A. 岩石軟化性的介紹
岩石軟化性是岩石浸水後力學強度降低的特性。它主要取決於岩石的礦物成分和孔隙性。其定量指標是軟化系數。軟化系數愈小,軟化性愈強。軟化系數小於0.75的岩石稱軟化岩石。
B. 岩石對工程性質的影響
影響岩石工程性質的因素,可歸納為兩個方面:一是內因,即岩石自身的內在條件,如組成岩石的礦物成分、結構、構造等;二是外因,即來自岩石外部的客觀因素,如氣候環境、風化作用、水文性質等。因此,岩石的礦物成分、結構、構造,以及岩石遭受風化作用、水的作用等,都直接影響岩石的工程性質。
1.礦物成分
組成岩石的礦物成分對岩石的工程性質具有直接影響。單礦岩與復礦岩比較,前者較後者耐風化。例如石英岩(單礦岩)主要礦物為石英,其平均抗壓強度可達250MPa,而花崗岩(復礦岩)除含有石英外,還含有片狀雲母和中等解理的長石,其平均抗壓強度為200MPa,可見花崗岩的強度較石英岩低。
礦物的硬度對岩石抗壓強度有密切關系。如石英岩和大理岩,由於石英岩中的石英要比大理岩中方解石的硬度高得多,故石英岩的抗壓強度為150~300MPa,而大理岩的抗壓強度為100~250MPa。
礦物的密度決定著岩石的密度,含鐵鎂質礦物多的岩石的密度要比含硅鋁質礦物多的岩石密度大。例如輝長岩的主要礦物成分是輝石和基性斜長石,而花崗岩的主要礦物成分是長石和石英,故輝長岩的平均密度(3.28g/cm3)要比花崗岩的平均密度(2.65g/cm3)大得多。
再從組成岩石的礦物顏色而論,暗色礦物(橄欖石、輝石、角閃石和黑雲母)的抗風化能力要比淺色礦物(石英、長石、白雲母)的抗風化能力弱。其中按照原生礦物對化學風化的反應來看,石英、白雲母、石榴子石等為穩定的礦物;角閃石、輝石、正長石、酸性斜長石等為稍穩定的礦物;基性斜長石、黑雲母、黃鐵礦等為不穩定的礦物。因此,一般而言,在岩漿岩中酸性岩比基性岩的抗化學風化能力高;沉積岩抗風化能力要比岩漿岩和變質岩高。
2.結構
岩石的內部結構對岩石的力學強度有極大的影響。按岩石的結構特徵,可將岩石分為結晶聯結的岩石和膠結聯結的岩石兩大類。
(1)結晶聯結
結晶聯結的岩石,如大部分的岩漿岩、變質岩和一部分沉積岩等,其晶粒直接接觸,結合力強,孔隙度小,吸水率低。在荷載作用下變形小,彈性模量大,抗壓強度高。例如,閃長岩、輝長岩、玄武岩、石英砂岩等的抗壓強度均在150~300MPa之間。
結晶結構的晶粒大小對強度有明顯的影響。通常是細晶岩石的強度要高於同成分的粗晶岩石的強度,因細晶具有較高的結合力,故強度高。例如細晶花崗岩的強度可達180~200MPa,而粗晶花崗岩的強度只有120~140MPa;具有微晶至隱晶質的玄武岩,比中粗晶粒的基性岩強度更高;緻密的結晶灰岩要比粗晶大理岩的強度高2~3倍。
(2)膠結聯結
主要是指以沉積岩的碎屑結構為膠結物充填膠結而成的聯結形式。膠結聯結的岩石,其強度和穩定性取決於膠結物的成分和膠結的形式,以及碎屑成分。
硅質膠結的岩石的強度和穩定性,遠遠要高於泥質膠結的岩石。
膠結聯結的形式一般可分為基底式膠結、孔隙式膠結和接觸式膠結三種形式。
◎基底式膠結:是一種碎屑物散布於膠結物中,彼此不接觸的聯結形式。這種聯結形式形成的結構孔隙度小,其物理力學性質完全取決於膠結物的性質。如果膠結物與碎屑物同為硅質或鈣質,就有可能經重結晶作用轉化為結晶聯結,其強度和穩定性也隨之增高。
◎孔隙式膠結:是指碎屑顆粒互相直接接觸,膠結物充填於碎屑之間的孔隙中的一種聯結形式。其強度和穩定性取決於碎屑物和膠結物的成分。一般而言,孔隙式膠結是強度和穩定性較好的聯結形式。
◎接觸式膠結:是指在碎屑顆粒的接觸處,由少量的膠結物將其彼此結合起來的一種聯結形式。這種聯結形式形成的結構的孔隙度大、容重小、吸水率高,其強度和穩定性很差。
3.構造
構造對岩石工程性質的影響,可從兩個方面來分析:
一方面,某些構造體現了礦物成分在岩石中分布的極不均勻性,如片理構造、流紋構造等。這些構造能使一些強度低、易風化的礦物常成定向富集,或呈條帶狀分布,或者呈局部聚集體。當岩石受荷載作用時,首先從這些軟弱的部位發生變化,而影響岩石的物理力學性質。
另一方面,在礦物成分均勻的情況下,由於某些構造,如層理、節理、裂隙和各種成因的孔隙,使岩石結構的連續性與整體性受到一定程度的影響或破壞,從而使岩石的強度和透水性在不同方向上發生明顯的差異。一般情況下,垂直層面的抗壓強度大於平行層面的抗壓強度;平行層面的透水性大於垂直層面的透水性;垂直層理的變形模量小於平行層理的變形模量。
如果上述兩個方面的情況同時存在,則岩石的強度和穩定性就會明顯呈疊加性地降低。
4.風化作用
岩石在自然力的作用下發生物理化學變化的過程,稱為岩石風化。岩石風化使岩體的工程地質特徵也發生改變,其表現如下:
(1)岩體的完整性受到破壞。風化作用使岩體原生裂隙擴大,並增加新的風化裂隙,導致岩體破碎為碎塊、碎屑,進而分解為黏粒,從根本上改變了岩體的物理力學性質。
(2)岩石的礦物成分發生變化。岩石在化學風化過程中,原生礦物經化學反應,逐漸分化為次生礦物。隨著化學風化的發展,層狀礦物(如高嶺石、蒙脫石之類的黏土礦物等)和鱗片狀礦物(如綠泥石、絹雲母之類的)不斷增多,導致岩體的強度和穩定性大為降低。
(3)風化作用改變了岩石的水理力學性質。風化可使岩石具有一些黏性土的特性,諸如親水性、孔隙性、透水性和壓縮性都極為明顯地增大,從而大大降低了岩石的力學強度,抗壓強度也可由原來的幾十至幾百兆帕,降低到幾兆帕。但當風化劇烈、黏土礦物增多時,滲透性又趨於降低。
5.水化作用
任何岩石被水飽和後的強度都會降低。這是因為水能沿著岩石極細微的孔隙、裂隙浸入,在其礦物顆粒間向深部運移,從而降低了礦物顆粒彼此之間的聯結力,以及岩石的內聚力和內摩擦力,使岩石的抗壓、抗剪強度受到影響。例如,石灰岩和砂岩被水飽和後,其極限抗壓強度會降低25%~45%;又如花崗岩、閃長岩和石英岩等一類抗壓強度很高的岩石,經水飽和後,其極限抗壓強度也會降低10%左右。這實質上是岩石軟化性的表現。
水對岩石強度的影響,在一定限度內是可逆的,即被水飽和的岩石,再經乾燥後其強度仍可恢復。但是,如果發生干濕循環,由於岩石成分和結構發生了改變,那麼強度降低就轉化為不可逆過程。
C. 軟岩崩解機理分析
岩石浸水之後,引起其強度降低的性質稱為水對岩石的「軟化作用」。岩石抵抗水的軟化作用的性能主要取決於岩石中親水性礦物和易溶性礦物的含量以及岩石中孔隙與微裂隙的發育程度。親水性或可溶性礦物的含量愈多,岩石中的孔、裂隙愈發育,岩石愈易軟化、崩解。
通過對泥化夾層岩組X射線粉晶衍射分析測試結果(見表3-2)可知,其成分以黏土礦物為主(含84%~92%),其餘為石英、長石、方解石等,由於伊利石等黏土礦物顆粒較小,親水性很強,當水進入岩石的孔隙、裂隙中時,細小岩粒的吸附水膜便會增厚,引起岩石體積的膨脹。由於這種體脹是不均勻的,使得岩石內產生不均勻的應力,部分膠結物會被稀釋、軟化或溶解,加之大多都含先存裂隙及微裂縫(見表4-3),於是導致岩石顆粒的碎裂解體。如伊利石與水發生物理化學反應引起軟岩膨脹,可使原體積增加50%~60%。
下面從兩個方面來分別研究幾種典型岩組的崩解機理。
1.泥質含量與崩解特性的關系
泥質岩(泥化夾層與炭質頁岩岩組)遇水後,宏觀裂隙的增生擴張和崩解軟化,是同在水的作用下軟岩的物質組成、微結構與微孔隙的變化緊密相關的,崩解軟化是軟岩內部微觀結構和微孔隙的宏觀反映。從圖4-2a可以看出,不同岩組泥質含量對其崩解度的影響,從泥化夾層、炭質頁岩到泥質粉砂岩,其含泥量依次減少,其崩解性也愈來愈差。圖4-2b為所有軟岩與泥質含量的關系曲線,得對數關系式為S=70ln(Wm)-215。炭質頁岩與泥化夾層試樣崩解現象均極為明顯,而且崩解速度很快。由前述知6#剖面,即進水口發育L10層間剪切破碎帶內含泥化夾層、炭質頁岩佔50%以上,遇水極易崩解,嚴重影響進水口邊坡的穩定性,在工程當中應該引起重視。
圖4-2 泥質含量對崩解度的影響曲線
2.循環崩解次數與崩解特性的關系
炭質頁岩與泥化夾層岩組大部分試樣已100%崩解,其崩解物由碎屑、角礫及大小不一的碎塊組成,崩解穩定後取崩解物進行顆粒篩分,篩分試驗結果如圖4-3所示,從圖中看出不同岩性,顆粒大小分配也有明顯的差異,炭質頁岩與泥化夾層試樣曲線類似,得出小於0.5mm粒徑的顆粒含量佔20%~30%,含量較高,即由岩石轉化成土,無法多次循環崩解,只進行一次循環。而泥質粉砂岩顆粒大多大於16mm,粒徑相對較大。顆粒大小的不同,也說明其崩解的差異性。
圖4-3 軟岩崩解物粒度分析曲線圖
圖4-4 循環崩解次數與崩解度的關系曲線
因此對於循環次數與崩解特性的分析,只針對煤和泥質粉砂岩岩組,如圖4-4所示。
從關系曲線圖4-4a中可以看出,煤岩組試樣在經過第二次循環崩解以後,崩解度均為降低的趨勢,第3次崩解後,除2#與5#試樣有明顯增加外,其餘試樣仍為遞減。2#與5#試樣由於前兩次在重復試驗中未崩解,而在第3次試驗時達到崩解狀態,說明煤在反復的乾燥與潮濕的環境條件下,也會發生不同程度的崩解。
第一次將1#-2泡水,崩解現象不明顯,有少量碎屑脫落,沉於水底;第2次泡水,表面裂隙有所擴大,崩解不明顯,有少量岩屑脫落沉於水底;第三次泡水,試樣表面吸附有氣泡,較少量崩解。整個試驗過程,試樣即使在反復干濕循環條件下,也無大量崩解,說明其崩解性很差。
由鏡下鑒定分析結果得知,2#-2岩性為含泥煤,岩石緻密未見裂隙,煤質組分形成過程中有陸源雲母碎片的沉積,有陸源物質、粉砂的混入。但實際上其遇水之後崩解性很差,說明其膠結性很好,而對於有機質膠結的軟弱岩土,由於有機質的憎水性,故不易崩解。
鏡下鑒定5#-2為含雲泥粉砂質泥岩變形紋層狀含炭質泥頁岩,含泥80%,粉砂15%,炭屑及有機質5%,在被反復干濕循環後,再次遇水,崩解明顯。即開始泡水時,表層先存裂隙,有所擴大,但並未達到崩解,在多次循環後,裂隙擴大,內部夾泥較多,遇水後產生泥化,崩解明顯,從崩解現象也可以看出,在第三次循環過程中,水表層覆蓋有泥膜,水色混濁,為損失量,也為崩解物的一部分。
從圖4-4b可以看出,泥質粉砂岩岩組試樣在經過3次循環崩解以後,崩解度均有降低的趨勢,即隨崩解次數的增多,崩解度無明顯反彈現象,說明已崩解完全。由試驗過程描述可知,試樣在初崩時刻現象不明顯,崩解是慢慢進行的,從開始冒氣泡到微裂紋繼續擴展。隨著在靜水中浸泡時間的增加,導致微裂紋繼續增大,隨後可見有岩屑、煤屑崩解,混入水中,大多懸浮停於試樣表面,還可見有小的岩塊脫離試樣表面,沉於水底。第二次循環崩解試樣為第一次的未崩解物,有較少裂隙存在,整體較完整,因此崩解現象不明顯,到第三次時所取的未崩解物,幾乎完整,不存在較明顯的裂隙,因此試驗過程幾乎無崩解,從而也得出結論為泥質粉砂岩崩解性差。
鏡下鑒定3#-3為條帶狀粉砂質泥岩,6#-3為粉砂質泥質岩,含泥較多,但經過3次循環崩解後崩解度急劇下降,說明在試樣表層含泥在第一次崩解過程中已泥化,內部為泥質粉砂岩,含泥較少,已很難崩解。
3.軟岩崩解試驗成果分析
根據崩解試驗的現象、崩解物形態將該區軟岩的浸水崩解破壞形式進行以下分類。
A類:泥糊狀破壞,完全崩解,崩解時間短,崩解現象非常明顯(一般含泥較重)。
B類:碎屑狀破壞,其碎屑直徑1~5mm;崩解現象較明顯。
C類:角礫狀破壞,角礫直徑5~10mm;崩解現象存在,少量崩解物。
D類:碎塊狀破壞,碎塊直徑大於10mm;崩解不明顯,有極少量崩解物。
E類:浸水穩定,不破壞;隨時間增加,崩解仍穩定,幾乎無崩解性。
根據顆粒篩分結果及上述分類依據,各軟岩岩組具體分類及崩解度范圍見表4-5。從表中可以看出,炭質頁岩與泥化夾層極易崩解,屬於A類,遇水易產生崩解,破壞後含水量會顯著增大,其吸水率可以超過液限,原岩強度完全喪失,屬遇水極不穩定的岩石。泥質粉砂岩與煤崩解性較差,屬於B、C、D類,屬遇水較不穩定岩石,無E類。
表4-5 軟岩崩解試驗成果表
續表
通過試驗分析,樞紐區內發育的幾種典型軟岩,均屬於遇水不穩定岩石。在崩解過程中,化學性質沒有變化,只是強度迅速降低,表面上與岩石的風化相似,但變化過程短暫。時間越長,崩解越徹底,且經過有限的時間後,呈穩定狀態。在工程施工中除注意防止其失穩外,在支護工作方面要予以特別加強。
D. 成分還有結構 構造 水是如何影響岩石性質
答:水對岩石性質影響,我們從成分、結構、構造等幾方面分別進行闡述。
一、岩石中的結合水有對岩石產生三種作用:連結作用、潤滑作用、水楔作用。
1、連結作用:將礦物顆粒拉近、接緊,起連結作用。
2、潤滑作用:可溶鹽溶解,膠體水解,使原有的連結變成水膠連結,導致礦物顆粒間連結力減弱,摩擦力減低,水起到潤滑劑的作用。
3、水楔作用:當兩個礦物顆粒靠得很近,有水分子補充到礦物表面時,礦物顆粒利用其表面吸著力將水分子拉到自己周圍,在兩個顆粒接觸處由於吸著力作用使水分子向兩個礦物顆粒之間的縫隙內擠入。
二、岩石中的重力水:對岩石力學性質的影響主要表現在孔隙水壓力作用和溶蝕、潛蝕作用。
1、孔隙壓力作用:孔隙壓力,減小了顆粒之間的壓應力,從而降低了岩石的抗剪強度,使岩石的微裂隙端部處於受拉狀態從而破壞岩石的連結。
2、溶蝕-潛蝕作用:岩石中滲透水在其流動過程中可將岩石中可溶物質溶解帶走,有時將岩石中小顆粒沖走,使岩石強度大為降低,變形加大。
三、水對岩石的膨脹性和崩解性有影響。
1、膨脹性:軟岩浸水後體積增大和響應的引起壓力增大的性質,用膨脹應力和膨脹率來表示。
(1)膨脹應力:岩石與水進行物理化學反應後,隨時間變化會產生體積增大的現象,這時,使試件體積保持不變所需要的壓力稱膨脹應力。
(2)膨脹率:岩石與水進行物理化學反應增大後的體積與原體積的比率。
2、崩解性:軟岩浸水後發生解體的性質。用耐崩解指數表示:岩石試件在承受乾燥和濕潤兩個標准循環後,岩樣對軟化和崩解表現出來的抵抗力。水對岩石的軟化作用岩石浸水飽和後強度降低的性質,稱為軟化性,用軟化系數(ηc)表示。ηc定義為岩石試件的飽和抗壓強度(Rcw)與干抗壓強度(Rc)的比值。
E. 岩石的水理性質有哪些
一、岩石水理性質指岩石與水接觸後表現出的有關性質,即與水分貯容和運移有關的性質稱作岩石的水理性質。它包括岩石的容水性、給水性、持水性、透水性。1.容水性容水性是在常壓下岩石空隙中能夠容納若干水量的性能,在數量上以容水度來衡量。2.持水性在分子力和表面張力的作用下,岩石空隙中能夠保持一定水量的性能,稱為岩石的持水性。3.給水性飽和岩石在重力作用下能夠自由排出若干水量的性能稱為岩石的給水性。4.透水性反應岩石的透水能力,岩石空隙直徑越大,透水性越強。根據透水性的好壞,可以將自然界的岩石分為透水層和不透水層。
二、 岩石的水理性質、
岩石的透水性:岩石能被水透過的性能稱為岩石的透水性,衡量岩石透水性的指標為滲透系數。
岩石的軟化性:岩石的軟化性是指岩石浸水後其強度降低的性質,通常用軟化系數表示水對岩石強度的影響程度,即水飽和岩石試件的單軸抗壓強度與乾燥岩石試件單軸抗壓強度之比。岩石浸水後的軟化程度,與岩石中親水性礦物和易溶性礦物的含量、孔隙裂隙的發育程度、水的化學成分以及岩石浸水時間等因素有關。
岩石的膨脹性和崩解性:岩石的膨脹性和崩解性主要是松軟岩石所表現出來的特徵,尤其是含有大量黏土礦物(如蒙脫石、高嶺土和水雲母等)的軟岩,遇水後更易產生膨脹和崩解。
岩石的膨脹性:是指軟岩浸水後體積增大的性質,相應地會引起壓力的增大。岩石遇水膨脹的特性可用膨脹應力和膨脹率兩個指標表示,岩石的膨脹應力是指岩石與水進行物理化學反應後,隨時間變化會產生體積增大現象,這時使試件體積保持不變所需施加的壓力,而岩石增大後的體積與原體積的比率稱為岩石的膨脹率。
岩石的崩解性:一般是指岩石浸水後發生的解體現象最石的吸水性和抗凍性遇水不崩解的岩石在一定實驗條件下(規定的試樣尺寸和實驗壓力)吸入水分的性能稱為岩石的吸水性。通常以岩石的自然吸水率、飽和吸水率和飽水系數表示岩石的自然吸水率。
F. 簡答題 什麼叫岩石的軟化性 如何評價
岩石軟化性是岩石浸水後力學強度降低的特性。它主要取決於岩石的礦物成分和孔隙性。其定量指標是軟化系數。軟化系數愈小,軟化性愈強。軟化系數小於0.75的岩石稱軟化岩石。
G. 工程岩體結構類型
岩石級別 堅固程度 代表性岩石
Ⅰ 最堅固 最堅固、緻密、有韌性的石英岩、玄武岩和其他
各種特別堅固的岩石。(f=20)
Ⅱ 很堅固 很堅固的花崗岩、石英斑岩、硅質片岩,較堅固
的石英岩,最堅固的砂岩和石灰岩.(f=15)
Ⅲ 堅 固 緻密的花崗岩,很堅固的砂岩和石灰岩,石英礦
脈,堅固的礫岩,很堅固的鐵礦石.(f=10)
Ⅲa 堅 固 堅固的砂岩、石灰岩、大理岩、白雲岩、黃鐵
礦,不堅固的花崗岩。(f=8)
Ⅳ 比較堅固 一般的砂岩、鐵礦石 (f=6)
Ⅳa 比較堅固 砂質頁岩,頁岩質砂岩。(f=5)
Ⅴ 中等堅固 堅固的泥質頁岩,不堅固的砂岩和石灰岩,軟礫
石。(f=4)
Ⅴa 中等堅固 各種不堅固的頁岩,緻密的泥灰岩.(f=3)
Ⅵ 比較軟 軟弱頁岩,很軟的石灰岩,白堊,鹽岩,石膏,
無煙煤,破碎的砂岩和石質土壤.(f=2)
Ⅵa 比較軟 碎石質土壤,破碎的頁岩,粘結成塊的礫石、碎
石,堅固的煤,硬化的粘土。(f=1.5)
Ⅶ 軟 軟緻密粘土,較軟的煙煤,堅固的沖擊土層,粘土質土壤。 (f=1)
Ⅶa 軟 軟砂質粘土、礫石,黃土。(f=0.8)
Ⅷ 土 狀 腐殖土,泥煤,軟砂質土壤,濕砂。(f=0.6)
Ⅸ 鬆散狀 砂,山礫堆積,細礫石,鬆土,開採下來的煤.
(f=0.5)
Ⅹ 流沙狀 流沙,沼澤土壤,含水黃土及其他含水土壤.
(f=0.3) A
表示礦岩的堅固性的量化指標.
人們在長期的實踐中認識到,有些岩石不容易破壞,有一些則難於破碎。難於破碎的岩石一般也難於鑿岩,難於爆破,則它們的硬度也比較大,概括的說就是比較堅固。因此,人們就用岩石的堅固性這個概念來表示岩石在破碎時的難易程度。
堅固性的大小用堅固性系數來表示又叫硬度系數,也叫普氏硬度系數f值)。
堅固性系數f=R/100 (R單位 kg/cm2)
式中R——為岩石標准試樣的單向極限抗壓強度值。
通常用的普氏岩石分及法就是根據堅固性系數來進行岩石分級的。
如:
① 極堅固岩石 f=15~20(堅固的花崗岩,石灰岩,石英岩等)
② 堅硬岩石 f=8 ~10(如不堅固的花崗岩,堅固的砂岩等)
③ 中等堅固岩石 f=4 ~6 (如普通砂岩,鐵礦等)
④ 不堅固岩石 f=0.8~3 (如黃土、僅為0.3)
礦岩的堅固性也是一種抵抗外力的性質,但它與礦岩的強度卻是兩種不同的概念。
強度是指礦岩抵抗壓縮,拉伸,彎曲及剪切等單向作用的性能。而堅固性所抵抗的外力卻是一種綜合的外力。(如抵抗鍬,稿,機械碎破,炸葯的綜合作用力)。
岩石分類
岩石可分三大類:1,岩漿岩{噴出岩}.2,沉積岩.3,變質岩.
1、岩漿岩主要有:花崗岩,安山岩,閃長岩,流紋岩,玄武岩輝長岩等等.
2、沉積岩主要有:石英砂岩,石灰礫岩,泥鐵岩,白雲岩,泥岩,石膏等.
3、變質岩主要有:片麻岩,綠泥石片岩,千枚岩,大理岩,雲母片岩等等.
雖然岩石的面貌是千變萬化的,但是從它們形成的環境,也就是從成因上來劃分,可以把岩石分為三大類:沉積岩、岩漿岩和變質岩。
1、沉積岩
沉積岩是在地表或近地表不太深的地方形成的一種岩石類型。它是由風化產物、火山物質、有機物質等碎屑物質在常溫常壓下經過搬運、沉積和石化作用,最後形成的岩石。不論那種方式形成的碎屑物質都要經歷搬運過程,然後在合適的環境中沉積下來,經過漫長的壓實作用,石化成堅硬的沉積岩。
沉積岩依照沈積物顆粒的大小又分礫岩、砂岩、頁岩、石灰岩.沉積岩的形成 1.風化侵蝕:在河流上的大石頭,經年累月被侵蝕風化,逐漸崩解成小的沙泥、碎屑。 2.搬運:這些碎屑被水流從上游搬運到下游。 3.堆積:下游流速減緩,搬運力減小,岩石碎屑便沉積下來。 4.壓密:新的沉積物壓在舊的沉積物上,時間久了,底下的沉積物被壓得較緊實。 5.膠結:地下水經過沉積物的孔隙,帶來的礦物質填滿孔隙,使岩石碎屑顆粒緊緊膠結在一起,形成沉積岩。 6.露出:堆積在海底的沉積岩層在板塊運動的推擠下拱出海面,露出地表。
2、岩漿岩
岩漿岩也叫火成岩,是在地殼深處或在上地幔中形成的岩漿,在侵入到地殼上部或者噴出到地表冷卻固結並經過結晶作用而形成的岩石。因為它生成的條件與沉積岩差別很大,因此,它的特點也與沉積岩明顯不同。
岩漿岩又分安山岩、玄武岩、花崗岩。 由地底岩漿冷卻凝固形成,由於岩漿成分和冷卻凝固方式不同,便形成不同的火成岩。岩漿岩的形成: 1.安山岩:岩漿藉由火山口噴發出地面,快速冷卻形成的。 2.玄武岩:岩漿經由緩和噴發漫流而出,逐漸冷凝形成的。 3.花崗岩:岩漿並不噴出地面,而是在地底下慢慢冷卻形成的。
3、變質岩
在地殼形成和發展過程中,早先形成的岩石,包括沉積岩、岩漿岩,由於後來地質環境和物理化學條件的變化,在固態情況下發生了礦物組成調整、結構構造改變甚至化學成分的變化,而形成一種新的岩石,這種岩石被稱為變質岩。變質岩是大陸地殼中最主要的岩石類型之一。
變質岩又分:板岩、片岩、片麻岩、大理岩。 變質岩的形成:1.為變質前的岩層:由於沉積或火山作用,堆積出一層層岩層。 2.擠壓岩層:在強大擠壓和摩擦力之下,產生溫度和壓力,使得深埋在地底下的岩石發生變質作用。 3.變質成新岩石:岩石里零散分布的礦物結晶會呈規矩排列,或生出新礦物來,而變成各種新的變質岩。
岩石對人類來說,並不陌生。由動物進化為人類後的第一個時代就是石器時代。那時,我們的祖先用石頭作為與大自然作斗爭的工具。那麼什麼是岩石呢?現代地質學稱石頭為岩石,岩石的「岩」字在古代是山崖和山穴的意思,表示山勢高峻、峰嶺陡峭的地勢;「石」字則是指磬、碑、硯、隕星等。自從18世紀地質學誕生以來,「岩石」一詞就不再沿用古義了,我們可以給岩石下這樣一個定義:岩石是各種地質作用形成的自然歷史產物,是構成地殼的基本組成單位,是由礦物及非晶質組成的,具有一定結構、構造的固態地質體。外觀上岩石是多種多樣的,但從成因上看,可將所有的岩石歸為三大類,即岩漿岩、沉積岩和變質岩,這就是自然界三大類岩石。這三大類岩石在地殼中是怎樣分布的呢?在全球陸地表面,沉積岩覆蓋了75%,岩漿岩和變質岩加在一起才只佔陸地面積的1/4。但是到了地下深處,沉積岩逐漸變成了「少數民族」。在整個地殼中,沉積岩只佔到地殼體積的8%,變質岩佔了27%,剩下的65%都是岩漿岩。
岩石在太陽輻射、大氣、水和生物作用下出現破碎、疏鬆及礦物成分次生變化的現象。導致上述現象的作用稱風化作用。分為:①物理風化作用。主要包括溫度變化引起的岩石脹縮、岩石裂隙中水的凍結和鹽類結晶引起的撐脹、岩石因荷載解除引起的膨脹等。②化學風化作用。包括:水對岩石的溶解作用;礦物吸收水分形成新的含水礦物,從而引起岩石膨脹崩解的水化作用;礦物與水反應分解為新礦物的水解作用;岩石因受空氣或水中游離氧作用而致破壞的氧化作用。③生物風化作用。包括動物和植物對岩石的破壞,其對岩石的機械破壞亦屬物理風化作用,其屍體分解對岩石的侵蝕亦屬化學風化作用。人為破壞也是岩石風化的重要原因。岩石風化程度可分為全風化、強風化、弱風化和微風化4個級別。
大約在200年前,人們可能認為高山、湖泊和沙漠都是地球上永恆不變的特徵。可現在我們已經知道高山最終將被風化和剝蝕為平地,湖泊終將被沉積物和植被填滿,沙漠會隨著氣候的變化而行蹤不定。地球上的物質永無止境地運動著。暴露在地殼表面的大部分岩石都處在與其形成時不同的物理化學條件下,而且地表富含氧氣、二氧化碳和水,因而岩石極易發生變化和破壞。表現為整塊的岩石變為碎塊,或其成分發生變化,最終使堅硬的岩石變成鬆散的碎屑和土壤。礦物和岩石在地表條件下發生的機械碎裂和化學分解過程稱為風化。由於風、水流及冰川等動力將風化作用的產物搬離原地的作用過程叫做剝蝕
地表岩石在原地發生機械破碎而不改變其化學成分也不新礦物的作用稱物理風化作用。如礦物岩石的熱脹冷縮、冰劈作用、層裂和鹽分結晶等作用均可使岩石由大塊變成小塊以至完全碎裂。化學風化作用是指地表岩石受到水、氧氣和二氧化碳的作用而發生化學成分和礦物成分變化,並產生新礦物的作用。主要通過溶解作用水化作用水解作用碳酸化作用和氧化作用等式進行。
雖然所有的岩石都會風化,但並不是都按同一條路徑或同一個速率發生變化。經過長年累月對不同條件下風化岩石的觀察,我們知道岩石特徵、氣候和地形條件是控制岩石風化的主要因素。不同的岩石具有不同的礦物組成和結構構造,不同礦物的溶解性差異很大。節理、層理和孔隙的分布狀況和礦物的粒度,又決定了岩石的易碎性和表面積。風化速率的差異,可以從不同岩石類型的石碑上表現出來。如花崗岩石碑,其成分主要是硅酸鹽礦物。這種石碑就能很好地抵禦化學風化。而大理岩石碑則明顯地容易遭受風化。
氣候因素主要是通過氣溫、降雨量以及生物的繁殖狀況而表現的。在溫暖和潮濕的環境下,氣溫高,降雨量大,植物茂密,微生物活躍,化學風化作用速度快而充分,岩石的分解向縱深發展可形成巨厚的風化層。在極地和沙漠地區,由於氣候乾冷,化學風化的作用不大,岩石易破碎為稜角狀的碎屑。最典型的例子,是將矗立於乾燥的埃及已35個世紀並保存完好的克列奧帕特拉花崗岩尖柱塔,搬移到空氣污染嚴重的紐約城中心公園之後,僅過了75年就已面目全非。
地勢的高度影響到氣候:中低緯度的高山區山麓與山頂的溫度、氣候差別很大,其生物界面貌顯著不同。因而風化作用也存在顯著的差別。地勢的起伏程度對於風化作用也具普遍意義:地勢起伏大的山區,風化產物易被外力剝蝕而使基岩裸露,加速風化。山坡的方向涉及到氣候和日照強度,如山體的向陽坡日照強,雨水多,而山體的背陽坡可能常年冰雪不化,顯然岩石的風化特點差別較大。
剝蝕與風化作用在大自然中相輔相成,只有當岩石被風化後,才易被剝蝕。而當岩石被剝蝕後,才能露出新鮮的岩石,使之繼續風化。風化產物的搬運是剝蝕作用的主要體現。當岩屑隨著搬運介質,如風或水等流動時,會對地表、河床及湖岸帶產生侵蝕。這樣也就產生更多的碎屑,為沉積作用提供了物質條件。
岩石在日光、水分、生物和空氣的作用下,逐漸被破壞和分解為沙和泥土,稱為風化作用。沙和泥土就是岩石風化後的產物。
山地的中的岩石極為多樣,差別很大,進行工程分類十分必要。《94規范》首先按岩石強度分類,再進行風化分類。按岩石強度分為極硬、次硬、次軟和極軟,列舉了代表性岩石名稱。又以新鮮岩塊的飽和抗壓強度30MPa為分界標准。問題在於,新鮮的末風化的岩塊在現場有時很難取得,難以執行。
岩石的分類可以分為地質分類和工程分類。地質分類主要根據其地質成因、礦物成分、結構構造和風化程度,可以用地質名稱(即岩石學名稱)加風化程度表達,如強風化花崗岩、微風化砂岩等。這對於工程的勘察設計確是十分必要的。工程分類主要根據岩體的工程性狀,使工程師建立起明確的工程特性概念。地質分類是一種基本分類,工程分類應在地質分類的基礎上進行,目的是為了較好地概括其工程性質,便於進行工程評價。
為此,本次修訂除了規定應確定地質名稱和風化程度外,增加了岩塊的「堅硬程度」、岩體的「完整程度」和「岩體基本質量等級」的劃分。並分別提出了定性和定量的劃分標准和方法,可操作性較強。岩石的堅硬程度直接與地基的承載力和變形性質有關,其重要性是無疑的。岩體的完整程度反映了它的裂隙性,而裂隙性是岩體十分重要的特性,破碎岩石的強度和穩定性較完整岩石大大削弱,尤其對邊坡和基坑工程更為突出。
本次修訂將岩石的堅硬程度和岩體的完整程度各分五級,二者綜合又分五個基本質量等級。與國標《工程岩體分級標准》(GB50218-94)和《建築地基基礎設計規范》(GB50007-2002)協調一致。
劃分出極軟岩十分重要,因為這類岩石不僅極軟,而且常有特殊的工程性質,例如某些泥岩具有很高的膨脹性;泥質砂岩、全風化花崗岩等有很強的軟化性(單軸飽和抗壓強度可等於零);有的第三紀砂岩遇水崩解,有流砂性質。劃分出極破碎岩體也很重要,有時開挖時很硬,暴露後逐漸崩解。片岩各向異性特別顯著,作為邊坡極易失穩。事實上,對於岩石地基,特別注意的主要是軟岩、極軟岩、破碎和極破碎的岩石以及基本質量等級為V級的岩石,對可取原狀試樣的,可用土工試驗方法測定其性狀和物理力學性質。
舉例:
1 花崗岩,微風化:為較硬岩,完整,質量基本等級為Ⅱ級;
2 片麻岩,中等風化:為較軟岩,較破碎,質量基本等級為Ⅳ級;
3 泥岩,微風化:為軟岩,較完整,質量基本等級為Ⅳ級;
4 砂岩(第三紀),微風化:為極軟岩,較完整,質量基本等級為V級;
5 糜棱岩(斷層帶):極破碎,質量基本等級為V級。
岩石風化程度分為五級,與國際通用標准和習慣一致。為了便於比較,將殘積土也列在表A.0.3中。國際標准ISO/TC182/SCl也將風化程度分為五級,並列入殘積土。風化帶是逐漸過渡的,沒有明確的界線,有些情況不一定能劃分出五個完全的等級。一般花崗岩的風化分帶比較完全,而石灰岩、泥岩等常常不存在完全的風化分帶。這時可採用類似「中等風化-強風化』「強風化-全風化」等語句表述。同樣,岩體的完整性也可用類似的方法表述。第三系的砂岩、泥岩等半成岩,處於岩石與土之間,劃分風化帶意義不大,不一定都要描述風化。
3. 2. 4 關於軟化岩石和特殊性岩石的規定,與《94規范》相同,軟化岩石浸水後,其承載力會顯著降低,應引起重視。以軟化系數0.75為界限,是借鑒國內外有關規范和數十年工程經驗規定的。
石膏、岩鹽等易溶性岩石,膨脹性泥岩,濕陷性砂岩等,性質特殊,對工程有較大危害,應專門研究,故本規范將其專門列出。
3. 2. 5、3. 2. 6 岩石和岩體的野外描述十分重要,規定應當描述的內容是必要的。岩石質量指標RQD是國際上通用的鑒別岩石工程性質好壞的方法,國內也有較多經驗,《94規范》中已有反映,本次修訂作了更為明確的規定。
岩石
岩石是天然產出的具穩定外型的礦物或玻璃集合體,按照一定的方式結合而成。是構成地殼和上地幔的物質基礎。按成因分為岩漿岩、沉積岩和變質岩。其中岩漿岩是由高溫熔融的岩漿在地表或地下冷凝所形成的岩石,也稱火成岩;沉積岩是在地表條件下由風化作用、生物作用和火山作用的產物經水、空氣和冰川等外力的搬運、沉積和成岩固結而形成的岩石;變質岩是由先成的岩漿岩、沉積岩或變質岩,由於其所處地質環境的改變經變質作用而形成的岩石。
地殼深處和上地幔的上部主要由火成岩和變質岩組成。從地表向下16公里范圍內火成岩和變質岩的體積佔95%。地殼表面以沉積岩為主,它們約佔大陸面積的75%,洋底幾乎全部為沉積物所覆蓋。
岩石學主要研究岩石的物質成分、結構、構造、分類命名、形成條件、分布規律、成因、成礦關系以及岩石的演化過程等。它屬地質科學中的重要的基礎學科。
十八世紀末岩石學從礦物學中脫胎出來而發展成一門獨立的學科。在岩石學發展的初期,主要研究的是火成岩,到了十九世紀中葉才開始系統地研究變質岩,而沉積岩直到二十世紀初才引起人們的注意。目前岩石學正沿著岩漿岩石學、沉積岩石學和變質岩石學三個主要的分支方向發展。
古老岩石都出現在大陸內部的結晶基底之中。代表性的岩石屬基性和超基性的火成岩。這些岩石由於受到強烈的變質作用已轉變為富含綠泥石和角閃石的變質岩,通常我們稱為綠岩。如1973年在西格陵蘭發現了同位素年齡約38億年的花崗片麻岩。1979年,巴屯等測定南非波波林帶中部的片麻岩年齡約39億年左右。
加拿大北部的變質岩—阿卡斯卡片麻岩是保存完好的古老地球表面的一部分。放射性年代測定表明阿卡斯卡片麻岩有將近40億年的年齡,從而說明某些大陸物質在地球形成之後幾億年就已經存在了。
最近,科學家在澳大利亞西南部發現了一批最古老的岩石,根據其中所含的鋯石礦物晶體的同位素分析結果,表明它們的「年齡」約為43億至44億歲,是迄今發現的地球上最古老的岩石樣本,根據這一發現可以推論,這些岩石形成時,地球上已經有了大陸和海洋。在地球誕生2億至3億年後,可能並不象人們所認為的那樣由熾熱的岩漿所覆蓋,而是已經冷卻到了足以形成固體地表和海洋的溫度。地球的圈層分異在距今44億年前可能就已經完成了。
目前在中國發現的最古老岩石是冀東地區的花崗片麻岩,其中包體的岩石年齡約為35億年。
澳大利亞西部Warrawoona群中的微化石在形態結構上比較完整。它們究竟是藍藻還是細菌目前尚難確定。通常認為,早期疊層石是藍藻建造的,疊層石是藍藻存在的指示。如果35億年前就已經出現藍藻,則說明釋氧的光合作用早就開始了,這便引出一個問題:為什麼直到20億年前大氣圈才積累自由氧呢?從35億年前到20億年前中間相隔15億年之久,為什麼氧的積累如此緩慢?對此當然有不同的解釋。例如近年來已經發現疊層石也可能完全由光合細菌建造,或甚至由非光合細菌建造。
最古老生命存在的間接證據中較重要的是格陵蘭西部條帶狀鐵建造(BIF)和輕碳同位素。如果證據成立,則由此可推斷在38億年前的地球上已經出現進行釋氧光合作用的微生物,即類似藍藻的生物。根據Cloud的解釋,BIF是由光和微生物周期性地釋氧而引起亞鐵氧化為高價鐵沉積下來的。輕碳同位素也是光合作用的間接證據。但反對的意見認為,BIF形成所需的氧可以通過大氣中的水分子的光分解來提供,而輕碳同位素可能來自碳酸鹽的熱分解。
疊層石是前寒武紀未發生變質的碳酸鹽沉積中最常見的一種「准化石」,是由原核生物所建造的有機沉積。這種疊層狀的生物沉積構造是由於藍藻等低等微生物在其生命活動中,通過沉積物的捕獲和膠結作用發生周期性的沉積作用而形成的。根據Walter(1983)的統計,在澳大利亞、北美和南非三個不同大陸的11個地點發現了太古宙疊層石,其年齡都在25億年以上。晚元古代是地史上疊層石最繁盛的時期,其分布廣泛、形態多樣。後生動物出現以後疊層石驟然衰落。寒武紀至泥盆紀疊層石數量和分布范圍有限。泥盆紀以後疊層石只是殘存。現代海相疊層石只分布在澳大利亞、中美洲、中東等地的少數地區特殊環境中。
隕石是太陽系內小天體的珍貴標本,為研究太陽系的起源、演化和生命起源提供了寶貴的線索和資料。球粒隕石中不僅含有氨基酸,還有烴類、乙醇和其他可能形成保護原始細胞膜的脂肪族化合物。對生命起源的研究有較大意義。生物化學家David.W.Dreamer用默奇森隕石中得到的化合物製成了球形膜,這些小泡提供了氨基酸、核苷酸和其他有機化合物以及進行生命開始所必需的轉變環境。也就是說,當隕石撞擊地球時,產生形成生命所需的有機物及必需的環境。和生命起源於彗星的理論一樣,這是一種新的天外起源說。另外,康奈爾大學的C.Hyba指出,撞擊也可以用其它方式提供生命所需的原材料,來自一次隕石撞擊的熱和沖擊波可以在原始大氣中激發起合成有機化合物的化學反應。
隕石是降落到地球表面的小塊行星際物質撞入地球大氣圈後尚未被燒盡的流星體的殘片。在晴朗的夜晚,可以看到一線亮光劃過夜空,瞬間消失。這些彌漫在宇宙空間中的星際塵埃,如果被地球的引力捕獲便形成隕星;當它們以極快的速度進入地球大氣圈時與大氣發生摩擦、生熱、發光,一部分殘留下來落到地表就成為隕石。如果隕石在空中爆炸後象下雨一樣降落,就稱為隕石雨。1976年3月8日,我國吉林省降落過一次世界罕見的隕石雨,完整的隕石有100餘塊,重2噸多,其中最大的一塊重達1770公斤,是世界上最大的石隕石。隕石來自星際空間,在1969年阿普羅11號在月球著陸並將月岩帶回地球以前,隕石是人們能直接加以觀察的唯一的外來天體。
近代史上最驚人的隕石墜落事件是1908年的通古斯事件。當時在前蘇聯西伯利亞通古斯方圓800公里的范圍內,都可見到了火光;在100公里范圍內,都聽到了轟隆巨響;在50公里范圍內,高大樹木全部被燒毀。很多人推測這次事件與隕石墜落有關,但奇怪的是至今沒有找到隕石碎塊。因此成為世界著名的「通古斯之謎」,吸引了許多中外科學家前往這個地區進行考察和研究。
隕石可分為三類:石隕石、石鐵隕石和鐵隕石。其中以石隕石最多,約佔94%。同位素年齡測定隕石的年齡約為46億年。
石隕石:密度為3-3.5克/立方厘米。由硅酸鹽礦物橄欖石、輝石、少量斜長石和金屬鐵的微粒組成。可分為球粒隕石和無球粒隕石,前者含有直徑為1-2毫米大小的隕石球粒,它是熔融物質快速冷凝的產物。這種結構在地球上從未發現過。可能是在太陽系形成初期原始行星物質被原始太陽的高溫熔化後,在脫離太陽時迅速冷卻而形成的。因此,玻璃質球粒的成分就反映了太陽系形成初期原始行星的成分。
石鐵隕石:密度約5.6-6克/立方厘米,由鐵鎳和硅酸鹽礦物組成。鐵隕石:密度約8-8.5克/立方厘米。大約由80%-95%的金屬鐵和5%-20%的鎳組成。