A. 交換作用的土壤中陽離子的交換作用
土壤襲的陽離子交換性能是由土壤膠體表面性質所決定,由有機質的交換基與無機質的交換基所構成,前者主要是腐殖質酸,後者主要是粘土礦物。它們在土壤中互相結合著,形成了復雜的有機無機膠質復合體,所能吸收的陽離子總量包括交換性鹽基(K+、Na+、Ca++、Mg++)和水解性酸,兩者的總和即為陽離子交換量。其交換過程是土壤固相陽離子與溶液中陽離子起等量交換作用。
1、土壤陽離子交換量是隨著土壤在風化過程中形成,一些礦物和有機質被分解成極細小的顆粒。化學變化使得這些顆粒進一步縮小,肉眼便看不見。
2、這些最細小的顆粒叫做「膠體」。每一膠體帶凈負電荷。電荷是在其形成過程中產生的。它能夠吸引保持帶正電的顆粒
,就像磁鐵不同的兩極相互吸引一樣。陽離子是帶正電荷的養分離子,如鈣(Ca)、鎂(Mg)、鉀(K)、鈉(Na)、氫(H)和銨(NH4)。粘粒是土壤帶負電荷的組份。
3、這些帶負電的顆粒(粘粒)吸引、保持並釋放帶正電的養分顆粒(陽離子)
。有機質顆粒也帶有負電荷,吸引帶正電荷的陽離子。砂粒不起作用。
4、陽離子交換量(CEC)是指土壤保持和交換陽離子的能力,也有人將它稱之為土壤的保肥能力。
B. 電廠水處理反滲透系統與陰陽床的原理分別是什麼各自有什麼優缺點謝謝
反滲透膜的基本工作原理是:
運用特製的高壓水泵,將原水加至6—20公斤壓力,使原水在壓力的作用下滲透過孔徑只有0.0001微米的反滲透膜。化學離子和細菌、真菌、病毒體不能通過,隨廢水排出,只允許體積小於0.0001微米的水分子和通過。反滲透膜具有設備構造緊湊,佔地面積小,單位產水量高,能量消耗少,去除雜質徹底,使用范圍廣,自動化程度高,使用操作方便,無污染等多種優點。
陰、陽樹脂的工作原理:
離子交換樹脂原理即是離子交換樹把溶液中的鹽分脫離出來的過程:
離子交換樹脂作用環境中的水溶液中,含有的金屬陽離子(Na+、Ca2+、 K+、 Mg2+、Fe3+等)與陽離子交換樹脂(含有的磺酸基(—SO3H)、羧基(—COOH)或苯酚基(—C6H4OH)等酸性基團,在水中易生成H+離子)上的H+ 進行離子交換,使得溶液中的陽離子被轉移到樹脂上,而樹脂上的H+交換到水中,(即為陽離子交換樹脂原理)。
水溶液中的陰離子(Cl-、HCO3-等)與陰離子交換樹脂(含有季胺基[-N(CH3)3OH]、胺基(—NH2)或亞胺基(—NH2)等鹼性基團,在水中易生成OH-離子)上的OH-進行交換,水中陰離子被轉移到樹脂上,而樹脂上的OH-交換到水中,(即為陰離子交換樹脂原理)。而H+與OH-相結合生成水,從而達到脫鹽的目的。
C. 當葉綠素進入人體後,分子中的鎂離子會被鐵離子置換出來,成為人體的新鮮血液。(詳見補充)
這里不是按照金屬活動順序表裡面的置換,是鎂離子與鐵離子之間的交換,准確的說是亞鐵離子
葉綠素裡面與鎂結合的是一些含N的環,相對於鎂離子,亞鐵離子與N結合的穩定性更強,所以鐵離子可以代替鎂離子。同樣一些製作樹葉標本的通常用硫酸銅溶液浸泡樹葉,這樣葉綠素裡面與鎂離子也會被銅離子代替,變成銅葉綠素,使得樹葉的顏色更加新鮮
D. 離子交換法
陽離子交換樹脂對鹼金屬的吸附能力隨其水化物離子半徑的減小而增強專。根據鹼金屬屬的活度系數,陽離子交換樹脂對其吸附能力的次序為:Cs>Rb>K>NH+4>Na>Li。
有些無機化合物對鹼金屬有選擇性的吸附作用,可作為離子交換劑用。
磷酸鋁在水溶液中能吸附銣、銫,其分離系數比合成樹脂還高。交換柱上的銣、銫可分別用稀硝酸及高於1mol/LHNO3洗脫。
在硝酸溶液中,銣、銫可被磷鉬酸銨吸附,與鉀、鈉、鋰分離,再用2mol/L和6mol/LNH4NO3溶液洗脫銣、銫。當氧化鉀含量低於50mg時,銣、銫回收率均在90%以上。
陰離子交換樹脂在一定條件下,雖可用於鹼金屬彼此之間的分離,但大多數情況是作為分離其他元素用。
在鹽酸溶液中,鈷、鋅、鐵、鎘形成穩定的氯陰離子,能被強鹼性陰離子交換樹脂吸附,或上述元素及釩與檸檬酸作用後,也可被陰離子交換樹脂吸附而與鹼金屬分離。
鈣、鎂在EDTA的乙醇溶液中,或其他一些兩價金屬在有EDTA或乙酸鹽存在下,均可被陰離子交換樹脂吸附,因此可用作鹼金屬與鹼土金屬的分離。
E. 自來水水垢過多是什麼原因
水垢之所以多是因為水中的礦物質含量高,比如鈣鎂離子的含量,這類型的水受熱後,從水中沉澱出的化合物和雜質的混合物變形成了水垢,而這種情況在北方更為常見。
雖然水垢不會造成什麼具體的傷害,但長時間結下的水垢其中包含許多沉澱物,並伴有燒水容器內所產生的微量金屬元素,包括鉛鋅砷等重金屬,這些是對人體有害的,所以家裡自來水水垢多可以考慮選擇安裝全屋凈水系統。
(5)鎂離子交換能力擴展閱讀:
消費者可以取一杯熱水,倒入肥皂水,輕輕攪拌。水面上出現泡沫的為軟水,水面上出現浮渣的為硬水,浮渣越多,水的硬度越大。另外也可以用燒杯加熱,在杯壁留下較多水垢的是硬水。
因為硬水是含有較多的可溶性鈣,鎂物質的水,加熱後,這些可溶性的鈣鎂物質轉化成不可溶性的物質,沉澱雜質多的是硬水,雜質越多,水的硬度越大。
業內專家稱,盡管硬水對於日常生活來說益處不多,但是適量飲用硬水,也能降低金屬的毒性及心血管病的發生率。水的軟、硬取決於其鈣、鎂礦物質的含量。
我國測定飲水硬度是將水中溶解的鈣、鎂換算成碳酸鈣,以每升水中碳酸鈣含量為計量單位,當水中碳酸鈣的含量低於150毫克/升時稱為軟水,達到150—450毫克/升時為硬水,450—714毫克/升時為高硬水,高於714毫克/升時為特硬水。
因此專家提醒廣大消費者:飲用硬度在150—450毫克/升的水,是最有利於人體健康的。
F. 離子交替吸附作用
離子交替吸附作用主要發生在具有固定電荷的固體礦物表面,無論是陽離子還是陰離子,均可發生交替吸附作用,但目前研究得較多的是陽離子交替吸附作用。離子交替吸附作用的一個重要特點就是,伴隨著一定量的一種離子的吸附,必然有等當量的另一種同號離子的解吸(圖2-5-4)。離子交替吸附作用之所以具有這樣的特點,主要是由於吸附劑通常都具有一定的離子交換容量,因此這里首先對離子交換容量予以討論。
圖2-5-3 有機質表面的負電荷
圖2-5-4 陽離子交替吸附作用圖解
2.5.2.1 離子交換容量
離子交換容量包括陽離子交換容量(CEC—Cation Exchange Capacity)和陰離子交換容量(AEC—Anion Exchange Capacity),我們主要討論陽離子交換容量,它被定義為每100 g干吸附劑可吸附陽離子的毫克當量數。例如,在蒙脫石的結晶格架中,鋁八面體中的三價鋁可被二價鎂所置換,根據測定,每摩爾蒙脫石中鎂的含量為0.67 mol,即蒙脫石的分子式為:Si8Al3.33Mg0.67O20(OH)4。已知蒙脫石的分子量是734 g,因此這種蒙脫石的陽離子交換容量為:
水文地球化學
在實際中,通常都是通過實驗來測定吸附劑的陽離子交換容量。尤其是對於野外所採取的土樣或岩樣,由於其中含有多種吸附劑,實驗測定往往是唯一可行的方法。陽離子交換容量的實驗測定在多數情況下都是用pH為7的醋酸銨溶液與一定量固體樣品混合,使其全部吸附格位被所飽和,然後用其他溶液(例如NaCl溶液)把被吸附的全部交換出來,達到交換平衡後,測定溶液中Na+的減少量,據此便可計算樣品的陽離子交換容量。表252列出了一些粘土礦物及土壤的陽離子交換容量,由表可見,與土壤相比,礦物的陽離子交換容量有更大的變化范圍。
鬆散沉積物的陽離子交換容量受到了多種因素的影響,主要有:
(1)沉積物中吸附劑的種類與數量。例如,我國北方土壤中的粘土礦物以蒙脫石和伊利石為主,因此其CEC值較大,一般在20 meq/100 g以上,高者達50 meq/100 g以上;而南方的紅壤,由於其有機膠體含量少,同時所含的粘土礦物多為高嶺石及鐵、鋁的氫氧化物,故CEC較小,一般小於20 meq/100 g。
表2-5-2 一些粘土礦物及土壤的陽離子交換容量
(2)沉積物顆粒的大小。一般來說,沉積物的顆粒越小,其比表面積越大,CEC值越高。例如,根據一河流沉積物的粒徑及其CEC的實測結果,隨著沉積物的粒徑為從4.4μm增至1000μm,其CEC從14~65 meq/100 g變到4~20 meq/100 g,最終減小到0.3~13 meq/100 g。
(3)水溶液的pH值。一般來說,隨著水溶液pH值的增加,土壤表面的可變負電荷量增多,其CEC相應增加;相反,隨著水溶液pH值的減小,土壤表面的可變負電荷量不斷減少,其CEC也隨之減小。
2.5.2.2 陽離子交換反應及平衡
陽離子交換反應的一般形式可寫為:
水文地球化學
式中:Am+、Bn+表示水溶液中的A、B離子;AX、BX表示吸附在固體表面的A、B離子。上述反應的平衡常數可寫為:
水文地球化學
式中:a標記溶液中組分的活度;{}表示表示吸附在固體表面上的離子的活度。對於水溶液中的離子,其活度可使用表2-1-1中的公式進行計算;但對於吸附在固體表面上的離子,其活度的計算至今還沒有滿意的方法。目前主要採用兩種替代的方法來處理這一問題,一種是Vanselow慣例,另一種是Gaines-Thomas慣例。Vanselow慣例是由Vanselow於1932年提出的,他建議使用摩爾分數來代替式(2-5-7)中的{AX}和{BX}。若固體表面僅吸附了A離子和B離子,在一定重量(100 g)的吸附劑表面A、B的含量(mmol)依次為qA和qB,則吸附劑表面A、B的摩爾分數分別為:
水文地球化學
顯然,xA+xB=1。這樣式(2-5-7)可改寫為:
水文地球化學
Gaines-Thomas慣例是由Gaines和Thomas於1953年提出的,他們建議採用當量百分數來代替式(2-5-7)中的{AX}和{BX}。若用yA和yB分別表示吸附劑表面A、B的當量百分數,則有:
水文地球化學
同樣,yA+yB=1,這樣式(2-5-7)變為:
水文地球化學
目前,這兩種慣例都還在被有關的研究者所使用,各有優點,互為補充。事實上,離子交換反應的平衡常數並不是一個常數,它往往隨著水溶液的成分、pH值及固體表面成分的變化而變化,因此許多研究者認為將其稱為交換系數(Exchange Coefficient)或選擇系數(Selectivity Coefficient)更合適一些(Appelo,1994;Deutsch,1997;Benefield,1982;Kehew,2001)。
若已知兩種不同離子與同一種離子在某種吸附劑中發生交換反應的交換系數,則可計算出這兩種離子發生交換反應的交換系數。例如,若在某種吸附劑中下述反應:
水文地球化學
交換系數分別為KCa-Na和KK-Na,則在該吸附劑中反應:
水文地球化學
的交換系數為:
水文地球化學
這是因為(以Vanselow慣例為例):
水文地球化學
故有:
水文地球化學
表2-5-3列出了不同離子與Na+發生交換反應的交換系數(Vanselow慣例),據此便可按照上述的方法求得這些離子之間發生交換反應時的交換系數。
需要說明的是,在表2-5-3中,I離子與Na+之間交換反應的反應式為:
水文地球化學
表2-5-3 不同離子與Na+發生交換反應時的交換系數
其交換系數的定義式如下:
水文地球化學
【例】在某地下水系統中,有一段含有大量粘土礦物、因此具有明顯陽離子交換能力的地段,假定:
(1)該地段含水層的陽離子交換容量為100 meq/100 g,含水層中的交換性陽離子只有Ca2+和Mg2+,初始狀態下含水層顆粒中Ca2+、Mg2+的含量相等;
(2)在進入該地段之前,地下水中的Ca2+、Mg2+濃度相等,均為10-3 mol/L;
(3)含水層的孔隙度為n=0.33,固體顆粒的密度為ρ=2.65 g/cm3;
(4)含水層中發生的陽離子交換反應為:
水文地球化學
不考慮活度系數的影響,其平衡常數(Vanselow慣例)為:
水文地球化學
試使用陽離子交換平衡關系計算,當地下水通過該地段並達到新的交換平衡後,水溶液中及含水層顆粒表面Ca2+、Mg2+濃度的變化。
【解】:設達到新的交換平衡後,含水層顆粒中Ca2+的摩爾分數為y、水溶液中Ca2+的濃度為x(mmol/L),則這時含水層顆粒中Mg2+的摩爾分數為1-y、水溶液中Mg2+的濃度為2-x(mmol/L),故有:
水文地球化學
整理得:
水文地球化學
已知含水層的CEC=100 meq/100g,因此對於二價陽離子來說,含水層顆粒可吸附的陽離子總量為50 mmol/100 g=0.5 mmol/g。若用z表示達到交換平衡後1 g含水層顆粒中Ca2+的含量,則有:
水文地球化學
以式(2-5-25)帶入式(2-5-24)得:
水文地球化學
為了計算上述變化,需要對1 L水所對應的含水層中Ca2+的質量守恆關系進行研究。已知含水層的孔隙度為0.33,顯然在這樣的含水層中,1 L水所對應的含水層顆粒的體積為0.67/0.33(L),相應的含水層顆粒的質量為:
水文地球化學
故吸附作用前後1 L水所對應的含水層中Ca2+的質量守恆關系為:
水文地球化學
式中的0.25為吸附作用前1 g含水層顆粒中Ca2+的含量(mmol),由式(2-5-27)可得:
水文地球化學
以式(2-5-26)帶入式(2-5-28)並整理得:
水文地球化學
這是一個關於z的一元二次方程,求解該方程可得:z=0.2500627 mmol/g。代z入式(2-5-25)和式(2-5-26)可得達到新的交換平衡後含水層顆粒中Ca2+的摩爾分數為0.5001254,水溶液中Ca2+的濃度為0.75 mmol/L,故這時含水層顆粒中Mg2+的摩爾分數為0.4998746、水溶液中Mg2+的濃度為1.25 mmol/L。由此可見,地下水通過該粘性土地段後,盡管Ca2+、Mg2+在含水層顆粒中的含量變化很小,但它們在地下水中的含量變化卻較大,Mg2+從原來的1 mmol/L增加到了1.25 mmol/L,Ca2+則從原來的1 mmol/L減少到了0.75 mmol/L。
2.5.2.3 分配系數及離子的吸附親和力
除了交換系數,還有一個重要的參數需要介紹,這就是分配系數(Separation Factor)(Benefield,1982)。對於反應(2-5-6),它被定義為:
水文地球化學
式中cA和cB分別為水溶液中A、B離子的摩爾濃度。顯然,若不考慮活度系數的影響,對於同價離子間的交換反應,QA-B=KA-B。式(2-5-29)可改寫為:
水文地球化學
由式(2-5-30)可見,QA-B反映了溶液中B與A的含量之比與吸附劑表面B與A的含量之比之間的相對關系。當QA-B=1時,說明達到交換平衡時B與A在水溶液中的比例等於其在吸附劑表面的比例,因此對於該吸附劑,A和B具有相同的吸附親和力;當QA-B>1時,說明達到交換平衡時B與A在水溶液中的比例大於其在吸附劑表面的比例,因此A與B相比具有更大的吸附親和力;當QA-B<1時,說明達到交換平衡時B與A在水溶液中的比例小於其在吸附劑表面的比例,因此B與A相比具有更大的吸附親和力。
事實上,即使對於同一陽離子交換反應,其分配系數也會隨著水溶液性質的變化而變化(Stumm and Morgan,1996)。圖2-5-5給出了Na—Ca交換反應的分配系數隨Na+濃度的變化。沿著圖中的虛線,QNa-Ca=1,這時Na+和Ca2+具有相同的吸附親和力。但在稀溶液中,例如[Na+]=10-3 mol/L和10-2 mol/L,Ca2+在吸附劑中的比例要遠大於其在水溶液中的比例,因此在這種情況下Ca2+具有更強的吸附親和力。隨著Na+濃度的增大,Ca2+的吸附親和力逐漸減弱,Na+的吸附親和力則逐漸增強,當[Na+]=2 mol/L時,Na+已經變得比Ca2+具有更強的吸附親和力。Na—Ca交換反應分配系數的這種變化對於解釋一些實際現象具有重要的意義,根據這種變化,我們可以推斷淡水含水層中通常含有大量的可交換的Ca2+,而海水含水層中通常含有大量的可交換的Na+。這種變化關系也解釋了為什麼硬水軟化劑能夠選擇性地去除Ca2+,同時通過使用高Na+濃度的鹵水溶液進行沖刷而再生。
圖2-5-5 溶液中Ca2+的含量對吸附作用的影響
根據離子交換反應的分配系數,可以定量地評價離子的吸附親和力。一般來說,離子在土壤中的吸附親和力具有下述的規律:
(1)高價離子比低價離子具有更高的吸附親和力。例如,Al3+>Mg2+>Na+;>。這是因為離子交換反應從本質上說是一個靜電吸引過程,離子價越高,所受到的靜電吸引力就越大,它就越容易被吸附劑所吸附。
(2)同價離子的吸附親和力隨著離子水化半徑的減小而增大。例如,Ca2+>Mg2+>Be2+;>K+>Na+>Li+。這是因為離子的水化半徑越小,它越容易接近固體表面,從而也就越易於被固體所吸附。
Deutsch(1997)根據Appelo和Postma(1994)的資料,對二價陽離子的吸附親和力進行了研究,他所得到了吸附親和力順序如下:
水文地球化學
在常見的天然地下水系統中,Ca2+和Mg2+通常為地下水中的主要陽離子,它們在水溶液中相對較高的含量將使其成為含水層顆粒表面的主要吸附離子,盡管一些微量元素可能更緊密地被吸附在含水層顆粒表面上。但在污染地下水系統中,若吸附親和力更強的Pb2+和Ba2+的含量與Ca2+、Mg2+的含量在同一水平上,則含水層顆粒表面的主要吸附離子將變為Pb2+和Ba2+,這將大大地影響Pb2+和Ba2+在地下水中的遷移能力。
綜合來講,陽離子和陰離子的吸附親和力順序分別為(何燧源等,2000):
水文地球化學
可見,陽離子中Li+和Na+最不易被吸附,陰離子中Cl-和最不易被吸附。
離子交換對地下水質產生重要影響的一種常見情況就是海水入侵到淡水含水層中。當在沿海地帶大量抽取含水層中的淡水時,海水將對含水層進行補給。初始狀態下含水層顆粒表面吸附的主要是Ca2+和Mg2+,海水中的主要陽離子為Na+,陰離子為Cl-。這樣入侵的海水將導致含水層中發生下述的陽離子交換反應:
水文地球化學
由於Cl-通常不易被吸附,也不參與其他的水岩作用過程。所以相對於Cl-來說,該過程將使得Na+的遷移能力降低。
地下水系統中另一種常見的情況與上述過程相反,這就是Ca2+置換被吸附的Na+,反應式如下:
水文地球化學
人們在大西洋沿岸的砂岩含水層(Zack and Roberts,1988;Knobel and Phillips,1988)以及北美西部的沉積盆地中(Thorstenson等,1979;Henderson,1985)均發現了這種天然的軟化過程。該反應發生的前提條件是:含水層中含有碳酸鹽礦物,CO2的分壓較高,含水層顆粒中含有大量的可交換的Na+。
G. 軟水鹽是怎麼處理鈣鎂離子交換
軟水鹽是怎麼處理鈣鎂離子交換原理:
一,軟水鹽將水內的有害雜質離子(鈣內Ca,鎂Mg等離子)吸附於脂內,達到容凈化的目的。
二,隨著水處理量的增加,吸附的雜質越來越多,吸附能力會逐漸降低,而要清除吸附的雜質就需要用鈉離子(Na)。
三,通過反沖洗的方法,通過離子交換而把樹脂吸附的雜質離子(主要為鈣Ca,鎂Mg離子),置換出來,從而恢復離子交換吸附能力。
H. 物理軟水與化學軟水的區別是什麼
不知來你是不是指用物源理方法和化學方法軟化水。
軟化水主要是要除去水中的鈣、鎂離子。
物理方法,比如用加熱的方法,使碳酸氫鈣成為碳酸鈣從而除去鈣離子
化學方法,通過加入化學試劑除去鈣、鎂離子,比如加氫氧化鈉使鎂離子成為氫氧化鎂沉澱,從而除去鎂離子
I. 為什麼不能用工業鹽的鈉離子直接置換自來水中的鈣鎂離子
呵呵!你弄錯概念了,
工業鹽
是
離子交換
劑的
再生劑
,只有
離子交內換劑
才能吸咐水中鈣容,鎂離子,當離子交換劑飽和水中鈣,鎂離子後,就需用氯化鈉溶液(工業鹽)將交換劑中飽和的鈣,鎂離子置換出來,以恢復交換劑的交換能力(離子交換)...。。華粼水質