Ⅰ 陽離子交換量與重金屬污染之間的關系
關系:不同的粘土礦物中含腐殖質和2:1性粘土礦物較多,陽離子交換量較大。而含高嶺石和氧化物的土壤鹽離子交換量較小。這就是北方土壤保肥性能好的原因之一。
土壤膠體的負電特性,其電荷分為可變電荷和固定電荷,當pH較低時,整個性質就會發生變化。陽離子交換,負電荷的土壤膠體表面吸附有一些可交換態的陽離子,當污染物特別是重金屬類物質與土壤接觸時,由於其於土壤膠體表面基團具有更強的結合能力,從而取代部分正電性基團。
測定方法
土壤陽離子的測定受多種因素影響,如交換劑的性質、鹽溶液的濃度和pH、淋洗方法等。聯合國糧農組織規定用於土壤分類的土壤分析中使用經典的中性乙酸銨法或乙酸鈉法。
NaOAc法是廣泛應用於石灰性土壤和鹽鹼土壤交換量測定的常規方法。中性乙酸銨法是我國土壤和農化實驗室所採用的常規分析方法,適於酸性和中性土壤。
以上內容參考:網路-土壤陽離子交換量
Ⅱ 陽離子交換質量作用方程
(一)陽離子吸附親合力
就特定的固相物質而言,陽離子吸附親合力是不同的。影響陽離子吸附親合力的因素主要是;(1)同價離子,其吸附親合力隨離子半徑及離子水化程度而差異,一般來說,它隨離子半徑的增加而增加,隨水化程度的增加而降低;離子半徑越小,水化程度越高。例如Na+、K+、NH4+的離子半徑分別為0.98、1.33和1.43Å,其水化半徑分別為7.9、5.37和5.32Å;他們的親合力順序為NH4+>K+>Na+。(2)一般來說,高價離子的吸附親合力高於低價離子的吸附親合力。
按各元素吸附親合力的排序如下:
水文地球化學基礎
上述排序中,H+是一個例外,它雖然是一價陽離子,但它具有兩價或三價陽離子一樣的吸附親合力。
值得注意的是,上述排序並不是絕對的,因為陽離子交換服從質量作用定律,所以吸附親合力很弱的離子,只要濃度足夠大,也可以交換吸附親合力很強而濃度較小的離子。
(二)陽離子交換質量作用方程
按質量作用定律,陽離子交換反應可表示為:
水文地球化學基礎
式中,KA-B為陽離子交換平衡常數,A和B為水中的離子,Ax和Bx為吸附在固體顆表面的離子,方括弧表示活度。
以Na-Ca交換為例,其交換反應方程為:
水文地球化學基礎
(1.146)式表明,交換反應是等當量交換,是個可逆過程;兩個鈉離子交換一個鈣離子。如果水中的Na+交換已被吸附在固體顆粒表面的Ca2+(即Cax),則反應向右進行;反之,則向左進行。如反應向右進行,那麼,就鈣離子而言,是個解吸過程;就鈉離子而言,是個吸附過程。所以,陽離子交換反應,實際上是一個吸附-解吸過程。
在地下水系統中,Na-Ca交換是一種進行得最廣泛的陽離子交換。例如,當海水入侵到淡水含水層時,由於海水Na+遠高於淡水,而且淡水含水層顆粒表面可交換性的陽離子主要是Ca2+,因此產生海水中的Na+與顆粒表面的Ca2+產生交換,形成Na+被吸附而Ca2+被解吸,方程(1.146)向右進行。又如,如果在某個地質歷史里,淡水滲入海相地層,按上述類似的機理判斷,則產生Na+被解吸Ca2+被吸附的過程,方程(1.146)向左進行。
Na-Ca交換反應方向的判斷,以及對地下水化學成分的影響,仍至對土壤環境的影響,是水文地球化學及土壤學中一個很重要的問題,後面將作更詳細的介紹。
上述(1.145)式中都使用活度,水中的A和B離子活度可以按第一節所提供的方法求得,但如何求得被吸附的陽離子(Ax和Bx)的活度,目前還沒有太滿意的解決辦法。萬賽羅(Vanselow,1932)〔7〕提出,規定被吸附離子的摩爾分數等於其活度。
摩爾分數的定義為:某溶質的摩爾分數等於某溶質的摩爾數與溶液中所有溶質摩爾數和溶劑摩爾數總和之比。其數學表達式如下
水文地球化學基礎
式中,xB為B組分的摩爾分數,無量綱;mA為溶劑的摩爾數(mol/L);mB、mC、mD、……為溶質B、C、D……的摩爾數(mol/L)。就水溶液而言,溶劑是水,1mol H2O=18g,lL H2O=1000g,所以l升溶劑(H2O)的摩爾數=1000/18=55.56mol/L。
按照上述摩爾分數的定義,Ax和Bx的摩爾分數的數學表達式為:
水文地球化學基礎
式中,NA和NB分別為被吸附離子A和B的摩爾分數;(Ax)和(Bx)分別為被吸附離子A和B的摩爾數(mol/kg)。
以摩爾分數代替被吸附離子A和B的活度。則(2.145)的交換平衡表達式可寫成:
水文地球化學基礎
式中,
從理論上講,
在研究陽離子交換反應時,人們關心的問題是,在地下水滲流過程中,從補給區流到排泄區,由於陽離子交換反應,地下水中的陽離子濃度將會產生何種變化?為了簡化問題起見,假定其他反應對陽離子濃度的變化都可忽略,那麼從理論上講,地下水從原來的地段進入一個具有明顯交換能力的新地段後,必然會破壞其原有的陽離子交換平衡,而調整到一個新的交換平衡條件。達到新的平衡後,其陽離子濃度的變化主要取決於:(1)新地段固體顆粒表面各種交換性陽離子的濃度,以及它們互相間的比值;(2)進入新地段地下水的原有化學成分,特別是陽離子濃度。隨著地下水的不斷向前流動,陽離子交換平衡不斷被打破,又不斷地建立新的平衡。其結果是,不但水的陽離子濃度變化了,含水層固體顆粒表面有關的交換性陽離子濃度也改變了。為了定量地說明上述理論上的判斷,特列舉下列例題的計算。
例題1.8
在某一地下水流動系統中,有一段具有明顯陽離子交換能力且含有大量粘土礦物的地段,試利用陽離子交換質量平衡方程(2.150),計算地下水達到新的交換平衡後,水中Ca2+和Mg2+濃度的變化,含水層粘土礦物顆粒表面交換性陽離子(被吸附的陽離子)濃度的變化。
假定:(1)含粘土礦物地段的陽離子交換容量為100meq/100g,交換性陽離子只有Ca2+和Mg2+,且Cax=Mgx,即Cax=Mgx=50meq/100g;(2)進入該地段前,地下水中的Ca2+和Mg2+濃度也相等,即Ca2+=Mg2+=1×10-3mol/L;(3)該含水層地段的有關參數:孔隙度n=0.33;固體顆粒密度ρ=2.65g/cm3;(4)地下水與該地段粘土礦物顆粒相互作用後,達到平衡時,選擇系數
計算步驟:
(1)求新的地下水進入該地段前的NCa和NMg
按題意所給,Cax=Mgx=50meq/100g。把它們換算為以mol/g表示,則Cax=Mgx=0.25×10-8mol/g;將此數據代入(1.149)式,則
NCa=NMg=0.5
(2)求新的地下水剛進入該地段時,起始狀態的
按質量作用定律,Ca-Mg交換方程為:
水文地球化學基礎
交換平衡後,雖然各自的摩爾分數有所增減,但其總數仍然不變,即NCa+NMg=1。
設達到新交換平衡時,NCa=Y,那麼,NMg=1-Y。
把上述假設代入(1.151)式,則
水文地球化學基礎
因達到新的交換平衡時,
水文地球化學基礎
因達到新交換平衡時,Cax和Mgx雖然有變化,那其總和仍然不變,即Cax+Mgx=0.5。設那時的Cax=Z,那麼:
水文地球化學基礎
把(1.154)式代入(1.153)式,得:
水文地球化學基礎
由於達到交換平衡前後,固相中的交換性鈣離子(Cax)和液相中的溶解鈣離子的總和不變。就一升水及其所接觸的岩土而論,達到交換平衡前,一升水的Ca2+為1mmol;岩土中的Cax=0.25mmol/g,-升水所佔據的岩土體積=5379.5g。達交換平衡後,一升水的Ca2+摩爾數為x,岩土中交換性鈣離子(Cax)濃度為Z。那麼,其均衡方程為:
水文地球化學基礎
式的左邊,為交換平衡前固液相中鈣離子總量(mmol);式的右邊,為交換平衡後固液相中鈣離子總量(mmol)。
整理(1.156)式,得:
水文地球化學基礎
把(1.157)式代入(1.155)式,整理後得:
水文地球化學基礎
解方程(1.158),得:
Z=0.250046,即交換平衡後,Cax=0.250046mmol/g
那麼,Mgx=0.5-0.250046=0.249954mmol/L
按上述計算摩爾分數的方法,得:
NCa=0.50009,NMg=0.49991
把所算得的Z值代入(1.157),得:
x=0.7525,即交換平衡後,〔Ca2+〕=0.7525mmol/L
那麼,〔Mg2+〕=2-0.7525=1.2475mmol/L
上述計算結果說明,當新的地下水通過交換地段,達到交換平衡時,吸附的陽離子(Ca2+和Mg2+)的濃度或摩爾分數的比值變化極小;相比之下,地下水中Ca2+和Mg2+的濃度變化很大,〔Mg2+〕/〔Ca2+〕從1約增至1.7。如果隨後進入該地段的地下水〔Mg2+〕/(Ca2+)仍然是1的話,地下水再次破壞了剛建立起來的交換平衡,交換反應又繼續進行,直至NMg/NCa=O.6為止。此時,新流入地下水的Ca2+和Mg2+的濃度才不會改變。然而,要達到此種狀態,必需通過無數個孔隙體積的水,甚至要幾百萬年時間才能完成。
上述計算還說明,陽離子的交換方向,從左向右進行(2.151式),水中的Ca2+被吸附,而固相表面所吸附的Mg2+不斷被解吸。交換反應方向不僅取決於水中兩種離子的濃度比,同時也取決於吸附離子的摩爾分數比。如若交換的起始條件為NMg=0.375和NCa=0.625,流入的水,其鈣鎂活度比為1,那麼流過該地段的地下水,其Ca2+和Mg2+的濃度就沒有變化了。如若交換的起始條件為NMg/NCa<0.6,其交換方向則與上述相反,從右向左進行(2.151式)。
(三)地下水系統中的Na-Ca交換
地下水中Na-Ca交換在地下水化學成分形成和演變過程中,是一個很重要的陽離子交換過程,它無論在深層地下水形成和演變,或者在淺層潛水水化學成分的改變,特別是硬度升高等方面,都具有重要意義;在土壤科學中,它對鹽鹼土的形成,也有重要作用。
地下水系統中,固液相間的Na-Ca交換也服從質量作用定律,但其質量作用方程的表達形式不同。其交換反應如下:
水文地球化學基礎
(2.159)反應最常用的質量作用方程是Gappn方程:
水文地球化學基礎
在Gapon方程的基礎上,又有許多學者提出類似於此方程的各種表達式。例如,美國鹽實驗室〔17〕在研究灌溉水與土壤間的Na-Ca交換時,提出類似於Gapon方程的表達式:
水文地球化學基礎
式中,Nax為達到交換平衡時土壤的交換性鈉量(meq/100g);CEC為土壤的陽離子交換容量(meq/100g);Na+、Ca2+和Mg2+是達交換平衡時水中這些離子的濃度(meq/L);K為平衡常數。
(1.161)式左邊項表示為:
水文地球化學基礎
式中的ESR稱為「交換性鈉比」。
(1.16l)式右邊項表示為:
水文地球化學基礎
式中的「SAR」稱為鈉吸附比,它是Na-Ca交換中一個很重要的參數。(1.161)式可改寫成:
水文地球化學基礎
(1.164)式說明,ESR與SAR線性相關,水中的SAR越高,岩土中的ESR值也越大,岩土中的Nax也越高。許多學者通過岩土的Na-Ca交換試驗,得出了有關回歸方程,列於表1.20。
表1.20Na-Ca交換的回歸方程
表1.20中的Na-Ca交換方程是實驗方程,應用起來當然有其局限性。其中,美國鹽實驗室的回歸方程是用美國西部12個土壤剖面59個土樣試驗得出的,所以其代表性較好。盡管有其局限性,但是,應用此類方程判斷Na-Ca交換的方向,定量化計算其交換量,還是比較有效的。表1.21的數據充分說明這一推斷。
表1.21Na-Ca試驗中某些參數的變化〔2〕
表1.21中是一組Na-Ca交換試驗數據,其中包括實測值與計算值的對比。表中的數據可說明以下幾點;
(1)Na-Ca交換反應方向取決於水中的起始SAR值,及岩土中的起始ESR值。例如,用SAR值分別為0.73和9.81的水淋濾ESR值為0.046的同一種土壤時,淋濾後,前者的(Cax+Mgx)從8.56增至8.76meq/100g,水中的Ca2+和Mg2+被吸附,而固體顆粒表面的交換性Na+解吸到水中,按(1.159)式,其交換反應方向朝左進行;相反,後者的(Cax+Mgx)從8.56減至7.52meq/100g,水中的Na+被吸附,而固體顆粒表面的交換性Ca2+和Mg2+解吸進入水中,按(1.159)式,其交換反應向右進行。如果起始條件已知,即水中的SAR值及岩土中的ESR值已知,也可判斷其反應方向。例如,把表1.21中的SAR值0.73和9.81分別代入表1.20中的3號方程,ESR值的計算值分別為0.038和0.1379。前者的ESR計算值(0.038)小於土壤的起始ESR值(0.046,見表1.21),反應按(1.159)式向左進行;後者的SER計算值(0.1379)明顯大於土壤的起始ESR值(0.046),反應按(1.159)式向右進行。也就是說;如果ESR計算值小於岩土的ESR值,反應向左進行;反之,則相反。當然,如果土壤的起始ESR值為0.038,與S4R值為0.73的水相互作用時,Na-Ca交換處於平衡狀態,水中的Na+、Ca2+和Mg2+濃度不會改變。表1.22是現場試驗結果,結果說明,SAR值越高,固體表面解吸出來的Ca2+和Mg2+就越多,水的硬度增加就越大。這些數據充分證明了上述理論。
表1.22SAR值不同的污水現場試驗結果〔2〕
註:硬度以CaCO3計(mg/L)。
(2)把Na-Ca交換方程應用於實際是比較可靠的。表1.21中(Cax+Mgx)的實測值及計算值相差很小,說明了這一點。其計算方法如下:以計算SAR=0.73的水為例,將0.73代入表1.20中的方程3,求得ESR=0.038;將此值及CEC值(8.96)代入(1.162)式,求得Nax=0.328meq/100g;將CEC值減去Nax值,即為(Cax+Mgx)值(因為土中吸附的陽離子主要是Na+、Ca2+和Mg2+),其值為8.63meq/100g。
SAR值不僅在研究Na-Ca交換反應中是重要的,而且它是灌溉水質的一個重要參數。前面談到,SAR高的水,在水岩作用過程中,引起水中的Na+被吸附到固相顆粒表面上,2個Na+交換一個Ca2+或Mg2+(等當量交換)。因為2個Na2+的大小比一個Ca2+或Mg2+大,因而引起土壤的透氣性減小,產生板結及鹽鹼化。有關SAR值的灌溉水質標准可參考有關文獻。本書不詳述。
Ⅲ 如何評價土壤陽離子交換量的數據
土壤陽離子交換量的影響因素有
膠體的類型;土壤質地;土壤ph值等。不同的粘專土礦物中含腐殖質屬和2:1性粘土礦物較多,陽離子交換量較大。而含高嶺石和氧化物的土壤鹽離子交換量較小。這就是北方土壤保肥性能好的原因之一。交換量大也就是土壤能吸附和交換的陽離子容量大,對肥料的影響就不同了。我也總結不好。你還是找本土壤學、植物營養肥料學看看好了。
一般陽離子交換量直接反映了土壤的保肥、供肥性能和緩沖能力。交換量在>20cmol(+)/kg保肥力強的土壤;20~10cmol(+)/kg為保肥力中等的土壤;<10cmol(+)/kg為保肥力弱的土壤。
Ⅳ 什麼叫黏土的陽離子交換容量其大小與水化性能有何關系
不同土壤來的陽離子源交換量不同,主要影響因素:a,土壤膠體類型,不同類型的土壤膠體其陽離子交換量差異較大,例如,有機膠體>蒙脫石>水化雲母>高嶺石>含水氧化鐵、鋁。b,土壤質地越細,其陽離子交換量越高。c,對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大。d,土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大。土壤陽離子交換量是影響土壤緩沖能力高低,也是評價土壤保肥能力、改良土壤和合理施肥的重要依據。
Ⅳ 影響土壤陽離子交換量大小的因素有哪些
不同土壤的陽離子交換量不同,主要影響因素:a,土壤膠體類型,不同類型的土版壤膠體其陽離子交換量權差異較大,例如,有機膠體>蒙脫石>水化雲母>高嶺石>含水氧化鐵、鋁。b,土壤質地越細,其陽離子交換量越高。c,對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大。d,土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大。土壤陽離子交換量是影響土壤緩沖能力高低,也是評價土壤保肥能力、改良土壤和合理施肥的重要依據。
Ⅵ 影響土壤交換性離子有效性的因素有哪些在生產實踐中有何意義
陽離子交換使土壤比較重要的性質之一,使土壤本身的特有屬性,主要原因就是土壤膠體的負電特性,其電荷分為可變電荷和固定電荷,當pH較低時(到達等電點時),整個性質就會發生變化.陽離子交換,顧名思義,負電荷的土壤膠體表面吸附有一些可交換態的陽
Ⅶ 離子交替吸附作用
離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。
圖2-5-3 有機質表面的負電荷
圖2-5-4 陽離子交替吸附作用圖解
2.5.2.1 離子交換容量
離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:
水文地球化學
在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。
鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:
(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。
表2-5-2 一些粘土礦物及土壤的陽離子交換容量
(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。
(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。
2.5.2.2 陽離子交換反應及平衡
陽離子交換反應的一般形式可寫為:
水文地球化學
式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:
水文地球化學
式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:
水文地球化學
顯然,xA+xB=1。這樣式(2-5-7)可改寫為:
水文地球化學
Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:
水文地球化學
同樣,yA+yB=1,這樣式(2-5-7)變為:
水文地球化學
目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。
若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:
水文地球化學
交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:
水文地球化學
的交換系數為:
水文地球化學
這是因為(以Vanselow慣例為例):
水文地球化學
故有:
水文地球化學
表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。
需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:
水文地球化學
表2-5-3 不同離子與Na+發生交換反應時的交換系數
其交換系數的定義式如下:
水文地球化學
【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:
(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;
(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;
(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3;
(4)含水層中發生的陽離子交換反應為:
水文地球化學
不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:
水文地球化學
試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。
【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:
水文地球化學
整理得:
水文地球化學
已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:
水文地球化學
以式(2-5-25)帶入式(2-5-24)得:
水文地球化學
為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:
水文地球化學
故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:
水文地球化學
式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:
水文地球化學
以式(2-5-26)帶入式(2-5-28)並整理得:
水文地球化學
這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。
2.5.2.3 分配系數及離子的吸附親和力
除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:
水文地球化學
式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:
水文地球化學
由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。
事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。
圖2-5-5 溶液中Ca2+的含量對吸附作用的影響
根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:
(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。
(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。
Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:
水文地球化學
在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。
綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):
水文地球化學
可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。
離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:
水文地球化學
由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。
地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:
水文地球化學
人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+。
Ⅷ 影響陽離子交換能力的因素有哪些
土壤溶液來中的陽離子進行交自換,稱為陽離子的交換作用。影響因素有——(1)陽離子的代換能力隨離子價數的增加而增大,因為高價陽離子的電荷量大、電性強所以代換能力也大,各種陽離子代換力的大小順序:Na+<K+<NH4+<Mg2+<Ca2+<H+<Al3+<Fe3+(2)等價離子代換能力的大小,隨原子序數的增加而增大(3)離子運動速度愈大,交換力愈強(4)陽離子的相對濃度及交換生成物的性質。
影響土壤陽離子交換量的因素有:陽離子交換量:每千克干土中所含的全部陽離子總量,以厘摩爾(+)每千克土或 c mol(+)kg的-1次冪表示。影響因素——(1)膠體的種類,有機膠體>無機膠體,有機質高的>有機質低的,次生鋁硅酸鹽(2:1>1:1)>次生氧化物(2)溶液的pH值(3)土壤質地,質地愈細交換量愈高。
Ⅸ 影響交換性陽離子有效度的因素有哪些
土壤的鹽鹼性與降水的關系十分密切,但並不是所有地區土壤的鹽鹼性都是受降水量來決定。土壤之所以有酸鹼性,是因為在土壤中存在少量的氫離子和氫氧離子。當氫離子的濃度大於氫氧離子的濃度時,土壤呈酸性;反之呈鹼性;兩者相等時則為中性。影響土壤鹽鹼度的因素除了降水之外,現在我們更多考慮的是由於人類不合理的生產方式造成了乾旱、半乾旱地區的土壤次生鹽鹼化。土壤性質
(一)土壤吸附性
土壤中兩個最活躍的組分是土壤膠體和土壤微生物,它們對污染物在土壤中的遷移、轉化有重要作用。土壤膠體以其巨大的比表面積和帶電性,而使土壤具有吸附性。
1、土壤膠體的性質
1)土壤膠體具有巨大的比表面和表面能:比表面是單位重量(或體積)物質的表面積。定體積的物質被分割時,隨著顆粒數的增多,比表面也顯著地增大。物質的比表面越大,表面能也就越大。
2)土壤膠體的電性:土壤膠體微粒具有雙電層,微粒的內部稱微粒核,一般帶負電荷,形成一個負離子(即決定電位離子層)其外部由於電性吸引,而形成一個正離子(又稱反離子層,包括非活動性離子層和擴散層),即合稱為雙電層。
3)土壤膠體的凝聚性和分散性:由於膠體的比表面和表面能都很大,為了減小表面能膠體具有相互吸引,凝聚的趨勢,這就是膠體的凝聚性。但是在土壤溶液中,膠體常帶負電荷,即具有負的電動電位,所以膠體微粒又因相同而相互排斥,電動電位越高,相互排斥力越強,膠體微粒呈現出的分散性也越強。
影響土壤凝聚性能的主要因素是土壤膠體的電動電位和擴散層厚度,例如土壤溶液中陽離子增多,由於土壤膠體表面負電荷被中和,從而較強土壤的凝聚。此外,土壤溶液中電解質濃度、pH值也將影響其凝聚性能。
2、土壤膠體的離子交換吸附
在土壤膠體雙電層擴散層中,補償離子可以和溶液中相同電荷的離子價為依據作等價交換,稱為離子交換(或代換)。離子交換作用包括陽離子吸附作用和陰離子交換吸附作用。
每千克干土中所含全部陽離子總量,稱為陽離子交換量。土壤的可交換性陽離子有兩類:一類是致酸離子,包括H+和Al3+;另一類是鹽基離子,包括Ca2+、Mg2+、K+、Na+、NH4+等。當土壤膠體上吸附的陽離子均為鹽基離子,且已達到吸附飽和時的土壤,稱為鹽基飽和土壤,否則,這種土壤為鹽基不飽和土壤。在土壤交換性陽離子中鹽基離子所佔的百分數稱為土壤鹽基飽和度。它與土壤母質、氣候等因素有關。
3、土壤酸鹼性
由於土壤是一個復雜的體系,其中存在著各種化學和生物化學反應,因而使土壤表現出不同的酸鹼性。
我國土壤的pH大多在4.5~8.5范圍內,並有由南向北pH值遞增的規律性,長江(北緯330)以南的土壤多為酸性和強酸性,如華南、西南地區廣泛分布的紅壤、黃壤;pH值大多數在4.5~5.5之間,有少數低至3.6~3.8;華中華東地區的紅壤,pH值在5.5~6.5之間;長江以北的土壤多為中性或鹼性,如華北、西北的土壤大多含CaCO3,pH值在7.5~8.5之間,少數強鹼性的pH值高達10.5。
1)土壤酸度
根據土壤中H+離子的存在方式,土壤酸度可分為兩大類:
(1)活性酸度:土壤的活性酸度是土壤溶液中氫離子濃度的直接反映,又稱有效酸度,通常用pH表示。
土壤溶液中氫離子的來源,主要是土壤中CO2溶於水形成的碳酸和有機物質分解產生的有機酸,以及土壤中礦物質氧化產生的無機酸,還有施用肥料中殘留的無機酸,如硝酸、硫酸和磷酸等。此外,由於大氣污染形成的大氣酸沉降,也會使土壤酸化,所以它也是土壤活性酸度的一個重要來源。
(2)潛性酸度:土壤潛性酸度的來源是土壤膠體吸附的可代換性H+和Al3+。當這些離子處於吸附狀態時,是不顯酸性的,但當它們通過離子交換作用進入土壤溶液之後,可增加土壤的H+濃度,使土壤pH值降低。只有鹽基不飽和土壤才有潛性酸度,其大小與土壤代換量和鹽基飽和度有關。
根據測定土壤潛性酸度所用的提取液,可以把潛性酸度分為代換性酸度和水解酸度。
用過量中性鹽(如NaCl或KCl)溶液淋洗土壤,溶液中金屬離子與土壤中H+和Al3+發生離子交換作用,而表現出的酸度,稱為代換性酸度。由土壤礦物質膠體釋放出的氫離子是很少的,只有土壤腐殖質中的腐殖酸才可產生較多的氫離子。
近代研究已經確認,代換性Al3+是礦物質土壤中潛性酸度的主要來源。例如,紅壤的潛性酸度95%以上是由代換性Al3+產生的。
用弱酸強鹼鹽(如醋酸鈉)淋洗土壤,溶液中金屬離子可以將土壤膠體吸附的H+、Al3+代換出來,同時生成某弱酸(醋酸)。此時,測定出的該弱酸的酸度稱為水解性酸度。
水解性酸度一般比代換性酸度高。由於中性鹽所測出的代換性酸度只是水解性酸度的一部分,當土壤溶液在鹼性增大時,土壤膠體上吸附的H+較多被代換出來,所以水解酸度較大。但在紅壤和灰化土中,由於膠體中氫氧根離子中和醋酸,且對醋酸分子有吸附作用,因此,水解性酸度接近於或低於代換性酸度。
(3)活性酸度與潛性酸度的關系:土壤的活性酸度與潛性酸度是同一個平衡體系的兩種酸度。二者可以相互轉化,在一定條件下處於暫時平衡狀態。土壤活性酸度是土壤酸度的根本起點和現實表現。土壤膠體是H+和Al3+的儲存庫,潛性酸度則是活性酸度的儲備。土壤的潛性酸度往往比活性酸度大得多,相差達幾個數量級。
2)土壤鹼度
土壤溶液中OH -離子的主要來源是碳酸根和碳酸氫根的鹼金屬(Ca、Mg)的鹽類。碳酸鹽鹼度和重碳酸鹽度的總稱為總鹼度。不同溶解度的碳酸鹽和重碳酸鹽對土壤鹼性的貢獻不同,CaCO3和MgCO3的溶解度很小,故富含CaCO3和MgCO3的石灰性土壤呈弱鹼性(pH在7.5~8.5);Na2CO3、NaHCO3及Ca(HCO3)2 等都是水溶性鹽類,可以出現在土壤溶液中,使土壤溶液中的鹼度很高,從土壤pH來看,含Na2CO3的土壤,其pH值一般較高,可達10以上,而含NaHCO3及Ca(HCO3)2的土壤,其pH值常在7.5~8.5,鹼性較弱。
當土壤膠體上吸附的Na+、K+、Mg2+(主要是Na+)等離子的飽和度增加到一定程度時會引起交換性陽離子的水解作用。結果在土壤溶液中產生NaOH,使土壤呈鹼性。此時Na+離子飽和度亦稱土壤鹼化度。膠體上吸附的鹽基離子不同,對土壤pH值或土壤鹼度的影響也不同。
3)土壤的緩沖性能
土壤緩沖性能是指具有緩和酸鹼度發生劇烈變化的能力,它可以保持土壤反應的相對穩定,為植物生長和土壤生物的活動創造比較穩定的生活環境,所以土壤的緩沖性能是土壤的重要性質之一。
(1)土壤溶液的緩沖作用:土壤溶液中含有碳酸、硅酸、磷酸、腐殖酸和其它有機酸等弱酸及其鹽類,構成一個良好的緩沖體系,對酸鹼具有緩沖作用。
(2)土壤膠體的緩沖作用:土壤膠體吸附有各種陽離子,其中鹽基離子和氫離子能分別對酸和鹼起緩沖作用。
土壤膠體的數量和鹽基代換量越大,土壤的緩沖性能就越強。因此,砂土摻粘土及施用各種有機肥料,都是提高土壤緩沖性能的有效措施。在代換量相等的條件下,鹽基飽和度愈高,土壤對酸的緩沖能力愈大;反之,鹽基飽和度愈低,土壤對鹼的緩沖能力愈大。
另外,鋁離子對鹼的也能起到緩沖作用。
(二)土壤氧化還原性
土壤中有許多有機和無機的氧化性和還原性物質,因而使土壤具有氧化還原特性。一般,土壤中主要的氧化劑有:氧氣、NO3-和高價金屬離子,如鐵(Ⅲ)、錳(Ⅳ)、釩(Ⅴ)、鈦(Ⅵ)等。主要的還原劑有:有機質和低價金屬離子。此外,土壤中植物的根系和土壤生物也是土壤發生氧化還原反應的重要參與者。
土壤氧化還原能力的大小可以用土壤的氧化還原電位來衡量。一般旱地土壤好氧化還原電位為+400~+700mV;水田的氧化還原電位在+300~-200 mV。根據土壤的氧化還原電位值可以確定土壤中有機物和無機物可能發生的氧化還原反應和環境行為。
Ⅹ 影響土壤陽離子交換量大小的因素有哪些
不同土壤的陽離子交換量不同,主要影響因素:a,土壤膠體類型,不同回類型的土壤膠體其答陽離子交換量差異較大,例如,有機膠體>蒙脫石>水化雲母>高嶺石>含水氧化鐵、鋁。b,土壤質地越細,其陽離子交換量越高。c,對於實際的土壤而言,土壤黏土礦物的SiO2/R2O3比率越高,其交換量就越大。d,土壤溶液pH值,因為土壤膠體微粒表面的羥基(OH)的解離受介質pH值的影響,當介質pH值降低時,土壤膠體微粒表面所負電荷也減少,其陽離子交換量也降低;反之就增大。土壤陽離子交換量是影響土壤緩沖能力高低,也是評價土壤保肥能力、改良土壤和合理施肥的重要依據。