⑴ 土壤陽離子交換作用有哪些特點
土壤陽離子抄交換量是襲隨著土壤在風化過程中形成,一些礦物和有機質被分解成極細小的顆粒。化學變化使得這些顆粒進一步縮小,肉眼便看不見。這些最細小的顆粒叫做「膠體」。每一膠體帶凈負電荷。電荷是在其形成過程中產生的。它能夠吸引保持帶正電的顆粒 ,就像磁鐵不同的兩極相互吸引一樣。陽離子是帶正電荷的養分離子,如鈣(Ca)、鎂(Mg)、鉀(K)、鈉(Na)、氫(H)和銨(NH4)。粘粒是土壤帶負電荷的組份。這些帶負電的顆粒(粘粒)吸引、保持並釋放帶正電的養分顆粒(陽離子) 。有機質顆粒也帶有負電荷,吸引帶正電荷的陽離子。砂粒不起作用。
土壤保持和交換陽離子的能力用陽離子交換量(CEC)來表示,可作為評價土壤保肥能力的指標。陽離子交換量是土壤緩沖性能的主要來源,是改良土壤和合理施肥的重要依據。
⑵ 土壤的離子交換性有什麼實際意義
陽離子交換使土壤比較重要的性質之一,使土壤本身的特有屬性,主要原因就是土壤膠體的負電內特性,其電荷容分為可變電荷和固定電荷,當pH較低時(到達等電點時),整個性質就會發生變化.陽離子交換,顧名思義,負電荷的土壤膠體表面吸附有一些可交換態的陽
⑶ 土壤膠體中陽離子交換的本質
土壤陽離子交換量是隨著土壤在風化過程中形成,一些礦物和有機質被分解成回極細小的顆粒答。化學變化使得這些顆粒進一步縮小,肉眼便看不見。這些最細小的顆粒叫做「膠體」。每一膠體帶凈負電荷。電荷是在其形成過程中產生的。它能夠吸引保持帶正電的顆粒 ,就像磁鐵不同的兩極相互吸引一樣。陽離子是帶正電荷的養分離子,如鈣(Ca)、鎂(Mg)、鉀(K)、鈉(Na)、氫(H)和銨(NH4)。粘粒是土壤帶負電荷的組份。這些帶負電的顆粒(粘粒)吸引、保持並釋放帶正電的養分顆粒(陽離子) 。有機質顆粒也帶有負電荷,吸引帶正電荷的陽離子。砂粒不起作用。
陽離子交換量(CEC)是指土壤保持和交換陽離子的能力,也有人將它稱之為土壤的保肥能力。
⑷ 土壤離子交換
土壤中離子的交換作用
土壤中帶負電荷膠粒吸附的陽離子與內土壤溶液中的陽離子進行容交換,稱為陽離子交換 作用。
土壤陽離子交換的特點:
• 可逆反應並能迅速達到平衡
• 陽離子交換按當量關系進行
• 不同陽離子的代換力有大小差異(離子價數、原子序數、離子運動速度、質量作用定律)
25 陽離子交換量
每千克干土中所含全部陽離子總量,稱陽離子交換量
影響因素:
(1)膠體的種類
蒙脫石>水化雲母>高嶺土;有機膠體最高
(2)溶液的pH值
pH值增加,土壤負電荷量隨之增大,交換量增大
⑸ 土壤為什麼具有離子交換性
因為土中也存在水分,為分子水解為離子提供了溶液環境
⑹ 離子交換原理
離子交換的基本原理 離子交換的選擇性定義為離子交換劑對於某些離子顯示優先活性的性質。離子交換樹脂吸附各種離子的能力不一,有些離子易被交換樹脂吸附,但吸著後要把它置換下來就比較困難;而另一些離子很難被吸著,但被置換下來卻比較容易,這種性能稱為離子交換的選擇性。離子交換樹脂對水中不同離子的選擇性與樹脂的交聯度、交換基團、可交換離子的性質、水中離子的濃度和水的溫度等因素有關。離子交換作用即溶液中的可交換離子與交換基團上的可交換離子發生交換。一般來說,離子交換樹脂對價數較高的離子的選擇性較大。對於同價離子,則對離子半徑較小的離子的選擇性較大。在同族同價的金屬離子中,原子序數較大的離子其水合半徑較小,陽離子交換樹脂對其的選擇性較大。對於丙烯酸系弱酸性陽離子交換樹脂來說,它對一些離子的選擇性順序為:H+>Fe3+>A13+>Ca2+>Mg2+>K+>Na十。 離子交換反應是可逆反應,但是這種可逆反應並不是在均相溶液中進行的,而是在固態的樹脂和溶液的接觸界面間發生的。這種反應的可逆性使離子交換樹脂可以反復使用。以D113型離子交換樹脂制備硫酸鈣晶須為例說明: D113丙烯酸系弱酸性陽離子交換樹脂是一種大孔型離子交換樹脂,其內部的網狀結構中有無數四通八達的孔道,孔道裡面充滿了水分子,在孔道的一定部位上分布著可提供交換離子的交換基團。當硫酸鋅溶液中的Zn2+,S042-擴散到樹脂的孔道中時,由於該樹脂對Zn2+選擇性強於對Ca2+的選擇性,,所以Zn2+就與樹脂孔道中的交換基團Ca2+發生快速的交換反應,被交換下來的Ca2+遇到擴散進入孔道的S042-發生沉澱反應,生成硫酸鈣沉澱。其過程大致為:
(1)邊界水膜內的擴散 水中的Zn2+,S042-離子向樹脂顆粒表面遷移,並擴散通過樹脂表面的邊界水膜層,到達樹脂表面; (2)交聯網孔內的擴散(或稱孔道擴散) Zn2+,S042-離子進入樹脂顆粒內部的交聯網孔,並進行擴散,到達交換點;
(3)離子交換 Zn2+與樹脂基團上的可交換的Ca2+進行交換反應;
(4)交聯網孔內的擴散 被交換下來的Ca2+在樹脂內部交聯網孔中向樹脂表面擴散;部分交換下來的Ca2+在擴散過程中遇到由外部擴散進入孔徑的S042-發生沉澱反應,生成CaS04沉澱;
(5)邊界水膜內的擴散 沒有發生沉澱反應的部分Ca2+擴散通過樹脂顆粒表面的邊界水膜層,並進入水溶液中。 此外,由於離子交換以及沉澱反應的速度很快,硫酸鈣沉澱基本在樹脂的孔道里生成,因此樹脂的孔道就限制了沉澱的生長及形貌,對其具有一定的規整作用。通過調整攪拌速度、反應溫度等外界條件,可以使樹脂顆粒及其內部孔道發生相應的變化,這樣當沉澱在樹脂孔道中生成後,就得到了不同尺寸和形貌的硫酸鈣沉澱。
⑺ 什麼叫黏土的陽離子交換容量其大小與水化性能有何關系
不同土壤來的陽離子源交換量不同,主要影響因素:a,土壤膠體類型,不同類型的土壤膠體其陽離子交換量差異較大,例如,有機膠體>蒙脫石>水化雲母>高嶺石>含水氧化鐵、鋁。b,土壤質地越細,其陽離子交換量越高。c,對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大。d,土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大。土壤陽離子交換量是影響土壤緩沖能力高低,也是評價土壤保肥能力、改良土壤和合理施肥的重要依據。
⑻ 土壤離子交換的條件是什麼希望說的詳細點,最好有解釋
首先土壤中離子交換是一個動態過程,無時無刻不再發生,只是在各種離子濃度不變環境穩定條件下保持平衡而已。其次,離子交換過程相當於一個動態的化學變化過程,可類比一般意義上的化學平衡來進行分析
⑼ 陽離子交換量在土壤地理學中如何定義的,它後面的單位:CEC7是什麼意思
土壤是地球岩石最表層經億萬年風化和生物活動所形成的物質。迄今為止,絕大多數作物都是在土壤上栽培。土壤是生物圈、岩石圈、大氣圈和水圈的交匯點。普通人常常認為土壤只是固體。其實,土壤由固體顆粒、土壤溶液和土壤空氣三部分組成。土壤由固體顆粒構成有大小孔隙的土壤結構,土壤水分(溶液)占據土壤的中小孔隙,土壤空氣占據土壤大孔隙。
土壤固體大顆粒稱為砂粒,中等粒徑的顆粒稱為粉粒,細小顆粒稱為粘粒。根據三種土粒含量不同,將土壤分為12類,其中較為典型的有三種:砂粒含量特別多的是砂土;粘粒含量特別多的是粘土;而砂粒、粉粒、粘粒三者比例相等的是壤土。壤土的土壤耕性最好,土壤水氣比例最易達到理想范圍,土壤溫度狀況也較易保持和調整,也就是說,壤土的土壤物理性質最理想。砂土往往氣多水少,溫度易偏高。粘土則水多氣少,溫度易偏低,緊實粘重。
土壤水氣比例對土壤氧化還原電位有影響。土壤氧化還原電位影響土壤中一些微量元素的有效性。水多氣少使土壤氧化還原電位降低,鐵、錳等離子大多還原為有效態,但也容易從土壤中淋失。
土壤礦質顆粒和有機質顆粒都帶負電,對土壤中的陽離子有吸附性。土壤粘粒所能吸附的鹽基陽離子總量稱為陽離子交換量,土壤粘粒上吸附的陽離子與土壤溶液中的陽離子不斷進行交換,達成動態平衡。施肥或通過其它途徑進入土壤溶液的養分陽離子大多先被土壤粘粒吸附,待植物根系吸收利用掉溶液中的養分陽離子時,被吸附的交換性陽離子再逐漸解吸釋放進入土壤溶液,補充被吸收的部分。養分由土壤到植物的機理當然比這樣簡單的描述要復雜得多。
陽離子交換量中鈣、鎂、鉀、鈉四種鹼性離子所佔陽離子交換量的百分比叫做鹽基飽和度。做鹽基飽和度較高的土壤肥力較高,土壤pH值也較高。
土壤pH值包括土壤活性酸度和潛在酸度。土壤活性酸度土壤溶液中表觀的H+活度,而潛在酸度與陽離子交換量(又稱土壤緩沖能力)有關。
現在越來越強調土壤管理的重要性。土壤管理主要涉及對土壤物理性質的保護,同時兼顧土壤化學性質,與土壤耕性、土壤肥力和防止土壤侵蝕有關。
⑽ 初中化學,什麼是離子交換思想
離子交換是初中化學的一種基本化學反應的現象,所以在思想上要予以重視。