/L NH4NO3形成了pH2.5的強緩沖體系,並可浸提出交換性K、Ca、Mg、Fe、Mn、Cu、Zn等陽離子;0.015 mol/L NH4F—0.013 mol/L HNO3可調控P從Ca、Al、Fe無機磷源中的解吸;0.001mol/L EDTA可浸出螯合態Cu、Zn、Mn 、Fe等,因此,M3浸提劑可同時提取 中有效的磷、鉀、鈣、鎂、鐵、錳、銅、鋅、硼等多種營養元素。
7.2 試劑與儀器
7.2.1 試劑
7.2.1.1 硝酸銨
7.2.1.2 氟化銨
7.2.1.3 冰乙酸
7.2.1.4 硝酸
7.2.1.5 乙二胺四乙酸
7.2.1.6 酒石酸銻鉀
7.2.1.7 鉬酸銨
7.2.1.8 硫酸
7.2.1.9 抗壞血酸
7.2.1.10 磷酸二氫鉀
7.2.1.11 M3貯備液[c(NH4F)=3.75 mol/L+ c(EDTA)=0.25 mol/L]:稱取氟化銨(分析純)138.9g溶於約600mL去離子水中,搖動,再加入乙二胺四乙酸(EDTA)73.1g,溶解後用去超純水定容至1000mL,充分混勻後貯存於塑料瓶中(在冰箱內可長期使用),可供5000個樣次使用,如工作量不大,可按比例減少貯備液數量。
7.2.1.12 M3浸提劑:用1000mL或2000mL量筒量取2000mL去離子水,加入5000mL塑料桶中,稱取硝酸銨100.0g,使之溶解,加入20.0mL M3貯備液,再加入冰乙酸(即17.4 mol/L)57.5 mL和濃HNO3 (HNO3,68%~70%,分析純)4.1mL,用量筒加水稀釋至5000mL,充分混合均勻,此液pH應為2.5±0.1(貯存於塑料瓶中備用,可供100個樣次使用)。
7.2.1.13 鉬銻抗試劑:稱取酒石酸銻鉀[K(SbO)C4H4O6•1/2H2O,分析純]0.5g溶於100mL
去離子水,配製成0.5%的溶液。另稱取鉬酸銨[(NH4)6 Mo7O24•4H2O,分析純]10.0g溶於450mL水中,慢慢地加入153 mL濃H2SO4(分析純),邊加邊攪動。再將100mL 0.5%酒石酸銻鉀溶液加入鉬酸銨溶液中,最後加水至1000mL,充分搖勻,貯存於棕色瓶中,此為鉬銻貯備液。
臨用前(當天)稱取抗壞血酸(即維生素C,分析純)1.5g溶於100mL鉬銻貯備液中,混勻,此為鉬銻抗試劑,有效期24h,如保存於冰箱中則有效期較長。上述試劑中H2SO4的濃度為5.5 mol/L(1/2 H2SO4),鉬酸銨為1%,酒石酸銻鉀為0.05%,抗壞血酸為1.5%。
7.2.1.14 磷工作溶液[(P)=5mg/L]:稱取105℃烘乾2h的磷酸二氫鉀(KH2PO4,分析純)0.2195g,置於400mL去離子水中,加入濃H2SO45mL(防長黴菌,可使溶液長期保存),轉入1000mL容量瓶中,用水定容。此溶液為50 mg/L P標准溶液。准確吸取此貯備溶液25.00mL,稀釋至250mL,即為5 mg/L P標准溶液(此稀溶液不宜久存)。
7.2.1.15 K貯備液[(K)=100mg/L]:准確稱取氯化鉀KCl,105~110℃乾燥2h,分析純)01907g,溶於去離子水中,定容至1000 mL,搖勻後待用。
7.2.2 儀器
7.2.2.1 分光光度計。
7.2.2.2 火焰光度計。
7.2.2.3 恆溫振盪機(溫度控制25±℃)。
7.2.2.4 原子吸收分光光度計。
7.3 浸提步驟
用量樣器量取5.00 mL風干 (過2mm尼龍篩),同時稱量並記錄其質量,於100mL塑料瓶中,加入50.0mL M3浸提劑,蓋嚴後於往復振盪機(振盪強度為180r/min)上振盪5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
另一種方法是:選用攪拌方法代替振盪提的方法:用量樣器量取5.00mL風干 (過2mm尼龍篩),同時稱量並記錄其質量,用加液器加入50.0mL M3浸提劑,用攪拌器攪拌5 min。然後用干濾紙過濾,收集濾液於50mL塑料瓶中。整個浸提過程應在恆溫條件下進行,溫度控制在25±1℃。
7.4 浸出液中有效養分的定量
7.4.1 M3有效磷的測定
准確吸取2.00~10.00mL 浸出液(依肥力水平而異)於50mL容量瓶中,加水至約
30mL,加入5.00mL鉬銻抗試劑顯色,定容搖勻。顯色30 min後,在880nm處比色。如冬季氣溫較低時,注意保持顯色時溫度在150C以上,最好在恆溫室內濕色,以加快顯色速度。測定的同時做空白校正。
工作曲線:准確吸取5mg/L P標准溶液0、1.00、2.00、 4.00 、6.00 、8.00mL,分別放入50 mL容量瓶中,加水至約30 mL,加入5.00 mL鉬銻抗試劑顯色,定容搖勻。顯色30min後,在880nm處比出色。
結果計算:
M3-P,mg/L(或mg/kg)=[ρ(P)×V×D]/ [V0或(M)]
式中:
ρ——待測液中P濃度,μg/mL;
V——顯色液體積,50mL;
D——分取倍數,浸出液體積/吸取濾液體積;
V0(或M)——土樣體積,mL或土樣質量,g。
7.4.2 M3速效鉀的測定
M3浸出液中鉀可直接用火焰光度計測定。
工作曲線:准確吸取100 mg/L K標准貯備液0、1.00、2.50、5.00、10.00、15.00、20.00mL,分別放入50 mL容量瓶中,用M3浸提劑定容,搖勻,即得0、2.00、5.00、10.00、20.00、30.00、40.00μg/mL K標准系列溶液。
結果計算:
M3-K,mg/L(或mg/kg)=[ρ(K)×V]/[V0(或M)]
式中:ρ(K)——待測液中K濃度,μg/mL;
V——浸提劑體積,mL;
V0(或M)——土樣體積,mL或土樣質量,g。
7.5 注釋
7.5.1 為了避免F—以CaF2形態沉澱的再吸附,應將浸提液劑的 pH控制在2.9 以下。配製Mehlich3浸提劑時應盡量准確,這樣可不必每次都測定pH。因為溶液中的F容易對玻璃電極或復合電極造成損壞。
7.5.2 玻璃皿不會造成污染,但橡皮塞尤期是新塞子會嚴重引起Zn的污染,建議最好使用塑料瓶盛試液。如果同時測定大量與微量元素,玻、塑器皿最好事先在0.2% A1Cl3 •6H2O
或8%~10% HC1溶液中浸泡過夜,洗凈後備用,以防微量元素的污染。
7.5.3 M3法的 浸出液常帶顏色,有粉紅色、淡黃色或橙黃色,深淺不一,因土而異。粉紅色可能與Mn含量高或浸提出的某些有機物有關,黃色可能與Fe含量高或有機物質有關。溶液顏色可加入活性C脫色,但會對Zn造成污染,故以不加活性C為宜。
7.5.4 注意浸提溫度的控制。冬季氣溫較低時,可採取一些保溫措施。
7.5.5 比色液中NH4+ 和EDTA濃度時對P比色均有干擾,NH4+ 多時生成藍色沉澱,EDTA多時不顯色或生成白色沉澱(EDTA酸)。試驗表時,在一般鉬銻搞比色法的條件下NH4+ 不得大於0.01 mol/L)。
7.5.6 研究發現,若在工作曲線中分別加入一定量的M3浸提劑,顯色後很快會在較高P濃度的各地出現沉澱,從而影響測定結果的准確性.故選用空白校正的方法消答試劑的誤差,即:根據未知樣品所吸取浸出的體積,相應地做空白測定(不加顯色劑),再從未知樣品的結果中扣除空白值。
7.5.7 若浸出液中鉀的濃度超出測定范圍,應用M3浸提劑稀釋後再測定。
7.5.8 使用AAS法測定有效Ca, Mg時,浸出液需要用M3浸提劑適當稀釋1~20倍後方可測定,可根據具體情況確定稀釋倍數。
7.5.9 如果條件具備,可直接用電感耦合等離子發射光譜儀(ICP—AES)進行測定,而不需要稀釋;而且在同一浸出液中可同時測定P、K、Na、Ca、Mg、Fe、 Mn、CU、Zn、B等多種元素。
7.5.10 使用AAS法測定有效微量元素Fe、Mn、CU、Zn時,浸出液需要M3浸提劑適當稀釋後方可測定。一般測Fe時,可稀釋1~10倍;測Mn時,可稀釋2~10倍;測CU、Zn一般不需要稀釋。可根據具體情況確定稀釋倍數。

F. 吸收式製冷系統性能有哪些影響因素

(1)不凝性氣體對製冷機性能的影響
"真空是溴化鋰吸收式製冷機的第一生命",溴化鋰吸收式製冷機是在高真空狀態下工作的製冷設備,有些機組的製冷性能不穩定或達不到設計能力的一個主要原因,就是機組真空問題沒有解決好。
對於溴化鋰吸收式製冷機來講,真空度的高低實質上是機組內不凝性氣體被抽除多少的反映。(4000m高空,水88℃沸騰;8.04mmHg壓力下,水8℃沸騰)
機組系統內不凝性氣體的來源大致如下:

機組啟動時,機組內空氣未完全抽盡;空氣通過管路連接處、焊縫、閥門等處泄漏到機組內;在機組內,由於溴化鋰溶液對金屬材料的腐蝕而產生的氫氣。機組內存在不凝性氣體,主要影響吸收過程,使傳熱、傳質減弱。外部漏入製冷機的空氣與製冷機內因金屬表面腐蝕所釋放的氫氣等均屬不凝性氣體。這些氣體都不能凝結,也不會被溴化鋰溶液吸收。當它們附著於冷凝器的傳熱管表面時,增加了傳熱熱阻,提高了冷凝壓力,使發生器壓力隨之增大,減小了發生器的產汽量,使製冷機的製冷量下降。不凝性氣體存在於吸收器中時,減少了吸收過程中水蒸氣被吸收的質推動力,使傳質系數減小,傳質過程惡化,製冷量明顯下降。不凝性氣體積聚越多,製冷量下降越厲害,有時甚至會達到不能製冷的地步。

(2)溶液循環量對製冷機性能的影響
溶液循環量的多少對機組的經濟運轉非常重要。對於額定的加熱蒸汽壓力、冷卻水溫度和冷媒水出口溫度,溴化鋰吸收式製冷機有與之對應的溶液循環倍率,從上式可看出,在此循環倍率下,進發生器的稀溶液量與製冷量成正比。若調整不當,會出現以下兩種情況。
(一)稀溶液量過大若進入發生器的稀溶液量過大,則發生器里加熱蒸汽的熱量大部分用來提高稀溶液的溫度,產汽量降低,從而使發生器中溶液的平衡濃度下降,同時使通向吸收器的濃溶液流量增大,加大了吸收器的放熱量,提高了噴淋溶液的溫度,降低了噴淋溶液的濃度,使噴淋溶液的吸收效果惡化,吸收能力下降。產汽量降低使製冷量下降,濃溶液濃度降低使性能系數下降。
(二)稀溶液量過小若進入發生器的稀溶液量過小,其結果與上述情況相反。但濃溶液出口濃度的增加,將會產生濃溶液結晶的危險。一旦發生結晶,吸收器吸收效果將惡化,蒸發器不可能發揮其製冷效果,使製冷機處在局部負荷下運行,這是很不利的。因此,溶液循環量的調節是否合適,對溴化鋰吸收式製冷機的經濟運行是十分重要的。另外,吸收器噴淋量加大可以適當地改善吸收器的吸收效果,但卻增加了吸收器泵的電耗。反之,若吸收器噴淋量太小,則會影響吸收效果。所以必須調整噴淋量到一個合適的值。蒸發器噴淋量的影響結果與吸收器噴淋量的影響結果相類似。
(3)冷劑水中溴化鋰的含量對製冷機性能的影響
溴化鋰吸收式製冷機因發生器容汽空間的垂直高度太小,冷劑蒸汽的流速太高或擋液板結構不良,或者由於加熱蒸汽壓力突然升高,稀溶液濃度較低,溶液的pH值太大,冷卻水溫度太低等原因而造成發生器中溶液強烈沸騰,使發生器中的溴化鋰液滴被冷劑蒸汽帶入冷凝器;吸收器溴化鋰液滴也有可能濺入蒸發器,造成冷劑水污染。可以從蒸發器液囊視鏡觀察冷劑水的顏色,發現冷劑水帶黃色時,有污染之疑。這時可通過冷劑水取樣閥取樣,測定冷劑水的密度,若測得的密度不大於1.04kg/l時,一般不作處理;當大於1.04kg/l時,可通過冷劑水旁通閥使冷劑水再生,直至冷劑水的密度達到合格。
冷劑水被污染後,隨著機組運行時間的增長,冷劑水中溴化鋰的含量會越來越多,試驗表明,當冷劑水的密度大於1.1時,製冷量將明顯下降。
這是因為冷劑水含溴化鋰後會呈現稀溶液狀態。根據拉烏爾定律可知:同一溫度下溴化鋰水溶液的飽和蒸汽壓力總是低於純水的蒸汽壓力,由於溶液周圍冷劑蒸汽壓力的下降,使吸收器中傳質推動力減小,吸收過程減弱,造成冷媒水出口溫度上升,製冷機的製冷量下降。

(4)表面活性劑對製冷機性能的影響
為了提高溴化鋰吸收式製冷機中傳熱,傳質效果,提高製冷機的性能,目前廣泛地添加一定的有機物質----表面活性劑,在溴化鋰溶液中添加0.1%的辛醇,可以使製冷量提高10%~15%。在溴化鋰溶液中常用的表面活性劑有異辛醇或正辛醇,它們在常壓下均為無色有刺激性氣味的油狀液體,幾乎不能溶解於溴化鋰溶液。在加熱蒸汽壓力較高的兩效溴化鋰吸收式製冷機中,由於加熱溫度較高,辛醇在較高溫度下要分解,可改用氟化醇。它們的強化機理如下:
(一)提高吸收效果
添加表面活性劑後提高了吸收效果。這是因為添加辛醇後,溶液的表面張力大幅度下降,使溶液與水蒸氣的結合能力增強,這意味著吸收效率的提高;另外,添加辛醇後,溴化鋰水溶液的分壓力降低,吸收推動力增大,提高了吸收效果。
(二)增強傳熱
添加表面活性劑後,冷凝器由膜狀凝結變為珠狀凝結,提高了冷凝效果,添加辛醇後起到了改善凝結表面的作用。由於辛醇可以使銅管受熱面完全潤濕,含有辛醇的水蒸汽與銅管受熱面接觸後,隨後形成一層液膜,水蒸氣在辛醇液膜上呈現珠狀凝結。珠狀凝結的放熱系數可比膜狀凝結提高兩倍以上,因而提高了冷凝器的傳熱效果。一般添加0.1%~0.3%已能滿足要求。
辛醇的密度較小,它總是漂浮於吸收器液囊的液面上。為使辛醇能隨著溶液的噴淋進入吸收器的傳熱面,在吸收器液面上設有沖辛醇管,沖擊辛醇,使之與溶液混合,然後通過噴淋溶液把它帶至吸收器傳熱管。如不足時可予以補充。


(5)水側污垢系數對製冷機性能的影響
溴化鋰吸收式製冷機運行一段時間後,由於各種因素的影響,傳熱管內壁上逐漸生成一層水垢,增加了傳熱熱阻,使傳熱惡化。這時冷凝器壓力和吸收器壓力都增加,從而降低了濃度差,加大了溶液的循環倍率f,導致製冷量下降。污垢系數是表示這種污垢所引起的熱阻大小的參數,污垢系數越大,熱阻越大,傳熱效果越差,製冷量越小。
通常來說,新機組的製冷量比設計值高8%~10%,這是因為新溴化鋰吸收式製冷機的污垢系數近似等於零。但為了保證在長期運行以後,製冷量仍可達到設計要求,在運行期間應注意水質分析,若發現水質較差,則應及時採取水處理措施,例如對水中的雜質進行適當的化學處理,並定期用機械或化學方法清理傳熱面。另外,製冷機在設計時,應根據所用水的水質情況選取適當的污垢系數進行傳熱計算。各種情況的污垢系數可在有關書籍及手冊中查得。通常在水質比較好的情況下,可取0.0001m℃/W,如果水質很差,污垢系數甚至可達0.0004~0.0006m℃/W。
因此,我們必須了解製冷機的這種運轉性能和研究它們的變化規律。根據這種變工況的特性,用戶能夠按自己的具體條件恰當地選擇製冷機;能夠確定和選擇製冷機的調節、控制方案,使製冷機在最合理的情況下工作。這種調節和控制應是自動化的,它不僅可以減少操作人員的勞動強度,而且可以准確地保證製冷機在規定的工況下運行,從而降低運轉費用,防止運轉事故的發生。

G. 無醇水性燃料是什麼

無醇水性燃料是以普通化工品為主要原料和輔料混合配置的燃料,以液體的形式存在。無醇水性燃料比液化氣、柴油等燃料揮發低,對比天然氣、液化石油氣也不容易泄漏。此外,無醇水性燃料在無氣壓的方法下儲存,比車用汽油、液化石油氣更加安全。

在相同熱值下,無醇水性燃料比柴油、汽油劃算30%,比燃氣劃算10%上下,綜合熱效達到60%,對比別的燃料能源利用率高出許多。

在實際應用中,無醇水性燃料低碳環保,而且加工過程無有機廢氣污水廢料等「工業三廢」排污。

無醇水性燃料氧氣含量高,點燃無煙,燃燒充足,無排氣管冒黑煙、無積碳、不會熏黑底鍋、無殘液沉渣的剩餘,點燃的工業廢氣排放比液化石油氣低80%左右。

無醇水性燃料經政府權威機構檢驗各類數據都能達到行業標准,是可再生能源,製作原料來源廣,價格低,可用性普遍。

H. 有機物在正辛醇和水的分配系數 為什麼要用被水飽和的正辛醇

正辛醇-水分配系數Kow
是平衡狀態下,化合物在正辛醇相中的濃度與水相中(非離解形式)的濃度的比值。
Kow的作用包括:能夠衡量化合物脂溶性大小的重要理化性質;
與化合物的溶解性,生物富集系數及土壤,沉積物吸附系數相關;
決定化合物在環境中的遷移、分配、歸趨;
與化合物在體內的吸收、分配、代謝和排泄(ADME)相關;
決定化合物在生物組織中的活性(葯物)和毒性(風險評價);
溶質定量結構-保留關系(QSRR)的研究。
獲取Kow數據的方法有:一、搖瓶法/慢攪法—不適合疏水性較大的物質;
二、計演算法—不適合結構復雜的化合物;
三、高效液相色譜法—方法簡單,但准確性和適用范圍有所欠缺。
目前Kow數據的研究問題是實驗數據稀缺,繁瑣費時、部分結果的准確性難以評估;
軟體計算似乎萬能,得來容易,但各種計算方法相差大、風險大;
權威國際組織或資料庫推薦數據數量少,僅限於簡單化合物;
研究報道相當混亂,研究者各取所需、挑有利於自己的用。
Kow的RP-HPLC測定方法基於正辛醇-水分配系數Kow與RP-HPLC保留值之間的線性關系,簡單快速、重現性好、所需樣品量少、無需定量。
該方法保留時間測定準確性決Kow測定的准確性和模型化合物Kow的可靠性,需要保留時間兩點校正法(DP-RTC)提高Kow測定準確性,盡量採用具有OECD推薦Kow數據的模型化合物。

閱讀全文

與正辛醇飽和的超純水相關的資料

熱點內容
污水提升器電粉碎馬桶 瀏覽:918
水溶性樹脂會發臭嗎 瀏覽:550
凈水器可以兩條超濾嗎 瀏覽:50
一元凈化器是什麼 瀏覽:155
水壺里的水垢白醋 瀏覽:845
等離子料台去渣機 瀏覽:826
廢水比堵了怎麼修 瀏覽:790
塑料顆粒用的過濾網片 瀏覽:285
西安工農業廢水達標率 瀏覽:363
徐州哪裡有污水池集氣罩生產廠家 瀏覽:328
反滲透凈水器怎麼維護 瀏覽:8
網吧電腦回在家可以用吧 瀏覽:579
飲水機濾芯多少公里換一次 瀏覽:820
超濾出水要求 瀏覽:316
為什麼電子產品要用純水 瀏覽:733
沈陽污水處理設備機械廠 瀏覽:740
海水反滲透法的優點 瀏覽:284
ps怎麼過濾邊緣色 瀏覽:554
污水過濾膜學名叫什麼 瀏覽:860
為什麼美的凈水器有水垢 瀏覽:898