❶ 請問青黴素加維生素B6能生成何種物質對人體能否造成傷害
青黴素 (Benzylpenicillin / Penicillin)
【簡介】
青黴素是指分子中含有青黴烷,能破壞細菌的細胞壁並在細菌細胞的繁殖期起殺菌作用的一類抗生素。
青黴素又被稱為青黴素G、peillin G、 盤尼西林、配尼西林、青黴素鈉、苄青黴素鈉、青黴素鉀、苄青黴素鉀。
青黴素是抗菌素的一種,是指從青黴菌培養液中提制的分子中含有青黴烷、能破壞細菌的細胞壁並在細菌細胞的繁殖期起殺菌作用的一類抗生素,是第一種能夠治療人類疾病的抗生素。青黴素類抗生素是β-內醯胺類中一大類抗生素的總稱。但它不能耐受耐葯菌株(如耐葯金葡)所產生的酶,易被其破壞,且其抗菌譜較窄,主要對革蘭氏陽性菌有效。青黴素G有鉀鹽、鈉鹽之分,鉀鹽不僅不能直接靜注,靜脈滴注時,也要仔細計算鉀離子量,以免注入人體形成高血鉀而抑制心臟功能,造成死亡。
青黴素類抗生素的毒性很小,由於β-內醯胺類作用於細菌的細胞壁,而人類只有細胞膜無細胞壁,故對人類的毒性較小,除能引起嚴重的過敏反應外,在一般用量下,其毒性不甚明顯.是化療指數最大的抗生素。但其青黴素類抗生素常見的過敏反應在各種葯物中居首位,發生率最高可達5%~10% ,為皮膚反應 ,表現皮疹、血管性水腫,最嚴重者為過敏性休克,多在注射後數分鍾內發生,症狀為呼吸困難、發紺、血壓下降、昏迷、肢體強直,最後驚厥,搶救不及時可造成死亡。各種給葯途徑或應用各種制劑都能引起過敏性休克,但以注射用葯的發生率最高。過敏反應的發生與葯物劑量大小無關。對本品高度過敏者,雖極微量亦能引起休克。注入體內可致癲癇樣發作。大劑量長時間注射對中樞神經系統有毒性(如引起抽搐、昏迷等),停葯或降低劑量可以恢復。
使用本品必須先做皮內試驗。青黴素過敏試驗包括皮膚試驗方法(簡稱青黴素皮試)及體外試驗方法,其中以皮內注射較准確。皮試本身也有一定的危險性,約有25%的過敏性休剋死亡的病人死於皮試。所以皮試或注射給葯時都應作好充分的搶救准備。在換用不同批號青黴素時,也需重作皮試。注射液、皮試液均不穩定,以新鮮配製為佳。而且對於自腎排泄,腎功能不良者,劑量應適當調整。此外,局部應用致敏機會多,且細菌易產生抗葯性,故不提倡。
【英文簡述】
Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name 「penicillin」 can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain.
【分類】
按其特點可分為 :
青黴素G類:如青黴素G鉀、青黴素G鈉、長效西林等。
青黴素V類:(別名:苯氧甲基青黴素、6-苯氧乙醯胺基青黴烷酸) 如青黴素V鉀等(包括有多種劑型)。
耐酶青黴素:如苯唑青黴素(新青Ⅱ號)、氯唑青黴素等。
廣譜青黴素:如氨苄青黴素、羥氨苄青黴素等。
抗綠膿桿菌的廣譜青黴素:如羧苄青黴素、氧哌嗪青黴素、呋苄青黴素等。
氮咪青黴素:如美西林及其酯匹美西林等,其特點為較耐酶,對某些陰性桿菌(如大腸、克雷伯氏和沙門氏菌)有效,但對綠膿桿菌效差。
【特點】
青黴素類抗生素是β-內醯胺類中一大類抗生素的總稱,由於β-內醯胺類作用於細菌的細胞壁,而人類只有細胞膜無細胞壁,故對人類的毒性較小,除能引起嚴重的過敏反應外,在一般用量下,其毒性不甚明顯,但它不能耐受耐葯菌株(如耐葯金葡)所產生的酶,易被其破壞,且其抗菌譜較窄,主要對革蘭氏陽性菌有效。青黴素G有鉀鹽、鈉鹽之分,鉀鹽不僅不能直接靜注,靜脈滴注時,也要仔細計算鉀離子量,以免注入人體形成高血鉀而抑制心臟功能,造成死亡。
青黴素類抗生素的毒性很小,是化療指數最大的抗生素。但其青黴素類抗生素常見的過敏反應在各種葯物中居首位,發生率最高可達5%~10% ,為皮膚反應 ,表現皮疹、血管性水腫,最嚴重者為過敏性休克,多在注射後數分鍾內發生,症狀為呼吸困難、發紺、血壓下降、昏迷、肢體強直,最後驚厥,搶救不及時可造成死亡。各種給葯途徑或應用各種制劑都能引起過敏性休克,但以注射用葯的發生率最高。過敏反應的發生與葯物劑量大小無關。對本品高度過敏者,雖極微量亦能引起休克。注入體內可致癲癇樣發作。大劑量長時間注射對中樞神經系統有毒性(如引起抽搐、昏迷等),停葯或降低劑量可以恢復。
【歷史發展】
20世紀40年代以前,人類一直未能掌握一種能高效治療細菌性感染且副作用小的葯物。當時若某人患了肺結核,那麼就意味著此人不久就會離開人世。為了改變這種局面,科研人員進行了長期探索,然而在這方面所取得的突破性進展卻源自一個意外發現。 亞歷山大·弗萊明由於一次幸運的過失而發現了青黴素。 在1928年夏弗萊明外出度假時,把實驗室里在培養皿中正生長著細菌這件事給忘了。3周後當他回實驗室時,注意到 一個與空氣意外接觸過的金黃色葡萄球菌培養皿中長出了一團青綠色黴菌。在用顯微鏡觀察這只培養皿時弗萊明發現,黴菌周圍的葡萄球菌菌落已被溶解。這意味著黴菌的某種分泌物能抑制葡萄球菌。此後的鑒定表明,上述黴菌為點青黴菌,因此弗萊明將其分泌的抑菌物質稱為青黴素。然而遺憾的是弗萊明一直未能找到提取高純度青黴素的方法,於是他將點青黴菌菌株一代代地培養,並於1939年將菌種提供給准備系統研究青黴素的澳大利亞病理學家弗洛里(Howard Walter Florey)和生物化學家錢恩。
通過一段時間的緊張實驗,弗洛里、錢恩終於用冷凍乾燥法提取了青黴素晶體。之後,弗洛里在一種甜瓜上發現了可供大量提取青黴素的黴菌,並用玉米粉調制出了相應的培養液。弗洛里和錢恩在1940年用青黴素重新做了實驗。他們給8隻小鼠注射了致死劑量的鏈球菌,然後給其中的4隻用青黴素治療。幾個小時內,只有那4隻用青黴素治療過的小鼠還健康活著。「這真像一個奇跡!」弗洛里說道。此後一系列臨床實驗證實了青黴素對鏈球菌、白喉桿菌等多種細菌感染的療效。青黴素之所以能既殺死病菌,又不損害人體細胞,原因在於青黴素所含的青黴烷能使病菌細胞壁的合成發生障礙,導致病菌溶解死亡,而人和動物的細胞則沒有細胞壁。但是青黴素會使個別人發生過敏反應,所以在應用前必須做皮試。在這些研究成果的推動下,美國制葯企業於1942年開始對青黴素進行大批量生產。到了1943年,制葯公司已經發現了批量生產青黴素的方法。當時英國和美國正在和納粹德國交戰。這種新的葯物對控制傷口感染非常有效。到1944年,葯物的供應已經足夠治療第二次世界大戰期間所有參戰的盟軍士兵。
1945年,弗萊明、弗洛里和錢恩因「發現青黴素及其臨床效用」而共同榮獲了諾貝爾生理學或醫學獎。
青黴素是一種高效、低毒、臨床應用廣泛的重要抗生素。它的研製成功大大增強了人類抵抗細菌性感染的能力,帶動了抗生素家族的誕生。它的出現開創了用抗生素治療疾病的新紀元。通過數十年的完善,青黴素針劑和口服青黴素已能分別治療肺炎、肺結核、腦膜炎、心內膜炎、白喉、炭疽等病。繼青黴素之後,鏈黴素、氯黴素、土黴素、四環素等抗生素不斷產生,增強了人類治療傳染性疾病的能力。但與此同時,部分病菌的抗葯性也在逐漸增強。為了解決這一問題,科研人員目前正在開發葯效更強的抗生素,探索如何阻止病菌獲得抵抗基因,並以植物為原料開發抗菌類葯物。
【葯理學】
內服易被胃酸和消化酶破壞。肌注或皮下注射後吸收較快,15~30min達血葯峰濃度。青黴素在體內半衰期較短,主要以原形從尿中排出。
氯黴素是具廣譜抗菌作用,對革蘭陰性菌的作用較革蘭陽性菌強,對傷寒桿菌、流感桿菌和百日咳桿菌的作用比其他抗生素強,對立克次體感染(如斑疹傷寒)以及病毒感染(如沙眼)均有較好作用。對布氏桿菌、大腸桿菌、產氣桿菌、肺炎桿菌、痢疾桿菌、霍亂弧菌、腦膜炎雙球菌、淋球菌等也有較強抗菌作用。本品屬抑菌劑,其作用機理主要抑制細菌蛋白質的合成,系作用於核糖核蛋白體的50S亞基上,抑制肽基轉移酶的作用,阻止了肽鏈的增長。臨床上主要用於傷寒、副傷寒和其他沙門氏菌感染,療效好,目前仍是治療這些疾病的首選葯物。
【作用】
青黴素對溶血性鏈球菌等鏈球菌屬,肺炎鏈球菌和不產青黴素酶的葡萄球菌具有良好抗菌作用。對腸球菌有中等度抗菌作用,淋病奈瑟菌、腦膜炎奈瑟菌、白喉棒狀桿菌、炭疽芽孢桿菌、牛型放線菌、念珠狀鏈桿菌、李斯特菌、鉤端螺旋體和梅毒螺旋體對本品敏感。本品對流感嗜血桿菌和百日咳鮑特氏菌亦具一定抗菌活性,其他革蘭陰性需氧或兼性厭氧菌對本品敏感性差.本品對梭狀芽孢桿菌屬、消化鏈球菌厭氧菌以及產黑色素擬桿菌等具良好抗菌作用,對脆弱擬桿菌的抗菌作用差。青黴素通過抑制細菌細胞壁四肽則鏈和五肽交連橋的結合而阻礙細胞壁合成而發揮殺菌作用。對革蘭陽性菌有效,由於革蘭陰性菌缺乏五肽交連橋而青黴素對其作用不大。
其中青黴素為以下感染的首選葯物:
1.溶血性鏈球菌感染,如咽炎、扁桃體炎、猩紅熱、丹毒、蜂窩織炎和產褥熱等
2.肺炎鏈球菌感染如肺炎、中耳炎、腦膜炎和菌血症等
3.不產青黴素酶葡萄球菌感染
4.炭疽
5.破傷風、氣性壞疽等梭狀芽孢桿菌感染
6.梅毒(包括先天性梅毒)
7.鉤端螺旋體病
8.回歸熱
9.白喉
10.青黴素與氨基糖苷類葯物聯合用於治療草綠色鏈球菌心內膜炎
青黴素亦可用於治療:
1.流行性腦脊髓膜炎
2.放線菌病
3.淋病
4.奮森咽峽炎
5.萊姆病
6.多殺巴斯德菌感染
7.鼠咬熱
8.李斯特菌感染
9.除脆弱擬桿菌以外的許多厭氧菌感染
風濕性心臟病或先天性心臟病患者進行口腔、牙科、胃腸道或泌尿生殖道手術和操作前,可用青黴素預防感染性心內膜炎發生
【生產方法】
天然青黴素與半合成青黴素生產方法完全不同。
天然青黴素
青黴素G生產可分為菌種發酵和提取精製兩個步驟。①菌種發酵:將產黃青黴菌接種到固體培養基上,在25℃下培養7~10天,即可得青黴菌孢子培養物。用無菌水將孢子製成懸浮液接種到種子罐內已滅菌的培養基中,通入無菌空氣、攪拌,在27℃下培養24~28h,然後將種子培養液接種到發酵罐已滅菌的含有苯乙酸前體的培養基中,通入無菌空氣,攪拌,在27℃下培養7天。在發酵過程中需補入苯乙酸前體及適量的培養基。②提取精製:將青黴素發酵液冷卻,過濾。濾液在pH2~2.5的條件下,於萃取機內用醋酸丁酯進行多級逆流萃取,得到丁酯萃取液,轉入pH7.0~7.2的緩沖液中,然後再轉入丁酯中,將此丁酯萃取液經活性炭脫色,加入成鹽劑,經共沸蒸餾即可得青黴素G鉀鹽。青黴素G鈉鹽是將青黴素G鉀鹽通過離子交換樹脂(鈉型)而製得。
半合成青黴素
以6APA為中間體與多種化學合成有機酸進行醯化反應,可製得各種類型的半合成青黴素。
6APA是利用微生物產生的青黴素醯化酶裂解青黴素G或V而得到。酶反應一般在40~50℃、pH8~10的條件下進行;近年來,酶固相化技術已應用於6APA生產,簡化了裂解工藝過程。6APA也可從青黴素G用化學法來裂解製得,但成本較高。側鏈的引入系將相應的有機酸先用氯化劑製成醯氯,然後根據醯氯的穩定性在水或有機溶劑中,以無機或有機鹼為縮合劑,與6APA進行醯化反應。縮合反應也可以在裂解液中直接進行而不需分離出6APA。
【劑型用法和用量】
片劑:每片0.25克。膠囊劑:每粒0.25克。注射劑:每支2毫升,含葯0.25克。滴眼劑:8毫克:0.02克。口服,每天成人1~2克;兒童每日按千克體重服用50~100毫克,分2~4次。肌注,成人每次0.5~1克,每天2次;兒童每日按千克體重服用25~50毫克,分2次。靜脈滴注,劑量同肌注,因注射劑系以丙二醇為溶劑,用時以等滲葡萄糖注射液或生理鹽水稀釋至2.5毫克:毫升供用,即2毫克(0.25克)以100毫升輸液稀釋,並應以乾燥空針抽取,以免析出結晶,稀釋完後應仔細檢查無結晶析出,方可使用。
【不良反應】
1.主要毒性反應是抑制骨髓造血機能,引起粒細胞及血小板減少症,用葯期間如發現輕度白細胞或血小板減少,應立即停葯,一般可恢復。氯黴素所致的再生障礙性貧血雖少見,但難逆轉,常可致死,多發生於兒童長期反復用氯黴素者,偶有用量很少而發病者。
2.過敏反應較少見,但也可引起皮疹,葯物熱。少數可引起黃疸,原有肝臟疾病者甚至可引起急性肝壞死。
3.可引起精神症狀如幻覺、譫妄,大多發生於用葯後3~5日,停葯後兩日內可消失。
4.口服後可發生胃腸道反應,如惡心、嘔吐、腹瀉、食慾不振等。
【副作用】
1 青黴素類的毒性很低,但較易發生變態反應,發生率約為5%�10%。多見的為皮疹、哮喘、葯物熱、嚴重的可致過敏性休克而引起死亡。
2 大劑量應用青黴素抗感染時,可出現神經精神症狀,如反射亢進、知覺障礙、抽搐、昏睡等,停葯或減少劑量可恢復。
3 使用青黴素前必須作皮膚過敏試驗。如果發生過敏性休克,應立即皮下或肌內注射0.1%腎上腺素0.5ml~1ml,同時給氧並使用抗組胺葯物及腎上腺皮質激素等。
4 肌注鉀鹽時局部疼痛較明顯,用苯甲醇溶液作為稀釋劑溶解,則可消除疼痛。
【細菌對青黴素類產生耐葯性】
細菌對青黴素類產生耐葯性主要有三種機制:
1.細菌產生β內醯胺酶,使青黴素類水解滅活;
2.細菌體內青黴素作用靶位——青黴素結合蛋白發生改變;
3.細胞壁對青黴素類的滲透性減低。其中以第一種機制最為常見,也最重要。
青黴素類抗生素水溶性好,血消除半衰期大多不超過2小時,主要經腎排出,多數品種可經血液透析清除。
按我國衛生部規定,使用青黴素類抗生素前均需做青黴素皮膚試驗,陽性反應者禁用。
【注意事項】
1.口服或注射給葯時忌與鹼性葯物配伍,以免分解失效。
2.本品不宜與鹽酸四環素、卡那黴素、多粘菌素E、磺胺嘧啶鈉、三磷酸腺苷、輔酶A等混合靜滴,以免發生沉澱或降效。
3.氯黴素與青黴素一般不要聯用,因氯黴素為抑菌劑,而青黴素為繁殖期殺菌劑,聯用可影響青黴素的抗菌活性而降效。但這一問題尚有爭論,意見不一,因兩者聯用對革蘭陽性菌、陰性菌混合感染及顱內感染臨床效果好。解決的辦法,如需聯用,宜先用青黴素2~3小時後再用氯黴素。
4.由於本品可抑制某些肝臟酶的活性,因此可干擾甲苯磺丁脲、苯妥英鈉和雙香豆素在人體內的生物轉化,可增強甲苯磺西脲、苯妥英鈉的作用,對雙香豆素和華法林的抗凝作用均可增強。
5.嬰兒、肝、腎功能減退者慎用,妊娠末期產婦慎用,哺乳期婦女忌用。
應用青黴素前除做皮試外,還要注意以下幾點:
1、要到有搶救設備的正規醫療單位注射青黴素,萬一發生過敏反應,可以得到及時有效的搶救治療。在注射過程中任何時候出現頭暈心慌、出汗、呼吸困難等不適,都要立即告訴醫生護士。
2、注射完青黴素,至少在醫院觀察20分鍾,無不適感才可離開。
3、不要在極度飢餓時應用青黴素,以防空腹時機體對葯物耐受性降低,誘發暈針等不良反應。
4、兩次注射時間不要相隔太近,以4—6小時為好。靜脈點滴青黴素時,開始速度不要太快,每分鍾以不超過40滴為宜,觀察10—20分鍾無不良反應再調整輸液速度。
5、如果當天有注射青黴素史,在家中出現頭暈心慌、出汗、呼吸困難等不適,應及時送醫院診治。
青黴素配伍應用中的相互作用:
近年來,臨床中出現濫用葯物的問題,造成一些不良反應,尤其是青黴素與其他葯物的配伍應用,所產生的相互作用和不良反應是不可忽視的。
1 青黴素不可與同類抗生素聯用
由於它們的抗菌譜和抗菌機制大部分相似,聯用效果並不相加。相反,合並用葯加重腎損害,還可以引起呼吸困難或呼吸停止。它們之間有交叉抗葯性,不主張兩種β-內醯胺類抗生素聯合應用。
2 青黴素不可與磺胺和四環素聯合用葯
青黴素屬繁殖期「殺菌劑」,阻礙細菌細胞壁的合成,四環素屬「抑菌劑」,影響菌體蛋白質的合成,二者聯合作用屬拮抗作用,一般情況下不應聯合用葯。臨床資料表明單用青黴素抗菌效力為90%,單用磺胺類葯效力為81%,兩者聯合用葯抗菌效力為75%,若非特殊情況不可聯合使用。
3 青黴素不可與氨基苷類聯合用葯
兩者混合同於輸液器給病人輸液,因青黴素的β-內醯胺可使慶大黴素產生滅活作用,其機制為兩者之間發生化學相互作用,故嚴禁混合應用,應採用青黴素靜脈滴注,慶大黴素肌肉注射。
綜上所述,青黴素聯用不當,由於葯物的相互作用,而導致葯物不良反應是不可低估的。青黴素是治療各種感染性疾病的最常用抗生素,嚴格掌握用葯的適應證,合理聯用,措施得力,減少不必要的不良反應。
【青黴素家族】
青黴素用於臨床是40年代初,人們對青黴素進行大量研究後又發現一些青黴素,當人們又對青黴素進行化學改造,得到了一些有效的半合成青黴素,70年代又從微生物代謝物中發現了一些母核與青黴素相似也含有β-內醯胺環,而不具有四氫噻唑環結構的青黴素類,可分為三代:第一代青黴素指天然青黴素,如青黴素G(苄青黴素);第二代青黴素是指以青黴素母核-6-氨基青黴烷酸(6-APA),改變側鏈而得到半合成青黴素,如甲氧苯青黴素、羧苄青黴素、氨苄青黴素;第三代青黴素是母核結構帶有與青黴素相同的β-內醯胺環,但不具有四氫噻唑環,如硫黴素、奴卡黴素。
【青黴素濃縮法】
利用青黴素特異性地殺死野生型細胞、保留營養缺陷型細胞的方法。青黴素能抑制細菌細胞壁的合成,所以只能殺死生長繁殖中的細菌,而不能殺死停止分裂的細菌。在只能使野生型生長而不能使突變型生長的選擇性液體培養基中,野生型被青黴素殺死,而突變型則不被殺死,從而淘汰野生型,使突變型得以濃縮。可適用於細菌和放線菌,是營養缺陷型突變體篩選的常用方法之一。
【島青黴素】
稻穀在收獲後如未及時脫粒乾燥就堆放很容易引起發霉。發霉穀物脫粒後即形成"黃變米"或"漚黃米",這主要是由於島青黴(Penicillium.islandicum)污染所致。黃變米在我國南方、日本和其他熱帶和亞熱帶地區比較普遍。小鼠每天口服200g受島青黴污染的黃變米,大約一周可死於肝肥大;如果每天飼喂0.05g黃變米,持續兩年可誘發肝癌。流行病學調查發現,肝癌發病率和居民過多食用霉變的大米有關。吃黃變米的人會引起中毒(肝壞死和肝昏迷)和肝硬化。島青黴除產生島青黴素(Silanditoxin)外,還可產生環氯素(Cyclochlorotin),黃天精(Luteoskyrin)和紅天精(Erythroskyrin)等多種黴菌毒素。
島青黴素和黃天精均有較強的致癌活性,其中黃天精的結構和黃麴黴素相似,毒性和致癌活性也與黃麴黴素相當。小鼠日服7mg/kg體重的黃天精數周可導致其肝壞死,長期低劑量攝入可導致肝癌。環氯素為含氯環結構的肽類,對小鼠經口LD50為6.55mg/kg體重,有很強的急性毒性。環氯素攝入後短時間內可引起小鼠肝的壞死性病變,小劑量長時間攝入可引起癌變。
❷ 電鍍廢水中含重金屬廢水的來源主要是那些
電鍍生產工藝復雜,工序繁多。含重金屬電鍍廢水的來源主要有以下幾方面:
1)前處理廢水。電鍍普遍採用鹽酸、硫酸進行除銹、除氧皮及浸蝕處理,工件基體重金屬離子溶解在清洗液;
2)電鍍工藝過程(包括學拋光和電學拋光)各工序清洗水。清洗水含有重金屬鹽類、表面活性劑、絡合物和光亮劑等。清洗廢水占電鍍廢水的絕大部分;
3)廢棄電鍍液。長期使用的鍍液,雜質不斷積累,當難以去除時,不得不將一部分或全部廢棄;學鍍液超過使用周期也會形成含重金屬廢液;
4)其他廢液。包括不合格的工件退鍍、鍍液分析、清洗濾芯、清洗生產場地、廢氣治理的廢液及各種設備的「跑、冒、滴、漏造成的廢水。
重金屬電鍍廢水
現代醫學研究表明,一些重金屬離子進入人體會使人致癌、致畸、致染色體突變,潛伏期可達數十年,一旦發病後果不堪設想,有人把重金屬危害形容為「慢刀子人」,是「生物定時炸彈」。
推薦閱讀:《重金屬捕捉劑—清源牌》
❸ 葯品的作用
我是葯劑學的大學生,總體理解,葯有幾在作用:
1,治病——主要是指對疾病的直接治療,就想感冒吃感冒葯。
2,防病——這里是說保健作用的葯品,比如市面上各類保健品,腦白金什麼的。
3,輔助葯品——對疾病的判斷有幫助的葯品,比如顯影劑。
❹ 青黴素的參考文獻啊急用啊
青黴素 (Benzylpenicillin / Penicillin)
【簡介】
青黴素是指分子中含有青黴烷,能破壞細菌的細胞壁並在細菌細胞的繁殖期起殺菌作用的一類抗生素。
青黴素又被稱為青黴素G、peillin G、 盤尼西林、配尼西林、青黴素鈉、苄青黴素鈉、青黴素鉀、苄青黴素鉀。
青黴素是抗菌素的一種,是指從青黴菌培養液中提制的分子中含有青黴烷、能破壞細菌的細胞壁並在細菌細胞的繁殖期起殺菌作用的一類抗生素,是第一種能夠治療人類疾病的抗生素。青黴素類抗生素是β-內醯胺類中一大類抗生素的總稱。但它不能耐受耐葯菌株(如耐葯金葡)所產生的酶,易被其破壞,且其抗菌譜較窄,主要對革蘭氏陽性菌有效。青黴素G有鉀鹽、鈉鹽之分,鉀鹽不僅不能直接靜注,靜脈滴注時,也要仔細計算鉀離子量,以免注入人體形成高血鉀而抑制心臟功能,造成死亡。
青黴素類抗生素的毒性很小,由於β-內醯胺類作用於細菌的細胞壁,而人類只有細胞膜無細胞壁,故對人類的毒性較小,除能引起嚴重的過敏反應外,在一般用量下,其毒性不甚明顯.是化療指數最大的抗生素。但其青黴素類抗生素常見的過敏反應在各種葯物中居首位,發生率最高可達5%~10% ,為皮膚反應 ,表現皮疹、血管性水腫,最嚴重者為過敏性休克,多在注射後數分鍾內發生,症狀為呼吸困難、發紺、血壓下降、昏迷、肢體強直,最後驚厥,搶救不及時可造成死亡。各種給葯途徑或應用各種制劑都能引起過敏性休克,但以注射用葯的發生率最高。過敏反應的發生與葯物劑量大小無關。對本品高度過敏者,雖極微量亦能引起休克。注入體內可致癲癇樣發作。大劑量長時間注射對中樞神經系統有毒性(如引起抽搐、昏迷等),停葯或降低劑量可以恢復。
使用本品必須先做皮內試驗。青黴素過敏試驗包括皮膚試驗方法(簡稱青黴素皮試)及體外試驗方法,其中以皮內注射較准確。皮試本身也有一定的危險性,約有25%的過敏性休剋死亡的病人死於皮試。所以皮試或注射給葯時都應作好充分的搶救准備。在換用不同批號青黴素時,也需重作皮試。注射液、皮試液均不穩定,以新鮮配製為佳。而且對於自腎排泄,腎功能不良者,劑量應適當調整。此外,局部應用致敏機會多,且細菌易產生抗葯性,故不提倡。
【英文簡述】
Penicillin (sometimes abbreviated PCN) refers to a group of beta-lactam antibiotics used in the treatment of bacterial infections caused by susceptible, usually Gram-positive, organisms. The name 「penicillin」 can also be used in reference to a specific member of the penicillin group Penam Skeleton, which has the molecular formula R-C9H11N2O4S, where R is a variable side chain.
【分類】
按其特點可分為 :
青黴素G類:如青黴素G鉀、青黴素G鈉、長效西林等。
耐酶青黴素:如苯唑青黴素(新青Ⅱ號)、氯唑青黴素等。
廣譜青黴素:如氨苄青黴素、羥氨苄青黴素等。
抗綠膿桿菌的廣譜青黴素:如羧苄青黴素、氧哌嗪青黴素、呋苄青黴素等。
氮咪青黴素:如美西林及其酯匹美西林等,其特點為較耐酶,對某些陰性桿菌(如大腸、克雷伯氏和沙門氏菌)有效,但對綠膿桿菌效差。
【特點】
青黴素類抗生素是β-內醯胺類中一大類抗生素的總稱,由於β-內醯胺類作用於細菌的細胞壁,而人類只有細胞膜無細胞壁,故對人類的毒性較小,除能引起嚴重的過敏反應外,在一般用量下,其毒性不甚明顯,但它不能耐受耐葯菌株(如耐葯金葡)所產生的酶,易被其破壞,且其抗菌譜較窄,主要對革蘭氏陽性菌有效。青黴素G有鉀鹽、鈉鹽之分,鉀鹽不僅不能直接靜注,靜脈滴注時,也要仔細計算鉀離子量,以免注入人體形成高血鉀而抑制心臟功能,造成死亡。
青黴素類抗生素的毒性很小,是化療指數最大的抗生素。但其青黴素類抗生素常見的過敏反應在各種葯物中居首位,發生率最高可達5%~10% ,為皮膚反應 ,表現皮疹、血管性水腫,最嚴重者為過敏性休克,多在注射後數分鍾內發生,症狀為呼吸困難、發紺、血壓下降、昏迷、肢體強直,最後驚厥,搶救不及時可造成死亡。各種給葯途徑或應用各種制劑都能引起過敏性休克,但以注射用葯的發生率最高。過敏反應的發生與葯物劑量大小無關。對本品高度過敏者,雖極微量亦能引起休克。注入體內可致癲癇樣發作。大劑量長時間注射對中樞神經系統有毒性(如引起抽搐、昏迷等),停葯或降低劑量可以恢復。
【歷史發展】
亞歷山大·弗萊明由於一次幸運的過失而發現了青黴素。有一次他外出度假時,把實驗室里在培養皿中正生長著細菌這件事給忘了。3周後當他回實驗室時,注意到在一個培養皿中長了一個黴菌斑。並且黴菌斑周圍的細菌都死了。
黴菌滲出了什麼強有力的物質?弗萊明稱為青黴素,並發現了它可以殺死許多致命性細菌。然而,因為青黴素在試管內和血清混合後很快失活,弗萊明認為它不會在人和動物身上發生作用。
10多年後,弗洛里和錢恩在1940年用青黴素重新做了實驗。他們給8隻小鼠注射了致死劑量的鏈球菌,然後給其中的4隻用青黴素治療。幾個小時內,只有那4隻用青黴素治療過的小鼠還健康活著。「這真像一個奇跡!」弗洛里說道。
到了1943年,制葯公司已經發現了批量生產青黴素的方法。英國和美國當時正在和納粹德國交戰。這種新的葯物對控制傷口感染非常有效。到了1944年,葯物的供應已經足夠治療第二次世界大戰期間所有參戰的盟軍士兵。
青黴素是一種高效、低毒、臨床應用廣泛的重要抗生素。它的研製成功大大增強了人類抵抗細菌性感染的能力,帶動了抗生素家族的誕生。
20世紀40年代以前,人類一直未能掌握一種能高效治療細菌性感染且副作用小的葯物。當時若某人患了肺結核,那麼就意味著此人不久就會離開人世。為了改變這種局面,科研人員進行了長期探索,然而在這方面所取得的突破性進展卻源自一個意外發現。
在1928年夏季的一天,英國微生物學家弗萊明發現,一個與空氣意外接觸過的金黃色葡萄球菌培養皿中長出了一團青綠色黴菌。在用顯微鏡觀察這只培養皿時弗萊明發現,黴菌周圍的葡萄球菌菌落已被溶解。這意味著黴菌的某種分泌物能抑制葡萄球菌。此後的鑒定表明,上述黴菌為點青黴菌,因此弗萊明將其分泌的抑菌物質稱為青黴素。然而遺憾的是弗萊明一直未能找到提取高純度青黴素的方法,於是他將點青黴菌菌株一代代地培養,並於1939年將菌種提供給准備系統研究青黴素的英國病理學家弗洛里和生物化學家錢恩。
通過一段時間的緊張實驗,弗洛里、錢恩終於用冷凍乾燥法提取了青黴素晶體。之後,弗洛里在一種甜瓜上發現了可供大量提取青黴素的黴菌,並用玉米粉調制出了相應的培養液。1941年開始的臨床實驗證實了青黴素對鏈球菌、白喉桿菌等多種細菌感染的療效。青黴素之所以能既殺死病菌,又不損害人體細胞,原因在於青黴素所含的青黴烷能使病菌細胞壁的合成發生障礙,導致病菌溶解死亡,而人和動物的細胞則沒有細胞壁。但是青黴素會使個別人發生過敏反應,所以在應用前必須做皮試。在這些研究成果的推動下,美國制葯企業於1942年開始對青黴素進行大批量生產。這些青黴素在世界反法西斯戰爭中挽救了大量美英盟軍的傷病員。1945年,弗萊明、弗洛里和錢恩因「發現青黴素及其臨床效用」而共同榮獲了諾貝爾生理學或醫學獎。
青黴素的出現開創了用抗生素治療疾病的新紀元。通過數十年的完善,青黴素針劑和口服青黴素已能分別治療肺炎、肺結核、腦膜炎、心內膜炎、白喉、炭疽等病。繼青黴素之後,鏈黴素、氯黴素、土黴素、四環素等抗生素不斷產生,增強了人類治療傳染性疾病的能力。但與此同時,部分病菌的抗葯性也在逐漸增強。為了解決這一問題,科研人員目前正在開發葯效更強的抗生素,探索如何阻止病菌獲得抵抗基因,並以植物為原料開發抗菌類葯物。
【葯理學】
內服易被胃酸和消化酶破壞。肌注或皮下注射後吸收較快,15~30min達血葯峰濃度。青黴素在體內半衰期較短,主要以原形從尿中排出。
氯黴素是具廣譜抗菌作用,對革蘭陰性菌的作用較革蘭陽性菌強,對傷寒桿菌、流感桿菌和百日咳桿菌的作用比其他抗生素強,對立克次體感染(如斑疹傷寒)以及病毒感染(如沙眼)均有較好作用。對布氏桿菌、大腸桿菌、產氣桿菌、肺炎桿菌、痢疾桿菌、霍亂弧菌、腦膜炎雙球菌、淋球菌等也有較強抗菌作用。本品屬抑菌劑,其作用機理主要抑制細菌蛋白質的合成,系作用於核糖核蛋白體的50S亞基上,抑制肽基轉移酶的作用,阻止了肽鏈的增長。臨床上主要用於傷寒、副傷寒和其他沙門氏菌感染,療效好,目前仍是治療這些疾病的首選葯物。
【作用】
青黴素對溶血性鏈球菌等鏈球菌屬,肺炎鏈球菌和不產青黴素酶的葡萄球菌具有良好抗菌作用。對腸球菌有中等度抗菌作用,淋病奈瑟菌、腦膜炎奈瑟菌、白喉棒狀桿菌、炭疽芽孢桿菌、牛型放線菌、念珠狀鏈桿菌、李斯特菌、鉤端螺旋體和梅毒螺旋體對本品敏感。本品對流感嗜血桿菌和百日咳鮑特氏菌亦具一定抗菌活性,其他革蘭陰性需氧或兼性厭氧菌對本品敏感性差.本品對梭狀芽孢桿菌屬、消化鏈球菌厭氧菌以及產黑色素擬桿菌等具良好抗菌作用,對脆弱擬桿菌的抗菌作用差。青黴素通過抑制細菌細胞壁四肽則鏈和五肽交連橋的結合而阻礙細胞壁合成而發揮殺菌作用。對革蘭陽性菌有效,由於革蘭陰性菌缺乏五肽交連橋而青黴素對其作用不大。
其中青黴素為以下感染的首選葯物:
1.溶血性鏈球菌感染,如咽炎、扁桃體炎、猩紅熱、丹毒、蜂窩織炎和產褥熱等
2.肺炎鏈球菌感染如肺炎、中耳炎、腦膜炎和菌血症等
3.不產青黴素酶葡萄球菌感染
4.炭疽
5.破傷風、氣性壞疽等梭狀芽孢桿菌感染
6.梅毒(包括先天性梅毒)
7.鉤端螺旋體病
8.回歸熱
9.白喉
10.青黴素與氨基糖苷類葯物聯合用於治療草綠色鏈球菌心內膜炎
青黴素亦可用於治療:
1.流行性腦脊髓膜炎
2.放線菌病
3.淋病
4.奮森咽峽炎
5.萊姆病
6.多殺巴斯德菌感染
7.鼠咬熱
8.李斯特菌感染
9.除脆弱擬桿菌以外的許多厭氧菌感染
風濕性心臟病或先天性心臟病患者進行口腔、牙科、胃腸道或泌尿生殖道手術和操作前,可用青黴素預防感染性心內膜炎發生
【生產方法】
天然青黴素與半合成青黴素生產方法完全不同。
天然青黴素
青黴素G生產可分為菌種發酵和提取精製兩個步驟。①菌種發酵:將產黃青黴菌接種到固體培養基上,在25℃下培養7~10天,即可得青黴菌孢子培養物。用無菌水將孢子製成懸浮液接種到種子罐內已滅菌的培養基中,通入無菌空;氣、攪拌,在27℃下培養24~28h,然後將種子培養液接種到發酵罐已滅菌的含有苯乙酸前體的培養基中,通入無菌空氣,攪拌,在27℃下培養7天。在發酵過程中需補入苯乙酸前體及適量的培養基。②提取精製:將青黴素發酵液冷卻,過濾。濾液在pH2~2.5的條件下,於萃取機內用醋酸丁酯進行多級逆流萃取,得到丁酯萃取液,轉入pH7.0~7.2的緩沖液中,然後再轉入丁酯中,將此丁酯萃取液經活性炭脫色,加入成鹽劑,經共沸蒸餾即可得青黴素G鉀鹽。青黴素G鈉鹽是將青黴素G鉀鹽通過離子交換樹脂(鈉型)而製得。
半合成青黴素
以6APA為中間體與多種化學合成有機酸進行醯化反應,可製得各種類型的半合成青黴素。
6APA是利用微生物產生的青黴素醯化酶裂解青黴素G或V而得到。酶反應一般在40~50℃、pH8~10的條件下進行;近年來,酶固相化技術已應用於6APA生產,簡化了裂解工藝過程。6APA也可從青黴素G用化學法來裂解製得,但成本較高。側鏈的引入系將相應的有機酸先用氯化劑製成醯氯,然後根據醯氯的穩定性在水或有機溶劑中,以無機或有機鹼為縮合劑,與6APA進行醯化反應。縮合反應也可以在裂解液中直接進行而不需分離出6APA。
【劑型用法和用量】
片劑:每片0.25克。膠囊劑:每粒0.25克。注射劑:每支2毫升,含葯0.25克。滴眼劑:8毫克:0.02克。口服,每天成人1~2克;兒童每日按千克體重服用50~100毫克,分2~4次。肌注,成人每次0.5~1克,每天2次;兒童每日按千克體重服用25~50毫克,分2次。靜脈滴注,劑量同肌注,因注射劑系以丙二醇為溶劑,用時以等滲葡萄糖注射液或生理鹽水稀釋至2.5毫克:毫升供用,即2毫克(0.25克)以100毫升輸液稀釋,並應以乾燥空針抽取,以免析出結晶,稀釋完後應仔細檢查無結晶析出,方可使用。
【不良反應】
1.主要毒性反應是抑制骨髓造血機能,引起粒細胞及血小板減少症,用葯期間如發現輕度白細胞或血小板減少,應立即停葯,一般可恢復。氯黴素所致的再生障礙性貧血雖少見,但難逆轉,常可致死,多發生於兒童長期反復用氯黴素者,偶有用量很少而發病者。
2.過敏反應較少見,但也可引起皮疹,葯物熱。少數可引起黃疸,原有肝臟疾病者甚至可引起急性肝壞死。
3.可引起精神症狀如幻覺、譫妄,大多發生於用葯後3~5日,停葯後兩日內可消失。
4.口服後可發生胃腸道反應,如惡心、嘔吐、腹瀉、食慾不振等。
【副作用】
1 青黴素類的毒性很低,但較易發生變態反應,發生率約為5%�10%。多見的為皮疹、哮喘、葯物熱、嚴重的可致過敏性休克而引起死亡。
2 大劑量應用青黴素抗感染時,可出現神經精神症狀,如反射亢進、知覺障礙、抽搐、昏睡等,停葯或減少劑量可恢復。
3 使用青黴素前必須作皮膚過敏試驗。如果發生過敏性休克,應立即皮下或肌內注射0.1%腎上腺素0.5ml~1ml,同時給氧並使用抗組胺葯物及腎上腺皮質激素等。
4 肌注鉀鹽時局部疼痛較明顯,用苯甲醇溶液作為稀釋劑溶解,則可消除疼痛。
【細菌對青黴素類產生耐葯性】
細菌對青黴素類產生耐葯性主要有三種機制:
1.細菌產生β內醯胺酶,使青黴素類水解滅活;
2.細菌體內青黴素作用靶位——青黴素結合蛋白發生改變;
3.細胞壁對青黴素類的滲透性減低。其中以第一種機制最為常見,也最重要。
青黴素類抗生素水溶性好,血消除半衰期大多不超過2小時,主要經腎排出,多數品種可經血液透析清除。
按我國衛生部規定,使用青黴素類抗生素前均需做青黴素皮膚試驗,陽性反應者禁用。
【注意事項】
1.口服或注射給葯時忌與鹼性葯物配伍,以免分解失效。
2.本品不宜與鹽酸四環素、卡那黴素、多粘菌素E、磺胺嘧啶鈉、三磷酸腺苷、輔酶A等混合靜滴,以免發生沉澱或降效。
3.氯黴素與青黴素一般不要聯用,因氯黴素為抑菌劑,而青黴素為繁殖期殺菌劑,聯用可影響青黴素的抗菌活性而降效。但這一問題尚有爭論,意見不一,因兩者聯用對革蘭陽性菌、陰性菌混合感染及顱內感染臨床效果好。解決的辦法,如需聯用,宜先用青黴素2~3小時後再用氯黴素。
4.由於本品可抑制某些肝臟酶的活性,因此可干擾甲苯磺丁脲、苯妥英鈉和雙香豆素在人體內的生物轉化,可增強甲苯磺西脲、苯妥英鈉的作用,對雙香豆素和華法林的抗凝作用均可增強。
5.嬰兒、肝、腎功能減退者慎用,妊娠末期產婦慎用,哺乳期婦女忌用。
應用青黴素前除做皮試外,還要注意以下幾點:
1、要到有搶救設備的正規醫療單位注射青黴素,萬一發生過敏反應,可以得到及時有效的搶救治療。在注射過程中任何時候出現頭暈心慌、出汗、呼吸困難等不適,都要立即告訴醫生護士。
2、注射完青黴素,至少在醫院觀察20分鍾,無不適感才可離開。
3、不要在極度飢餓時應用青黴素,以防空腹時機體對葯物耐受性降低,誘發暈針等不良反應。
4、兩次注射時間不要相隔太近,以4—6小時為好。靜脈點滴青黴素時,開始速度不要太快,每分鍾以不超過40滴為宜,觀察10—20分鍾無不良反應再調整輸液速度。
5、如果當天有注射青黴素史,在家中出現頭暈心慌、出汗、呼吸困難等不適,應及時送醫院診治。
青黴素配伍應用中的相互作用:
近年來,臨床中出現濫用葯物的問題,造成一些不良反應,尤其是青黴素與其他葯物的配伍應用,所產生的相互作用和不良反應是不可忽視的。
1 青黴素不可與同類抗生素聯用
由於它們的抗菌譜和抗菌機制大部分相似,聯用效果並不相加。相反,合並用葯加重腎損害,還可以引起呼吸困難或呼吸停止。它們之間有交叉抗葯性,不主張兩種β-內醯胺類抗生素聯合應用。
2 青黴素不可與磺胺和四環素聯合用葯
青黴素屬繁殖期「殺菌劑」,阻礙細菌細胞壁的合成,四環素屬「抑菌劑」,影響菌體蛋白質的合成,二者聯合作用屬拮抗作用,一般情況下不應聯合用葯。臨床資料表明單用青黴素抗菌效力為90%,單用磺胺類葯效力為81%,兩者聯合用葯抗菌效力為75%,若非特殊情況不可聯合使用。
3 青黴素不可與氨基苷類聯合用葯
兩者混合同於輸液器給病人輸液,因青黴素的β-內醯胺可使慶大黴素產生滅活作用,其機制為兩者之間發生化學相互作用,故嚴禁混合應用,應採用青黴素靜脈滴注,慶大黴素肌肉注射。
綜上所述,青黴素聯用不當,由於葯物的相互作用,而導致葯物不良反應是不可低估的。青黴素是治療各種感染性疾病的最常用抗生素,嚴格掌握用葯的適應證,合理聯用,措施得力,減少不必要的不良反應。
【青黴素家族】
青黴素用於臨床是40年代初,人們對青黴素進行大量研究後又發現一些青黴素,當人們又對青黴素進行化學改造,得到了一些有效的半合成青黴素,70年代又從微生物代謝物中發現了一些母核與青黴素相似也含有β-內醯胺環,而不具有四氫噻唑環結構的青黴素類,可分為三代:第一代青黴素指天然青黴素,如青黴素G(苄青黴素);第二代青黴素是指以青黴素母核-6-氨基青黴烷酸(6-APA),改變側鏈而得到半合成青黴素,如甲氧苯青黴素、羧苄青黴素、氨苄青黴素;第三代青黴素是母核結構帶有與青黴素相同的β-內醯胺環,但不具有四氫噻唑環,如硫黴素、奴卡黴素。
【青黴素濃縮法】
利用青黴素特異性地殺死野生型細胞、保留營養缺陷型細胞的方法。青黴素能抑制細菌細胞壁的合成,所以只能殺死生長繁殖中的細菌,而不能殺死停止分裂的細菌。在只能使野生型生長而不能使突變型生長的選擇性液體培養基中,野生型被青黴素殺死,而突變型則不被殺死,從而淘汰野生型,使突變型得以濃縮。可適用於細菌和放線菌,是營養缺陷型突變體篩選的常用方法之一。
【島青黴素】
稻穀在收獲後如未及時脫粒乾燥就堆放很容易引起發霉。發霉穀物脫粒後即形成"黃變米"或"漚黃米",這主要是由於島青黴(Penicillium.islandicum)污染所致。黃變米在我國南方、日本和其他熱帶和亞熱帶地區比較普遍。小鼠每天口服200g受島青黴污染的黃變米,大約一周可死於肝肥大;如果每天飼喂0.05g黃變米,持續兩年可誘發肝癌。流行病學調查發現,肝癌發病率和居民過多食用霉變的大米有關。吃黃變米的人會引起中毒(肝壞死和肝昏迷)和肝硬化。島青黴除產生島青黴素(Silanditoxin)外,還可產生環氯素(Cyclochlorotin),黃天精(Luteoskyrin)和紅天精(Erythroskyrin)等多種黴菌毒素。
島青黴素和黃天精均有較強的致癌活性,其中黃天精的結構和黃麴黴素相似,毒性和致癌活性也與黃麴黴素相當。小鼠日服7mg/kg體重的黃天精數周可導致其肝壞死,長期低劑量攝入可導致肝癌。環氯素為含氯環結構的肽類,對小鼠經口LD50為6.55mg/kg體重,有很強的急性毒性。環氯素攝入後短時間內可引起小鼠肝的壞死性病變,小劑量長時間攝入可引起癌變。
❺ 陰陽樹脂從外觀上怎麼區分
摘要:[目的]提高離子交換純水器制備純水的質量和產量 [方法] 老化樹脂吸附的主要雜質離於最大程度置
換出來指示再生終點 [結果]純水最高比電阻達33.3×10 5 Ω·cm,周期產水約700 L [結論]與原法比較,純水質量和產量均有明顯提高。
關鍵詞:離子交換法;樹脂;老化;再生
分析實驗室用純承質量如何直接影響分析結果的准確性。據國家標准規定,實驗用水必須符合GB6682-l986「實驗室用水規格」中3級水的質量要求,即水溫在25℃時,比電阻≥5×10 5Ω·cm(電導率≤2.0μs/cm)。「離子交換制備純水以其水質好,成本低,使用方便等優點得到各級實驗室的普遍使用。但在日常工作中發現,目前許多實驗室使用的離子交換純水器,當樹脂老化後,若採用傳統的「常規處理 方法再生樹脂,其制備的純水往往質量不高,難以滿足日益增多的微量組分分析用水要求。針對這個問題.我們實驗室將常規處理的再生方法加以改進。以老化樹脂吸附的主要雜質離子最大程度置換出來指示再生終點,結果提高了制備純水的質量和產量。現將方法報告如下。
1 材料
1.1 試劑 7%鹽酸溶液;8%氫氧化鈉;O.01mol/L EDTA標准溶液;1+1氨水;硝酸銀標准溶液(每毫升硝酸銀相當0.50mg氯化物);5%鉻酸鉀;0.25mol/L和0.025mol/L硫酸。
1.2 儀器DDS-IIC型電導率儀,上海南華醫療器械廠。
2 操作方法
2.1 陰陽樹脂除雜,清洗 將失效的樹脂陰陽分開,分別置於兩個塑料盆中,用自來水漂洗.除去可見的雜質和破碎的樹脂,去水並反復漂洗2~3次,抽干。
2.2 陽樹脂再生往陽樹脂盆中加入7%鹽酸溶液浸沒樹脂,輕輕攪動幾次,靜置2~3min.傾去酸液,抽干。反復5~6次後,檢驗酸液中鈣鎂離子含量。方法:吸取1.0 ml酸液,加1+1氨水調至中性,以鉻黑T為指示劑,用0.01mol/L EDTA滴定至終點,溶液由紫紅變為亮蘭,記錄消耗的EDTA 量,重復以上操作,直至直至吸取1.0 ml
酸液消耗EDTA量降低至穩定值為止。
2.3 陰樹脂再生 往陰樹脂盆中加入8%氫氧化鈉溶液浸沒樹脂,輕輕攪動幾次,靜置2~3min後,傾去鹼液,抽干。反復7~8次後,檢驗鹼液中氯離子含量。方法:吸取1.0 ml鹼液置於50ml蒸發皿上,加1滴1%酚酞溶液,用0.25 mol/L硫酸調至溶液呈微紅色後,用0.025mol/L硫酸調至溶液紅色剛好退去.加0.5ml5%鉻酸鉀溶液,用硝酸銀標准溶液滴定至終點,記錄消耗硝酸銀溶液量。傾去鹼液,抽干。重復以上操作,直至吸取1.0ml鹼液消耗硝酸銀量降低至穩定值為止。
2.4 漂洗 將檢驗合格的陰陽樹脂用離子水反復漂洗至中性,即陽樹脂洗至pH6.5~7.5,陰樹脂洗至pH 7~8。
2.5 裝柱 用小燒杯把樹脂連同水一起1.0ml酸液消耗EDTA量降低至穩定值裝入柱內.按順序連接好柱子,通水。
3 結果
以自來水為原水通過改進再生法的純木器,其制備的純承質量和產量與常規處理再生法比較。
4 討論
離子交換純木器常規處理的再生方法(以下稱原法)以進出的酸鹼液pH值不變(用pH試紙測定)指示再生終點,筆者認為方法過於簡單.改進的方法是以老化樹脂吸附的主要雜質離子(Ca2+、Mg2+、cl-)最大程度置換出來以指示再生終點,通過檢驗流出的再生劑中無Ca2+、Mg2+、cl-或降低至含量不變。說明樹脂吸附的雜質離子與再生劑的H+和OH-之間置換達到動態平衡,此時樹脂才真正獲得最大程度的「再生」。
.
大孔吸附樹脂是在離子交換樹脂的基礎上發展起來的。1935年英國的Adams和Holmes發表了由甲醛、苯酚與芳香胺制備的縮聚高分子材料及其離子交換性能的工作報告,從此開創了離子交換樹脂領域。20世紀50年代末合成了大孔離子交換樹脂,是離子交換樹脂發展的一個里程碑。上世紀60年代末合成了大孔吸附交換樹脂,並於70年代末用於中草葯有效成分的分離,但我國直到 80年代後才開始有工業規模的生產和應用。大孔吸附樹脂目前多用於工業廢水處理、食品添加劑的分離精製、中草葯有效成分、維生素和抗菌素等的分離提純和化學製品的脫色、血液的凈化等方面。
1大孔吸附樹脂的特性及原理
大孔吸附樹脂(macroporous absorption resin)屬於功能高分子材料,是近30餘年來發展起來的一類有機高聚物吸附劑,是吸附樹脂的一種,由聚合單體和交聯劑、致孔劑、分散劑等添加劑經聚合反應制備而成。聚合物形成後,致孔劑被除去,在樹脂中留下了大大小小、形狀各異、互相貫通的孔穴。因此大孔吸附樹脂在乾燥狀態下其內部具有較高的孔隙率,且孔徑較大,在100~1000nm之間,故稱為大孔吸附樹脂。大孔樹脂的表面積較大、交換速度較快、機械強度高、抗污染能力強、熱穩定好,在水溶液和非水溶液中都能使用。
大孔吸附樹脂具有很好的吸附性能,它理化性質穩定,不溶於酸、鹼及有機溶媒,對有機物選擇性較好,不受無機鹽類及強離子低分子化合物存在的影響,可以通過物理吸附從水溶液中有選擇地吸附有機物質。大孔樹脂是吸附性和篩選性原理相結合的分離材料,基於此原理,有機化合物根據吸附力的不同及分子量的大小,在大孔吸附樹脂上經一定的溶劑洗脫而分開。
由於大孔吸附樹脂的固有特性,它能富集、分離不同母核結構的葯物,可用於單一或復方的分離與純化。但大孔吸附樹脂型號很多,性能用途各異,而中葯成分又極其復雜,尤其是復方中葯,因此必須根據功能主治明確其有效成分的類別和性質,根據「相似相溶」的原則,即一般非極性吸附劑適用於從極性溶液(如水)中吸附非極性有機物;而高極性吸附劑適用於從非極性溶液中吸附極性溶質;中等極性吸附劑,不但能夠從非水介質中吸附極性物質,同時它們具有一定的疏水性,所以也能從極性溶液中吸附非極性物質。
2 大孔吸附樹脂在中葯中的應用
大孔吸附樹脂在上世紀70年代末開始應用於中草葯化學成分的提取分離,1979年中國醫學科學院葯物研究所植化室報道大孔樹脂可用於三棵針生物鹼、赤芍苷、天麻苷、薄蓋靈芝中尿嘧啶與尿嘧啶核苷的分離。其對中草葯化學成分如生物鹼、黃酮、皂苷、香豆素及其他一些苷類成分都有一定的吸附作用。如人參總皂苷、甘草酸、三七總皂苷、絞股藍總皂苷、蒺藜總皂苷、桔梗總皂苷、知母總皂苷、刺玫果皂苷、毛冬青皂苷、西洋參花皂苷、銀杏葉黃酮、葛根黃酮、橙皮苷、蕎麥蘆丁、川烏、草烏總生物鹼、喜樹鹼、川芎提取物(含川芎嗪及阿魏酸)、銀杏內酯及白果內酯、丹參總酚酸、茶多酚、紫草寧、白芍總苷、赤芍總苷、紫蘇色素、膽紅素、大黃游離蒽醌等等。它對糖類的吸附能力很差,對色素的吸附能力較強。利用大孔吸附樹脂的多孔結構和選擇性吸附功能可從中葯提取液中分離精製有效成分或有效部位,最大限度地去粗取精,因此目前這項技術已廣泛地運用於各類中葯有效成分及中葯復方的現代化研究中。
中葯復方採用大孔樹脂吸附工藝的特點:
(1)可提高中葯制劑中有效成分的相對含量:僅從固形物收率一項看,水煮法收率一般為原生葯量的30%左右,水提醇沉法收率一般為原生葯量的15%左右,而用大孔樹脂技術僅為原生葯的 2%~5%左右。可以克服傳統中成葯「粗、大、黑」的缺點。同時可節約成品的包裝成本。
(2)產品不吸潮:水煎液中大量的糖類、無機鹽、粘液質等強吸潮性成分,因不被大孔樹脂吸附而除去,所以在作固體制劑時吸潮性小,易於操作和保存。
(3)縮短生產周期:免去靜置沉澱、濃縮等耗時多的工序,節約生產成本。
(4)去除重金屬污染,提高成品的國際競爭力。
3 大孔樹脂吸附技術應用的問題探討
目前,大孔樹脂吸附分離技術在中葯領域中應用的主要問題是:首先,中葯復方通過多成分、多靶點起作用,其有效成分分屬於各類化學物質,理化性質差別大,但大孔樹脂對各類成分的吸附特徵一般不同,吸附量差別很大,很難用一種樹脂將所有有效成分分離出來,常需多種樹脂聯合應用,這就增加了工藝的復雜性和成本;而且,中葯中某些多糖類有效成分和多肽類有效成分用大孔樹脂吸附技術精製效果不好。其次,大孔樹脂的吸附容量有待提高。再次,大孔樹脂在使用過程中會因衰化而以碎片形式脫落,進入葯液中產生二次污染,嚴重影響產品的安全性,需採用一定的技術除去脫落的樹脂碎片,以提高葯品的安全性。因此,運用大孔吸附樹脂精製中葯的關鍵在於保證應用的安全性、有效性、穩定性及可控性。
(1)安全性
樹脂的組成與結構既決定著樹脂的吸附性能,也可從中了解可能存在的有害殘留物。如天津南開大學化工廠生產的AB-8樹脂,其單體為苯乙烯,交聯劑為二乙烯苯,致孔劑為烴類,分散劑為明膠。其中的殘留有苯乙烯、芳烴(烷基苯、茚、萘、乙苯等),脂肪烴、酯類,這些物質的可能來源是未完全反應的單體、交聯劑、添加劑及原料本身不純引入的各種雜質。顯然,樹脂自身的規格標准與質量要求對中葯提取液的純化效果和安全性起著決定性作用。因此,實際應用時應向樹脂提供方索取以下資料,以便充分了解各種樹脂的結構、性能和適用范圍:
大孔吸附樹脂規格標準的內容包括名稱、牌(型)號、結構(包括交聯劑)、外觀、極性;以及粒徑范圍、含水量、濕密度(真密度、視密度)、干密度(表觀密度、骨架密度)、比表面、平均孔徑、孔隙率、孔容等物理參數;還包括未聚合單體、交聯劑、致孔劑等添加劑殘留量限度等參數。應寫明主要用途,並說明該規格標準的級別與相關標准文號等。
(2)有效性
近年來,大孔樹脂吸附技術在中葯領域內的應用日益增多,其精製中葯復方的優勢也越來越得到人們的重視。然而由於中葯復方中成分較復雜,其有效成分可能為一系列的多個化合物,包括組成復方的單味葯的有效成分以及復方提取可能形成的復合物。大孔樹脂對不同成分的吸附選擇性大不相同,加上不同成分間吸附競爭的存在,使得實際吸附狀況十分復雜,經過樹脂精製後,復方中有效成分的保留率也不同,會使實際上各葯味間的用量比例產生改變。故中葯復方運用大孔樹脂精製,首先要明確純化目的,充分考慮採用樹脂純化的必要性與方法的合理性,研究解決其有效性評價這一基礎問題。
用樹脂分離純化復方是發展趨勢,但因中葯成分多,一個成分代表不了該方的全部作用(性質、強度),尤其是復方,未知成分更多,所以中葯復方混合上柱純化者,應作相應的、足以能說明純化效果的研究,提供出詳盡的試驗資料,一般僅用一個指標,一種洗脫劑是不能說明其純化效果的,要根據處方組成盡可能以每味葯的主要有效成分為指標監控各吸附分離過程,在確有困難時可配合其他理化指標。在理化指標難以保證其「質量」時,還應配合主要葯效學對比試驗,以證明上柱前與洗脫後葯物的「等效性」。
(3)穩定性、可控性
大孔吸附樹脂純化的主要工藝步驟為:上柱—吸附—洗脫。在應用中要保證其吸附分離過程的穩定可控。我們可用目標提取物的上柱量、比吸附量、保留率、純度等參數來評價純化效果,建立純化工藝的規范化研究標准,防止成分泄漏或漏洗,對各因素進行考察,從而保證工業生產的穩定性,進而達到可控的目的。
目前,國家食品葯品監督管理局對大孔吸附樹脂在中葯復方中的應用已初步制訂了相應的質量標准及規范技術文件。可以相信,隨著各基礎研究和應用研究的不斷深人,大孔吸附樹脂吸附分離技術也將得到更好的發展,必然對中葯現代化的進程起到積極的推進作用。
大孔樹脂在中葯成分分離中的應用
大孔樹脂是不溶於酸、鹼及各種有機溶劑的有機高分子聚合物,應用大孔樹脂進行分離的技術是20世紀60年代末發展起來的繼離子交換樹脂後的分離新技術之一。大孔樹脂的孔徑與比表面積都比較大,在樹脂內部具有三維空間立體孔結構,由於具有物理化學穩定性高、比表面積大、吸附容量大、選擇性好、吸附速度快、解吸條件溫和、再生處理方便、使用周期長、宜於構成閉路循環、節省費用等諸多優點,本文從大孔樹脂的性質、分離原理、影響吸附及解吸的因素、樹脂的預處理及再生方法、溶劑殘留等方面對大孔吸附樹脂進行了評述,以期為大孔吸附樹脂在中葯有效成分分離中的應用提供參考。
1 大孔樹脂的性質及分離原理
大孔吸附樹脂主要以苯乙烯、а-甲基苯乙烯、甲基丙烯酸甲酯、丙腈等為原料加入一定量致孔劑二乙烯苯聚合而成,多為球狀顆粒,直徑一般在0.3~1.25mm之間,通常非極性、弱極性和中極性,在溶劑中可溶脹,室溫下對稀酸、稀鹼穩定。從顯微結構上看,大孔吸附樹脂包含有許多具有微觀小球的網狀孔穴結構,顆粒的總表面積很大,具有一定的極性基團,使大孔樹脂具有較大的吸附能力;另一方面,些網狀孔穴的孔徑有一定的范圍,使得它們對通過孔徑的化合物根據其分子量的不同而具有一定的選擇性。通過吸附性和分子篩原理,有機化合物根據吸附力的不同及分子量的大小,在大孔吸附樹脂上經一定的溶劑洗脫而達到分離的目的。
2 吸附及解吸的影響因素
2.1 樹脂結構的影響
大孔樹脂的吸附性能主要取決於吸附劑的表面性質,即樹脂的極性(功能基)和空間結構(孔徑、比表面積、孔容),一般非極性化合物在水中可以為非極性樹脂吸附,極性樹脂則易在水中吸附極性物質。劉國慶等在研究大孔樹脂對大豆乳清廢水中異黃酮的吸附特性時發現由於加熱、鹼溶工藝使一部分黃酮苷生成了苷元,故而非極性和弱極性大孔樹脂有利於異黃酮的吸附,而且解吸容易。韓金玉等研究了5種大孔樹脂發現弱極性樹脂AB 8適合銀杏內酯和白果內酯的分離。潘見等研究了10種大孔樹脂發現,極性和弱極性樹脂有利於葛根異黃酮的吸附與解吸且較高的比表面積、較大的孔徑、較小的孔容有利於吸附。
2.2 被吸附的化合物結構的影響
一般來說,被吸附化合物的分子量大小和極性的強弱直接影響到吸附效果。歐來良等研究發現葛根素的分子結構有一極性糖基(Glu)和一個非極性黃酮母核,結構總體顯示弱極性,同時又具有酚羥基結構,可以作為一個良好的氫鍵供體,所以弱極性且具有氫鍵受體結構的吸附樹脂,對葛根素具有較好的分離效果。同時,大孔樹脂本身就是一種分子篩,可按分子量的大小將物質分離,如潘見等發現對於分子量較大的葛根黃酮各組分孔徑小於10nm的樹脂吸附量都不高。朱浩等探討了LD605型大孔樹脂純化具有不同母核結構有效部位的特性,發現以葯材計吸附能力,生物鹼>黃酮>酚性成分>無機物,以指標成分計,為黃酮>生物鹼>酚性成分>無機物。
2.3 洗脫劑的影響
通常情況下洗脫劑極性越小,其洗脫能力越強,一般先用蒸餾水洗脫,再用濃度逐漸增高的乙醇、甲醇洗脫。多糖、蛋白質、鞣質等水溶性雜質會隨著水流下,極性小的物質後下。對於有些具有酸鹼性的物質還可以用不同濃度的酸、鹼液結合有機溶劑進行洗脫。任海等研究發現大孔樹脂提取分離麻黃鹼時鹽酸的洗脫效果明顯優於有機溶劑,而0.02mol/L的鹽酸與甲醇不同比例混合時洗脫率明顯提高。朱英等用大孔樹脂分離油茶皂苷和黃酮時發現20%、30%乙醇洗脫液主要含黃酮,40%、50%、95%主要含油茶皂苷。
2.4 pH值的影響
中葯中的許多成分有一定的酸鹼性,在pH值不同的溶液中溶解性不同,在應用大孔樹脂處理這一類成分時pH值的影響顯得至關重要。對於鹼性物質一般在鹼液中吸附酸液中解吸,酸性物質一般在酸液中吸附鹼液中解吸,例如麻黃鹼,任海發現在pH為11.0時吸附最好,為5.0、7.0時由於麻黃鹼已質子化吸附量極少。但也有例外,如黃建明[8]對草烏生物鹼進行考察時發現pH對SIP1300型大孔樹脂無顯著影響。
2.5 溫度的影響
大孔樹脂的吸附作用主要是由於它具有巨大的表面積,是一種物理吸附,低溫不利於吸附,但在吸附過程中又會放出一定的熱量,所以操作溫度對其吸附也有一定的影響。潘廖明等對LSA8型樹脂進行吸附動力學及熱力學特性的研究,得到該樹脂在不同溫度下對大豆異黃酮的吸附等溫線,分析知該樹脂在35℃時對大豆異黃酮具有較好的吸附效果。
2.6 原液濃度的影響
原液濃度也是影響吸附的重要因素,黃建明等研究表明如果原液濃度過低提純時間增加,效率降低;原液濃度過高則泄漏早,處理量小,樹脂的再生周期短。韓金玉等研究表明AB8樹脂對銀杏總內酯的吸附率先隨濃度的增加而增加。達到一定值後再隨濃度增加而減小,而總吸附量則隨濃度的增大而增大,達到一定值後基本不再變化。
2.7 其它影響因素
葯液在上柱之前一般要經過預處理,預處理不好則會使大孔樹脂吸附的雜質過多,從而降低其對有效成分的吸附。洗脫液的流速、樹脂的粒徑、樹脂柱的高度也會產生一些影響,通常較高的洗脫液流速、較小的樹脂粒徑和較低的樹脂高度有利於增大吸附速度,但同時也使單柱的吸附量有所降低。玻璃柱的粗細也會影響分離效果,當柱子太細,洗脫時,樹脂易結塊,壁上易產生氣泡,流速會逐漸降為零。
3 大孔吸附樹脂的預處理及再生
大孔樹脂一般含有未聚合的單體、制孔劑、引發劑及其分解物、分散劑和防腐劑等脂溶性雜質,使用前應先預處理。一般選用甲醇、乙醇或丙酮連續洗滌數次,洗至加適量水至無白色渾濁現象,再用蒸餾水洗至無醇味即可。必要時還要用酸鹼液洗滌,最後用蒸餾水洗至中性即可。樹脂用久了吸附的雜質就會增多,降低其吸附能力,故使用一段時間後需要再生。樹脂的再生通常可以用溶劑來實現,乙醇是常用的再生劑。採用80%左右的含水醇、酮或含有酸、鹼的含水醇、酮進行洗滌,再生效果也很好,某些低極性的有機雜質,可採用低極性溶劑進行再生。
4 有機溶劑殘留的控制
大孔樹脂技術已經列為國家「十五」期間重點推廣技術,但大孔樹脂有機溶劑殘留物的安全問題存在很多爭論,因此國家葯監局規定對大孔樹脂可能帶來的有機溶劑殘留物進行檢測,對其殘留量加以控制。袁海龍等採用毛細管氣相色譜法,配以頂空進樣對D 101大孔樹脂可能帶來的7種殘留物進行測定取得了很好的效果。陸宇照等的研究也表明以醇處理及酸鹼處理好的D 101型大孔樹脂提取中葯是安全可靠的。
5 大孔吸附樹脂在中葯成分研究中的應用,
在中葯有效成分的提取研究方面應用大孔樹脂最多的是黃酮(苷)類、皂苷類和其它苷類、生物鹼類,在游離蒽醌、酚類物質、微量元素等方面的研究中也有用到。
5.1 黃酮(苷)類最有代表性的是銀杏葉提取物(GBE),陳沖等[14]應用大孔樹脂提取GBE,既達到其質量標准,又降低了成本。史作清等又研製出ADS 17、ADS 21、ADS F8等大孔樹脂,其中ADS 17對黃酮類化合物具有很好的選擇性,可得到黃酮甙含量較高的GBE。陸志科等研究了大孔樹脂吸附分離竹葉黃酮的特性,選擇6種大孔吸附,比較其對竹葉黃酮的吸附性能及吸附動力學過程,發現AB 8樹脂較宜於竹葉黃酮的提純,經AB 8樹脂吸附分離後,提取物中黃酮含量提高一倍以上。
5.2 皂苷和其它苷類大孔樹脂在苷類的提取純化工藝中應用很多。如蔡雄等對D101型大孔吸附樹脂富集純化人參總皂苷的吸附性能與洗脫參數進行了研究,結果表明以50%乙醇洗脫,人參總皂苷洗脫率在90%以上,乾燥後總固形物中人參總皂苷純度達60.1%。李朝興等通過對7種吸附樹脂進行篩選實驗,通過對樹脂孔徑和比表面積的比較發現AASI-2樹脂對絞股藍皂苷的吸附量大,速率快,且易於洗脫,回收率高。李慶勇等考察大孔樹脂提取刺五加中的丁香苷的最佳工藝發現刺五加苷最好的提取方法是以水為溶劑,常溫超聲波提取,濃縮後,用HPLC檢測丁香苷含量,按照丁香苷與干樹脂質量比0.021的量向濃縮液中加入樹脂,緩慢攪拌吸附1h,吸附平衡時間約1h,離心,濾出樹脂,裝柱,用體積分數為20%的乙醇-二氯甲烷混合溶劑洗脫,收集洗脫液,再經冷凍乾燥處理,得產物。 5.3 生物鹼類羅集鵬等採用大孔樹脂對黃連葯材及其制劑中的小檗鹼進行了富集,研究表明含0.5%硫酸的50%甲醇解吸能力好,平均回收率達100.03%,符合中葯材及其制劑中有效成分定量分析要求,故可用於黃連葯材及其制劑中的小檗鹼的富集及除雜。張紅等考察了7種大孔樹脂發現AB-8吸附及解吸效果較好,是一種較適宜的吸附劑,並對其工藝進行考察,結果27℃、1mol/L鹽離子濃度、pH8的水相為最佳上樣條件,洗脫劑為pH3的氯仿 乙醇(1∶1)混合溶劑。秦學功、元英進應用DF01型樹脂能直接從苦豆籽浸取液中吸附分離生物鹼,在室溫、吸附液pH為10,NaCl濃度為1.0mol/L,吸附流速為5BV/h條件下,對總生物鹼的吸附量可達到17mg/mL以上。在室溫、2.5BV/h的解吸流速下,以pH為3,80∶20的乙醇 水為解吸液,可使解吸率達到96%以上。 5.4 其它黃園等用明膠沉澱法、醇調pH值法、聚醯胺法以及大孔吸附樹脂法對大黃提取液中總蒽醌進行純化,研究表明4種純化方法所得純化液的固體物收率明顯降低,而對總蒽醌的保留率具有顯著的差異,以ResinⅠ、Ⅱ兩種大孔吸附樹脂最高(93.21%,95.63%)。 葉毓瓊、黃榮對絞股蘭水煎液中的微量元素鐵、銅、錳、鋅的6種形態(懸浮態、可溶態、穩定態、不穩定態、有機態、無機態)進行形態分析時應用AmberliteXAD 2大孔吸附樹脂分離有機態和無機態,發現溶液pH4.5時回收率較理想,無機淋洗劑為1%硝酸,有機淋洗劑應用乙醇 甲醇 6mol/L氨水體系。 李進飛等選用NKA 9樹脂從杜仲葉中分離富集綠原酸得出NKA 9樹脂對提取液中綠原酸的最佳分離條件為:當進樣液濃度低於0.3mg/mL、pH3、流速2mg/mL時,用50%乙醇洗脫,得到粗產品純度為25.12%,收率為78.5%。 鄧少偉、馬雙成將川芎醇提物減壓濃縮,過大孔樹脂柱,先用水洗至還原糖反應呈陰性,再用30%乙醇洗脫,收集30%乙醇洗脫液,減壓濃縮得川芎總提物,其中川芎嗪和阿魏酸的含量約占本品的25%~29%。
大孔吸附樹脂的預處理
新購樹脂可能含有分散劑、致孔劑、惰性溶劑等化學殘留,所以使用前應按以下步驟進行預處理。
1 裝柱前清洗吸附柱與管道,並排凈設備內的水,以防有害物質對樹脂的污染。 2 於吸附柱內加入相當裝填樹脂0.5倍的水,然後將新大孔樹脂投入柱中,把過 量的水從柱底放出,並保持水面高於樹脂層表面約20厘米,直到所有的樹脂全 部轉移到柱中。
3 從樹脂低部緩緩加水,逐漸增加水的流速使樹脂床接近完全膨脹,保持這種反沖流速直到所有氣泡排盡,所有顆粒充分擴展,小顆粒樹脂沖出。
4用2倍樹脂床體積(2BV)的乙醇,以2BV/H的流速通過樹脂層,並保持液面高度,浸泡過夜。
5用2.5-5BV乙醇,2BV/H的流速通過樹脂層,洗至流出液加水不呈白色渾濁為至
6 從柱中放出少量的乙醇,檢查樹脂是否洗凈,否則繼續用乙醇洗柱,直至符合 要求為止。檢查方法: a.水不溶性物質的檢測 取乙醇洗脫液適量,與同體積的去離子水混合後,溶液應澄清;再在10℃放置30分鍾,溶液仍應澄清 b.不揮發物的檢查 取乙醇洗脫液適量,在200-400nm范圍內掃描紫外圖譜,在250nm左右應無明顯紫外吸收
7 用去離子水以2BV/H的流速通過樹脂層,洗凈乙醇。
8 用2BV4%的HCL溶液,以5BV/H的流速通過樹脂層,並浸泡3小時,而後用去離子水以同樣流速洗至水洗液呈中性(pH試紙檢測pH=7)。
9 用2.5BV 5%的NaOH溶液,以5BV/H的流速通過樹脂層並浸泡3小時,而後用去離子水以同樣流速洗至水洗液呈中性(pH試紙檢測pH=7)。
10樹脂吸附達飽和的終點判定方法:葯液以一定速度通過樹脂柱,根據預算用量,在其附近,取過柱液約3ml,置10ml具塞試管中,密塞後猛力振搖。觀察泡沫持續時間,如泡沫持續時間為15分鍾以上,則為陽性,此時樹脂達到飽和。
正確選擇吸附樹脂型號和解吸用乙醇濃度(洗脫劑)
❻ 請高手幫我摘要翻譯下,棘手啊,沒辦法了,快要交了!
濃硫酸作為有機合成中常用的催化劑,廣泛被應用在大學化學有機實驗中。但由於濃硫酸具有高腐蝕性,容易使反應物碳化,產生諸多副反應,直接影響產物質量和產率。酸性離子酸性樹脂也可作為一種有機合成催化劑,用它替代濃硫酸可催化合成二氫香豆素類化合物[1],乙酸異丙烯酯[2]等有機化合物。本實驗研究在微量半微量條件下,用酸性離子交換樹脂代替濃硫酸在有機化學實驗教學中的相關實驗,比如環己烯的合成,乙酸正丁酯的合成教學實驗。以環己醇為原料,在優化條件下,酸性離子交換樹脂成功催化合成出環己烯。以乙酸、正丁醇為原料,按正交設計條件,酸性離子交換樹脂成功催化合成乙酸正丁酯。酸性離子交換樹脂回收再利用,綠色科學。產率比傳統催化劑催化合成的文獻值略優。
關鍵詞:酸性離子酸性樹脂; 催化合成; 環己烯; 乙酸正丁酯; 綠色科學
Concentrated sulfuric acid used in organic synthesis as a catalyst, is widely used in Organic Chemistry, University of the experiment. However, e to concentrated sulfuric acid is highly corrosive, easily carbonation reaction, resulting in many side effects, a direct impact on proct quality and yield. Acidic ion-acidic resin can also be used as a catalyst for organic synthesis, it's used instead of concentrated sulfuric acid can be catalyzed synthesis of dihydro-coumarin compounds [1], High purity isopropenyl acetate [2] and other organic compounds. Experimental study of the semi-micro micro-conditions, the use of acidic ion exchange resin in place of concentrated sulfuric acid in the experimental teaching of organic chemistry experiments, such as cyclohexene Synthesis, Synthesis of n-butyl acetate experimental teaching. To cyclohexanol as raw materials in the optimum conditions, the success of acidic ion exchange resin catalyst synthesized cyclohexene. To acetic acid, n-butyl alcohol as raw materials, according to orthogonal design conditions, the success of acidic ion exchange resin catalyzed synthesis of n-butyl acetate. Acidic ion-exchange resin recycling, green science. Yield than the traditional literature Catalytic Synthesis slightly better value.
Key words: acidic ion resin acid; catalytic synthesis; Cyclohexene; n-butyl acetate; Green Science
❼ 電鍍廢水含什麼成分,一般怎麼處理
電鍍廢水中主要含有鉻、鋅、銅、鎘、鉛、鎳等重金屬離子以及酸、鹼,尤其是在氰化電鍍工藝中,廢水中含有大量的氰化物. 這些污染物具有很大的毒性,並存在致癌的危險。
電鍍廢水的水質、水量與電鍍生產的工藝條件、生產負荷、操作管理與用水方式等因素有關。電鍍廢水的水質復雜,成分不易控制,其中含有鉻、鎘、鎳、銅、鋅、金、銀等重金屬離子和氰化物等,有些屬於致癌、致畸、致突變的劇毒物質。
廢水特性
前處理
對於金屬基體材料,其電鍍的可分為:
1、物理處理(包括磨光、拋光、噴砂、滾光、刷光等)
2、化學處理(包括除油、除銹和侵蝕等)
3、電化學處理(包括電化學除油和電化學侵蝕等)
除油過程中常用鹼性化合物如NaOH、Na2CO3、Na3PO4、Na2SiO3等,對於油污特別嚴重的零件有時還用煤油、汽油、丙酮、甲苯、三氯乙烯、四氯化碳等有機溶劑除油,再進行化學鹼性除油。為去除某些礦物油,通常在除油液中加一定量的乳化劑,如OP乳化劑、AE乳化劑、三乙醇胺油酸皂等。因此除油過程中產生的清洗廢水以及更新廢液都是鹼性廢水,常含有油類及其它有機化合物。
酸洗除銹常用的有鹽酸、硫酸,為防止鍍件基體的腐蝕,常加入某些緩蝕劑如硫脲、磺化煤焦油、烏洛托品聯苯胺等。酸洗除銹過程產生的清洗水一般酸度都較高,含有重金屬離子及少量有機添加劑。
前處理廢水是電鍍廢水處理中的重要組成部分,約占電鍍廢水總量的50%,廢水中含有一定的鹽份、游離酸、有機化合物等,組分變化很大,隨鍍種、前處理工藝以及工廠管理水平等而變。
鍍層漂洗
鍍層漂洗水是電鍍作業中重金屬污染的主要來源。電鍍液的主要成分是金屬鹽和絡合劑,包括各種金屬的硫酸鹽、氯化物、氟硼酸鹽等以及氰化物、氯化銨、氨三乙酸、焦磷酸鹽、有機膦酸等。除此之外,為改善鍍層性質,往往還在鍍液中添加某些有機化合物,如作為整平劑的香豆素、丁炔二醇、硫脲,作為光亮劑的有糖精、香草醛、苄叉丙酮、對甲苯磺醯胺、苯磺酸等。因此鍍件漂洗廢水中除含有重金屬離子外,還含有少量的有機物。漂洗廢水的排放量以及重金屬離子的種類與濃度隨鍍件的物理形狀、電鍍液的配方、漂洗方法以及電鍍操作管理水平等諸多因素而變。特別是漂洗工藝對廢水中重金屬的濃度影響很大,直接影響到資源的回收和廢水的處理效果。
鍍層後
鍍層後處理主要包括漂洗之後的鈍化、不良鍍層的退鍍以及其他特殊的表面處理。後處理過程中同樣產生大量的重金屬廢水。一般來說,常含有Cr6+ 、Cu2+、Ni2+、Zn2+、Fe2+等重金屬;H2SO4、HCl、H3BO3、H3PO4、NaOH、Na2CO3等酸鹼物質;甘油、氨三乙酸、六次甲基四胺、防染鹽、醋酸等有機物質。總的來說,這類鍍層後處理廢水復雜多變,水量也不穩定,一般都與混合廢水或酸鹼廢水合並處理。
電鍍廢液
電鍍、鈍化、退鍍等電鍍作業中常用的槽液經長期使用後或積累了許多其他的金屬離子,或由於某些添加劑的破壞,或某些有效成分比例失調等原因而影響鍍層或鈍化層的質量。因此許多工廠為控制這些槽液中的雜質在工藝許可的范圍內,將槽液廢棄一部分,補充新溶液,也有的工廠將這些失效的槽液全部棄去。這些廢棄的各種濃度液一般重金屬離子濃度都很高,積累的雜質也很多,不僅污染物的種類不同,而且主要污染物的濃度、其他金屬雜質離子的濃度以及溶液介質也都往往有較大的差異。這些差異決定了這些廢水的處理技術上的多樣性和工藝上的特殊性。
電鍍廢水處理
目前普遍採用的工藝一般是物化法處理。處理方法較多,有效的也不少,但可以做到整體達標的並不多。
電鍍和金屬加工業廢水中鋅的主要來源是電鍍或酸洗的拖帶液。污染物經金屬漂洗過程又轉移到漂洗水中。酸洗工序包括將金屬(鋅或銅)先浸在強酸中以去除表面的氧化物,隨後再浸入含強鉻酸的光亮劑中進行增光處理。該廢水中含有大量的鹽酸和鋅、銅等重金屬離子及有機光亮劑等,毒性較大,有些還含致癌、致畸、致突變的劇毒物質,對人類危害極大。因此,對電鍍廢水必須認真進行回收處理,做到消除或減少其對環境的污染。
電鍍廢水處理設備由調節池、加葯箱、還原池、中和反應池、pH調節池、絮凝池、斜管沉澱池、廂式壓濾機、清水池、氣浮反應,活性炭過濾器等組成。
1.氣浮法
氣浮法是向水中通入空氣,產生微小氣泡,由於氣泡與細小懸浮物之間黏附,形成浮選體,利用氣泡的浮升作用,上浮到水面,形成泡沫或浮渣,從而使水中的懸浮物質得以分離。按照氣泡產生方式的不同,可分為充氣氣浮、溶氣氣浮和電解氣浮三類。
氣浮法是代替沉澱法的新型固液分離手段,1978年上海同濟大學首次應用氣浮法處理電鍍重金屬廢水處理獲得成功。隨後,因處理過程連續化,設備緊湊,佔地少,便於自動化而得到了廣泛的應用。
氣浮法固液分離技術適應性強,可處理鍍鉻廢水、含鉻鈍化廢水以及混合廢水。不僅可去除重金屬氫氧化物,而且可以去除其他懸浮物、乳化油、表面活性劑等。氣浮法用於處理鍍鉻廢水的原理是:在酸性的條件下硫酸亞鐵和六價鉻進行氧化還原反應,然後在鹼性條件下產生絮凝體,在無數微細氣泡作用下使絮凝體浮出水面,使水質變清。
2.離子交換法
離子交換法主要是利用離子交換樹脂中的交換離子同電鍍廢水中的某些離子進行交換而將其除去,使廢水得到凈化的方法。
國內用離子交換技術處理電鍍廢水是從20世紀60年代開始進行試驗研究的,到70 年代末,因為迫切需要解決環境污染問題,這一技術得到了很大發展,當前已成為處理電鍍廢水和回收某些金屬的有效手段之一,也是使某些鍍種的電鍍廢水達到閉路循環的一個重要環節。但是採用離子交換法的投資費用很高,系統設計和操作管理較為復雜,一般的中小型企業難以適應,往往由於維修、管理等不善而達不到預期的效果,因此,在推廣應用上受到了一定的限制。
當前,國內對含鉻、含鎳等電鍍廢水採用離子交換法處理較為普遍,在設計、運行和管理上已有較為成熟的經驗。經處理後水能達到排放標准,且出水水質較好,一般能循環使用。樹脂交換吸附飽和後的再生洗脫液經電鍍工藝成分調整和凈化後能回用於鍍槽,基本實現閉路循環。另外,離子交換法也可用於處理含銅、含鋅、含金等廢水。
3.電解法
電解法主要是使廢水中的有害物質通過電解過程在陽、陰兩極上分別發生氧化和還原反應,轉化成無害物質;或利用電極氧化和還原產物與廢水中的有害物質發生化學反應,生成不溶於水的沉澱物,然後分離除去或通過電解反應回收金屬。國內在20世紀60年代開始用電解法處理電鍍含鉻廢水,70年代末對含銀、銅等廢水進行實驗研究,回收銀、銅等金屬,取得了很好的效果。
電解法處理電鍍廢水一般用於中、小型廠,其主要特點是不需投加處理葯劑,流程簡單,操作方便,占生產場地少,同時由於回收的金屬純度高,用於回收貴重金屬有很好的經濟效益。但當處理水量較大時,電解法的耗電較大,消耗的鐵極板量也較大,同時分離出來的污泥與化學處理法一樣不易處置,所以已較少採用。
4.萃取法
萃取法是利用一種不溶於水而能溶解水中某種物質(稱溶質或萃取物)的溶劑投加入廢水中,使溶質充分溶解在溶劑內,從而從廢水中分離除去或回收某種物質的方法。萃取操作過程包括混合、分離和回收三個主要工序。
幾種典型的工藝流程
☆自來水----水泵----多介質過濾器----活性炭過濾器----自動加葯裝置----保安過濾器----高壓泵----一級反滲透----中間水箱----高壓泵----二級反滲透----純水箱----純水泵 新工藝
☆漂洗水----水箱----水泵----多介質過濾器----保安過濾器----超濾----電鍍液回收桶
☆漂洗水----水箱----水泵----多介質過濾器----保安過濾器----超濾----電鍍液回收桶----高壓泵----反滲透----清洗水箱