Ⅰ 離子交換層析中,為什麼用氯離子洗脫陰離子
離子交換層析中,為什麼用氯離子洗脫陰離子
陰離子交換柱的填料是正電填專料,在低鹽條件下可以屬通過電荷相互作用吸附樣品中的陰離子和負電荷物質(如DNA).這些帶負電的物質由於其帶電量不同,分子大小不同,因而與正電填料之間的結合力也就不同.用梯度的氯離子(一般用氯化鈉梯度,例如從100mM氯化鈉線性梯度升高到1M氯化鈉)洗脫掛柱樣品時,氯離子會和結合上的物質競爭結合正電填料,伴隨著氯離子濃度的不斷升高,氯離子的競爭作用越來越強,與填料結合的物質會按照親和力從弱到強依次洗脫下來,形成獨立的洗脫峰,從而將這些物質分開.
陽離子交換柱與之正好相反,柱子填料為負電荷,用鈉離子洗脫結合的正電物質.
Ⅱ 離子交換纖維素色譜法的基本理論
離子交換劑通常是來一源種不溶性高分子化合物,如樹脂,纖維素,葡聚糖,醇脂糖等,它的分子中含有可解離的基團,這些基因在水溶液中能與溶液中的其它陽離子或陰離子起交換作用。雖然交換反應都是平衡反應,但在層析柱上進行時,由於連續添加新的交換溶液,平衡不斷按正方向進行,直至完全。
因此可以把離子交換劑上的原子離子全部洗脫下來,同理,當一定量的溶液通過交換柱時,由於溶液中的離子不斷被交換而波度逐減少,因此也可以全部被交換並吸附在樹脂上。如果有兩種以上的成分被交換吸著在離子交換劑上,用洗脫液洗脫時,在被洗脫的能力則決定於各自洗反應的平衡常數。蛋白質的離子交換過程有兩個階段──吸附和解吸附。吸
附在離子交換劑上的蛋白質可以通過改變pH使吸附的蛋白質失去電荷而達到解離但更多的是通過增加離子強度,使加入的離子與蛋白質競爭離子交換劑上的電荷位置,使吸附的蛋白質與離子交換劑解開。不同蛋白質與離子交換劑之間形成電鍵數目不同,即親和力大小有差異,因此只要選擇適當的洗脫條件便可將混合物中的組分逐個洗脫下來,達到分離純化的目的。
Ⅲ 蛋白質水解產物陽離子交換柱層析時的洗脫順序
pI 10.76的那個應該帶正電荷。陽離子交換柱本身帶負電荷。
Ⅳ 怎樣利用離子交換柱層析法分離不同的蛋白質
離子交換內的介質一般是樹脂,陽離子交換型的,使用前樹脂先用鹼處理成鈉型,將氨基酸混合液(pH=2-3)上柱,pH=2-3時,氨基酸主要以陽離子形式存在,與樹脂上的鈉離子發生交換而被「掛」在樹脂上,再用洗脫劑洗脫。不同的氨基酸(帶的電荷不同)與樹脂的親和力不同,要將其分離洗脫下來,需要降低它們之間的親和力,方法是逐步提高洗脫劑的pH和鹽濃度,這樣各種氨基酸將以不同的速度被洗脫下來。
Ⅳ 陽離子交換柱是什麼
陽離子交來換柱把一定源比例的陽離子交換樹脂混合裝填於同一交換裝置中,對流體中的離子進行交換、脫除。
離子交換柱也稱混床 。所謂的離子交換柱,就是把一定比例的陽、陰離子交換樹脂混合裝填於同一交換裝置中,對流體中的離子進行交換、脫除。
離子交換柱(混床)的分類:混床按再生方式分可分為體內再生混床、體外再生混床、陰樹脂外移再生混床三種:
1、體外再生混床適合小流量、對環保有嚴格要求的企業。但由於體外再生式混床配套設備多,操作復雜,現在已很少使用。
2、體內再生混床和陰樹脂外移再生混床適合大流量,有專門的水處理操作人員及廢水處理的場合。體內再生混床在運行及整個再生過程均在混床內進行,再生時樹脂不移出設備以外,且陽、陰樹脂同時再生,因此所需附屬設備少,操作簡便。
3、陰樹脂外移再生混床:陰樹脂外移再生式混合床及其配套的陰樹脂再生柱基本構造與小型逆流再生固定床大致相同,陰樹脂再生柱厚度較混合床小,所需的膨脹高度為樹脂層高度的50%~60%,故再生柱可較低,但一般為統一起見做成與混合床相同。
Ⅵ 離子交換層析法原理是什麼
離子交換層析法 (ion exchange chromatography,簡稱IEC)是從復雜的混合物中,分離性質相似大分子的方法之一,依據的原理是物質的酸鹼性、極性,也就是所帶陰陽離子的不同。電荷不同的物質,對管柱上的離子交換劑有不同的親和力,改變沖洗液的離子強度和pH值,物質就能依次從層析柱中分離出來。
離子交換層析法大致分為5個步驟:
1. 離子擴散到樹脂表面。
2. 離子通過樹脂擴散到交換位置。
3. 在交換位置進行離子交換;被交換的分子所帶電荷愈多,它與樹脂的結合愈緊密,也就愈不容易被其它離子取代。
4. 被交換的離子擴散到樹脂表面。
5. 沖洗液通過,被交換的離子擴散到外部溶液中。
離子交換樹脂的交換反應是可逆的,遵循化學平衡的規律,定量的混合物通過管柱時,離子不斷被交換,濃度逐漸降低,幾乎全部都能被吸附在樹脂上;在沖洗的過程中,由於連續添加新的交換溶液,所以會朝正反應方向移動,因而可以把樹脂上的離子沖洗下來。
如果被純化的物質是氨基酸類的分子,則分子上的凈電荷取決於氨基酸的等電點和溶液的pH值,所以當溶液的pH 值較低,氨基酸分子帶正電荷,它將結合到強酸性的陽離子交換樹脂上;隨著通過的緩沖液pH逐漸增加,氨基酸將逐漸失去正電荷,結合力減弱,最後被洗下來。由於不同的氨基酸等電點不同,這些氨基酸將依次被洗出,最先被洗出的是酸性氨基酸,如apartic acid和glutamic acid(在約pH3~4時),隨後是中性氨基酸,如glycine和alanine。鹼性氨基酸如arginine和lysine在pH值很高的緩沖液中仍帶有正電荷,因此這些在約pH值高達10~11時才出現。
Ⅶ 離子交換層析的原理是什麼 已解決
離子交換層析法是從復雜的混合物中,分離性質相似大分子的方法之一,依據的原理是物內質的酸鹼性容,極性,所帶陰陽離子的不同。電荷不同的物質,對管柱上的離子交換劑有不同的親和力,改變沖洗液的離子強度和pH值,物質就能依次從層析柱中分離出來。
層析開始前,功能基團與反離子穩定結合,就與反離子發生可逆交換,與層析劑結合被固定下來。因為鹽離子可以與底物競爭功能基團,鹽濃度越高樣品與層析劑結合越不緊密,易被洗脫下來。不同物質與層析劑結合程度不同,洗脫下來的時間不同,因此得以分開。
(7)離子交換柱親和力擴展閱讀
離子交換劑的選擇首重保持欲分離物質的生物活性,以及在不同pH值環境中,此物質所帶的電荷和電性強弱,陰陽離子交換劑的選擇若被分離物質帶正電荷,這些鹼性蛋白質,它們在酸性溶液中較穩定,親和力強,故採用陽離子交換劑。
在鹼性溶液中較穩定,則使用陰離子交換劑,如果欲分離的物質是兩性離子,一般考慮在它穩定的pH范圍帶有何種電荷,作為交換劑的選擇。離子交換劑的再生與保存離子交換劑可在柱上再生,若有脂溶性物質則可用非離子型去污劑洗柱後再生,也可用乙醇洗滌。
Ⅷ 什麼叫離子交換樹脂的選擇性與什麼因素有關
什麼是離子交來換源樹脂的選擇性?
離子交換樹脂的選擇性是指離子交換樹脂能吸附的金屬離子,污水中有很多金屬離子而離子交樹脂不可能可以把所有的金屬離子都吸咐干凈的,有一些金屬離子樹脂對它的吸附能力是比較弱的而有一些則比較強,也就是說離子交換樹脂只能針對性的吸附某一些金屬離子,這就是離子交換樹脂的選擇性。
離子交換樹脂的選擇性怎樣?
離子交換反應和其他化學反應一樣,完全服從質量作用定律。離子交換親和力,也就是離子交換樹脂對水中金屬離子的吸附能力。離子交換樹脂對離子的吸附能力與離子半徑大小和離子所帶的電荷數有關。離子交換樹脂的吸附能力與金屬離子的電荷數、價態和金屬離子的半徑成正比。
離子交換樹脂的選擇性:
經過實驗證明,低濃度、常溫下,離子交換樹脂對不同離子的吸附能力順序有下列規律。
陽離子交換樹脂對金屬離子的吸附順序是:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。
強鹼性陰離子樹脂對陰離子的吸附順序是:
SO42->NO3->CI->HCO3->OH-。
弱鹼性陰離子樹脂對陰離子的吸附順序是:
OH->檸檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-
>HCO3-。
Ⅸ 採用離子交換柱純化蛋白時,洗脫採用的離子強度的大小范圍應該如何確定
離子交換純化是利用離子交換劑上的可解離基團(活性基團)對各種離子的親和力內不一樣人達容到分離的目的的一種分離技術。離子交換劑是含有若幹活性基團 的不溶性物質,即在不溶性母體上引入若干可解離基團而成,根據引入解離基團的不同,可以分為陽離子交換劑和陰離子交換劑。各種離子對離子交換劑的親和力各 不相同,親和力隨離子的價數與原子序數增加而增加,而隨離子水化膜半徑的增加而降低。對具體離子交換純化,需要主要離子交換劑的選擇和處理。洗脫不同蛋白 的最恰當的離子強度液不一定一樣,通常採用濃度梯度和PH梯度相結合的方式洗脫,純化不同的蛋白最好先摸一摸洗脫液的離子濃度和PH值……
……………………
………………………………
離子交換介質 http://proct.bio1000.com/100025/
Ⅹ 離子交換曾新與親和層析兩種轉化分子力蛋白的哪種方法效果好
離子交換曾新與親和層析兩種轉化分子力蛋白的哪種方法效果好
離子交換層析是利用離子交換劑上的可交換離子與周圍介質中被分離的各種離子間的親和力不同,經過交換平衡達到分離的目的的一種柱層析法.
該法可以同時分析多種離子化合物,具有靈敏度高,重復性、選擇性好,分離速度快等優點,是當前最常用的層析法之一,常用於多種離子型生物分子的分離,包括蛋白質、氨基酸、多肽及核酸等.
離子交換層析對物質的分離通常是在一根充填有離子交換劑的玻璃交換劑的玻璃管中進行的.
離子交換劑為人工合成的多聚物,其上帶有許多可電離基團,根據這些基團所帶電荷的不同,可分為陰離子交換劑和陽離子交換劑.
含有預被分離的離子的溶液通過離子交換柱時,各種離子即與離子交換劑上的荷電部位競爭結合.
任何離子通過柱時的移動速率取決於與離子交換劑的親和力、電離程度和溶液中各種競爭性離子的性質和濃度.
離子交換劑是由基質、荷電基團和反離子構成,在水中呈不溶解狀態,能釋放出反離子.
同時它與溶液中的其他離子或離子化合物相互結合,結合後不改變本身和被結合離子或離子化合物的理化性質.
離子交換層劑與水溶液中離子或離子化合物所進行的離子交換反應是可逆的.
假定以RA代表陽離子交換劑,在溶液中解離出來的陽離子A+與溶液中的陽離子B+可發生可逆的交換反應:RA+B+↔RB+A+;該反應能以極快的速度達到平衡,平衡的移動遵循質量作用定律.