1. 請問離子色譜法的工作原理是什麼
您好,很高興為您解答!
樣品閥處於裝樣位置時,一定體積的樣品溶液被注入內樣品定量環,當樣品閥容切換到進樣位置時,淋洗液將樣品定量環中的樣品溶液(或富集與濃縮柱上的被測離子洗脫下來)代入分析柱,被側陰離子根據其在分析柱上的保留特性不同實現分離。淋洗液攜帶樣品通過抑制器時,所有陽離子被交換為氫離子,氫氧根型淋洗液轉換為水,碳酸根淋洗液轉換為碳酸,背景電導率降低;與此同時,被測陰離子被轉化為相應的酸,電導率身高。由電導檢測器檢測響應信號,數據處理系統記錄並顯示離子色譜圖。以保留的時間對被測離子定性,以峰高或峰面積對被測陰離子定量,測出相應離子含量。
此方法特別適於測定水溶液中低濃度的陰離子,例如飲用水水質分析,高純水的離子分析,礦泉水、雨水、各種廢水和電廠水的分析,紙漿和漂白液的分析,食品分析,生物體液(尿和血等)中的離子測定,以及鋼鐵工業、環境保護等方面的應用。離子色譜能測定下列類型的離子:有機陰離子、鹼金屬、鹼土金屬、重金屬、稀土離子和有機酸,以及胺和銨鹽等。
希望安徽康菲爾檢測科技有限公司的回答對您有所幫助~
離子交換樹脂的結構:
離子交換樹脂主要由高分子骨架和活性基團兩部分組成,高分子骨架是惰性的網狀結構骨架,是不溶於酸或鹼的高分子物質,常用的離子交換樹脂是由苯乙烯和二乙烯苯聚合得到樹脂的骨架。
而活性基團不能自由移動的官能團離子和可以自由移動的可交換離子兩部分組成,可交換離子能夠決定樹脂所吸附的離子,比如可交換離子為H型陽離子交換樹脂,那麼這個樹脂能夠吸附的離子,就是H型陽離子,而官能團離子能夠決定樹脂的「酸"、「鹼"性和交換能力的強弱,比如官能團離子是強酸性離子,那麼樹脂就是強酸性離子交換樹脂。
離子交換樹脂的內部結構:
1.凝膠型樹脂是由純單體混合物經縮合或聚合而成的,結構為微孔狀,合成的工藝比較簡單,孔徑大概在1-2nm左右,凝膠型樹脂的操作容量高,產水量高,物理強度好,且再生效率高,被廣泛應用在食品飲料加工,超純水制備,飲用水過濾,硬水軟化,製糖業,制葯等領域。
2.大孔型樹脂的孔徑一般在10nm左右,在樹脂中孔徑是比較大的,所以被稱為大孔型樹脂,且孔徑不會隨著周圍的環境而變化,能夠彌補凝膠型樹脂不能在非水系統中使用的缺點,吸附能力非常強大,不易碎裂,耐氧化好,操作容量高,能夠應用在醫葯領域、除重金屬污染、葯品純化、水處理中除去碳酸硬度、冷凝水精處理等領域。
詳情點擊:網頁鏈接
3. 離子交換色譜法的原理、裝置及應用是什麼
一、原理:離子抄交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離子基團及可交換的離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。
二、裝置:
1、分離柱:裝有離子交換樹脂,如陽離子交換樹脂、陰離子交換樹脂或螯合離子交換樹脂。
2、抑制柱和柱後衍生作用:常用的檢測器不僅能檢測樣品離子,而且也對移動相中的離子有響應,所以必須消除移動相離子的干擾。
3、檢測器:分為通用型和專用型。通用型檢測器對存在於檢測池中的所有離子都有響應。離子色譜中最常用的電導檢測器就是通用型的一種。
三、應用:
離子色譜主要用於測定各種離子的含量,特別適於測定水溶液中低濃度的陰離子,例如飲用水水質分析,高純水的離子分析,礦泉水、雨水、各種廢水和電廠水的分析,紙漿和漂白液的分析,食品分析,生物體液(尿和血等)中的離子測定,以及鋼鐵工業、環境保護等方面的應用。
4. 從分析原理簡述hplc中,離子交換色譜,離子對色譜及離子色譜有何異同
離子色譜原理與離子交換色譜原理類似,離子色譜後一般使用電化學內檢測器進行檢測,適容用於分析無機與有機陰陽離子和氨基酸,以及糖類和DNA、RNA的水解產物等;離子對色譜主要是補充離子抑制色譜的不足,離子抑制色譜是指在流動相中加入弱酸或弱鹼來抑制待測組分的離解,提高k值以利於組分的分離,一般針對酸性待測組分,可在流動相中加入弱酸,使待測組分減少在流動相中的離解,加強與固定相的分配,適用於有機弱酸鹼或兩性化合物的檢測,但由於色譜柱一般是硅膠基質化學鍵合相色譜,其酸度耐受范圍是2-8,因此在加入酸鹼調節劑時還要兼顧流動相pH,導致無法通過此方法分析強酸強鹼,因此引入離子對色譜,在流動相中加入可與強酸強鹼抑制的離子對,通常分析鹼加入烷基磺酸鈉,分析酸加入季胺鹽,適用於較強有機酸鹼的分析。
5. 離子色譜的原理
離子色譜 是高效液相色譜(HPLC)的一種,是分析陰離子和陽離子的一種液相色譜方法。 狹義而言,離子色譜法是以低交換容量的離子交換樹脂為固定相對離子性物質進行分離, 用電導檢測器連續檢測流出物電導變化的一種色譜方法。《離子色譜原理與應用》中對離子色譜法的定義是:利用被測物質的離子性進行分離和檢測的液相色譜法。
基本原理
離子色譜的分離機理主要是離子交換,有3種分離方式,它們是高效離子交換色譜(HPIC)、離子排斥色譜 (HPIEC)和離子對色譜(MPIC)。用於3種分離方式的柱填料的樹脂骨架基本都是苯乙烯-二乙烯基苯的共聚物,但樹脂的離子交換功能基和容量各不相同。HPIC用低容量的離子交換樹脂,HPIEC用高容量的樹脂,MPIC用不含離子交換基團的多孔樹脂。3種分離方式各基於不同分離機理。HPIC的分離機理主要是離子交換,HPIEC主要為離子排斥,而MPIC則是主要基於吸附和離子對的形成。
離子交換色譜
高效離子交換色譜[1],應用離子交換的原理,採用低交換容量的離子交換樹脂來分離離子,這在離子色譜中應用最廣泛,其主要填料類型為有機離子交換樹脂,以苯乙烯二乙烯苯共聚體為骨架,在苯環上引入磺酸基,形成強酸型陽離子交換樹脂,引入叔胺基而成季胺型強鹼性陰離子交換樹脂,此交換樹脂具有大孔或薄殼型或多孔表面層型的物理結構,以便於快速達到交換平衡,離子交換樹脂耐酸鹼可在任何pH范圍內使用,易再生處理、使用壽命長,缺點是機械強度差、易溶易脹、受有機物污染。
硅質鍵合離子交換劑以硅膠為載體,將有離子交換基的有機硅烷與基表面的硅醇基反應,形成化學鍵合型離子交換劑,其特點是柱效高、交換平衡快、機械強度高,缺點是不耐酸鹼、只宜在pH2-8范圍內使用。
離子交換色譜是最常用的離子色譜。
檢測方法
離子色譜的檢測器分為兩大類,即電化學檢測器和光學檢測器。電化學檢測器包括電導、直流安培、脈沖安培和積分安培;光化學檢測器包括紫外-可見和熒光。
隨著離子色譜的廣泛應用,離子色譜的檢測技術已由單一的化學抑制型電導法發展為包括電化學光化學和與其他多種分析儀器聯用的方法。 1、抑制電導檢測法;2、直接電導檢測法;3、紫外吸收光度法;4、柱後衍生光度法;5、電化學法;6、與元素選擇性檢測器聯用法。
6. 簡述離子交換色譜法
離子交換色譜法(ion exchange chromatography,IEC)
離子色譜分析法出現在20世紀70年代,80年代迅速發展起來,以無機、特別是無機陰離子混合物為主要分析對象。
離子交換色譜利用被分離組分與固定相之間發生離子交換的能力差異來實現分離。離子交換色譜的固定相一般為離子交換樹脂,樹脂分子結構中存在許多可以電離的活性中心,待分離組分中的離子會與這些活性中心發生離子交換,形成離子交換平衡,從而在流動相與固定相之間形成分配。固定相的固有離子與待分離組分中的離子之間相互爭奪固定相中的離子交換中心,並隨著流動相的運動而運動,最終實現分離。
表達式
離子交換色譜的分配系數又叫做選擇系數,其表達式為:
K_s=\frac{[RX^+]}{[X^+]}
其中[RX + ]表示與離子交換樹脂活性中心結合的離子濃度,[X + ]表示游離於流動相中的離子濃度
分離原理
離子交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離子基團及可交換的離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。
陽離子交換:
陰離子交換:
式中"--"表示在固定相上,Kxy和Kzm是交換反應的平衡常數,Z+和X-代表被分析的組分離子。M+和Y-表示樹脂上可交換的離子團。
離子交換反應的平衡常數分別為:
陽離子交換:
陰離子交換:
平衡常數K值越大,表示組分的離子與離子交換樹脂的相互作用越強。由於不同的物質在溶劑中離解後,對離子交換中心具有不同的親合力,因此具有不同的平衡常數。親合力大的,在柱中的停留時間長,具有高的保留值。
固定相
離子交換色譜常用的固定相為離子交換樹脂。目前常用的離子交換樹脂分為三種形式,一是常見的純離子交換樹脂。第二種是玻璃珠等硬芯子表面塗一層樹脂薄層構成的表面層離子交換樹脂,第三種為大孔徑網路型樹脂。它們各有特點,例如第二種樹脂有很高的柱效,但它的柱容量不大;第三種樹脂適用於非水溶液中物質的分離,因為它們的孔徑和內表面積大,不需要用水溶脹,便可滿意地使用。
典型的離子交換樹脂是由苯乙烯和二乙烯基苯交聯共聚而成:
其中,二乙烯基苯起了交聯和加牢整個構型的作用,其含量決定了樹脂交聯度大小。交聯度一般控制在4%~16%范圍內,高度交聯的樹脂較硬而且脆,也較滲透,但選擇性較好。在基體網狀結構上引入各種不同酸鹼基團作為可交換的離於基團。
按結合的基團不同,離子交換樹脂可分為陽離子交換樹脂和陰離子交換樹脂。陽離子交換樹脂上具有與樣品中陽離子交換的基團。陽離子交換樹脂又可分為強酸性和弱酸性樹脂。強酸性陽離子交換樹脂所帶的基團為磷酸基(一),其中和有機聚合物牢固結合形成固定部分,是可流動的能為其他陽離子所交換的離子。
陰離子交換樹脂具有與樣品中陰離子交換的基團。陰離子交換樹脂也可分為強鹼性和弱鹼性樹脂。
陰離子交換樹脂屬強鹼性,它是由有機聚合物骨架和一季胺鹼基團所組成,它帶有正電荷。而與相反的是可以移動的部分,它能被其它陰離子所交換
流動相
離子交換色譜的流動相最常使用水緩沖溶液,有時也使用有機溶劑如甲醇,或乙醇同水緩沖溶液混合使用,以提供特殊的選擇性,並改善樣品的溶解度。
離子交換色譜所用的緩沖液,通常用下列化合物配製:鈉、鉀、被的檸檬酸鹽,磷酸鹽,甲酸鹽與其相應的酸混合成酸性緩沖液或氫氧化鈉混合成鹼性緩沖液等。
7. 色譜分離原理
按色譜法分離所依據的物理或物理化學性質的不同,又可將其分為:
吸附色譜法:利用吸附劑表面對不同組分物理吸附性能的差別而使之分離的色譜法稱為吸附色譜法。適於分離不同種類的化合物(例如,分離醇類與芳香烴)。
分配色譜法:利用固定液對不同組分分配性能的差別而使之分離的色譜法稱為分配色譜法。
離子交換色譜法:利用離子交換原理和液相色譜技術的結合來測定溶液中陽離子和陰離子的一種分離分析方法,利用被分離組分與固定相之間發生離子交換的能力差異來實現分離。離子交換色譜主要是用來分離離子或可離解的化合物。它不僅廣泛地應用於無機離子的分離,而且廣泛地應用於有機和生物物質,如氨基酸、核酸、蛋白質等的分離。
尺寸排阻色譜法:是按分子大小順序進行分離的一種色譜方法,體積大的分子不能滲透到凝膠孔穴中去而被排阻,較早的淋洗出來;中等體積的分子部分滲透;小分子可完全滲透入內,最後洗出色譜柱。這樣,樣品分子基本按其分子大小先後排阻,從柱中流出。被廣泛應用於大分子分級,即用來分析大分子物質相對分子質量的分布。
親和色譜法:相互間具有高度特異親和性的二種物質之一作為固定相,利用與固定相不同程度的親和性,使成分與雜質分離的色譜法。例如利用酶與基質(或抑制劑)、抗原與抗體,激素與受體、外源凝集素與多糖類及核酸的鹼基對等之間的專一的相互作用,使相互作用物質之一方與不溶性擔體形成共價結合化合物,用來作為層析用固定相,將另一方從復雜的混合物中選擇可逆地截獲,達到純化的目的。可用於分離活體高分子物質、過濾性病毒及細胞。或用於對特異的相互作用進行研究。
吸附色譜利用固定相吸附中心對物質分子吸附能力的差異實現對混合物的分離,吸附色譜的色譜過程是流動相分子與物質分子競爭固定相吸附中心的過程
吸附色譜的分配系數表達式如下:
K_a =\frac
其中[Xa]表示被吸附於固定相活性中心的組分分子含量,[Xm]表示游離於流動相中的組分分子含量。分配系數對於計算待分離物質組分的保留時間有很重要的意義。
朋友可以到行業內專業的網站進行交流學習!
分析測試網路網這塊做得不錯,氣相、液相、質譜、光譜、葯物分析、化學分析、食品分析。這方面的專家比較多,基本上問題都能得到解答,有問題可去那提問,網址網路搜下就有。
8. 離子交換色譜法的分離原理
離子交換色譜(ion exchange chromatography,IEC)以離子交換樹脂作為固定相,樹脂上具有固定離回子基團及可交換的答離子基團。當流動相帶著組分電離生成的離子通過固定相時,組分離子與樹脂上可交換的離子基團進行可逆變換。根據組分離子對樹脂親合力不同而得到分離。
陽離子交換:
陰離子交換:
式中"--"表示在固定相上,Kxy和Kzm是交換反應的平衡常數,Z+和X-代表被分析的組分離子。M+和Y-表示樹脂上可交換的離子團。
離子交換反應的平衡常數分別為:
陽離子交換:
陰離子交換:
平衡常數K值越大,表示組分的離子與離子交換樹脂的相互作用越強。由於不同的物質在溶劑中離解後,對離子交換中心具有不同的親合力,因此具有不同的平衡常數。親合力大的,在柱中的停留時間長,具有高的保留值。
9. 高效液相色譜法的主要類型有哪些
高效液相色譜法分為:液-固色譜法、液-液色譜法、離子交換色譜法、凝膠色譜法。
1、液-固色譜法(液-固吸附色譜法)
固定相是固體吸附劑,它是根據物質在固定相上的吸附作用不同來進行分配的。
①液-固色譜法的作用機制
吸附劑:一些多孔的固體顆粒物質,其表面常存在分散的吸附中心點。
流動相中的溶質分子X(液相)被流動相S帶入色譜柱後,在隨載液流動的過程中,發生如下交換反應:
X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用機制是溶質分子X(液相)和溶劑分子S(液相)對吸附劑活性表面的競爭吸附。
吸附反應的平衡常數K為:
K值較小:溶劑分子吸附力很強,被吸附的溶質分子很少,先流出色譜柱。 K值較大:表示該組分分子的吸附能力較強,後流出色譜柱。
發生在吸附劑表面上的吸附-解吸平衡,就是液-固色譜分離的基礎。
②液-固色譜法的吸附劑和流動相
常用的液-固色譜吸附劑:薄膜型硅膠、全多孔型硅膠、薄膜型氧化鋁、全多孔型氧化鋁、分子篩、聚醯胺等。
一般規律:對於固定相而言,非極性分子與極性吸附劑(如硅膠、氧化銅)之間的作用力很弱,分配比k較小,保留時間較短;但極性分子與極性吸附劑之間的作用力很強,分配比k大,保留時間長。
對流動相的基本要求: 試樣要能夠溶於流動相中 流動相粘度較小
流動相不能影響試樣的檢測
常用的流動相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。
③液-固色譜法的應用
常用於分離極性不同的化合物、含有不同類型或不;數量官能團的有機化合物,以及有機化合物的不同的異構體;但液-固色譜法不宜用於分離同系物,因為液-固色譜對不同相對分子質量的同系物選擇性不高。
2、液-液色譜法(液-液分配色譜法)
將液體固定液塗漬在擔體上作為固定相。
①液-液色譜法的作用機制 溶質在兩相間進行分配時,在固定液中溶解度較小的組分較難進入固定液,在色譜柱中向前遷移速度較快;在固定液中溶解度較大的組分容易進入固定液,在色譜柱中向前遷移速度較慢,從而達到分離的目的。
液-液色譜法與液-液萃取法的基本原理相同,均服從分配定律:K=C固/C液 K值大的組分,保留時間長,後流出色譜柱。
②正相色譜和反相色譜
正相分配色譜用極性物質作固定相,非極性溶劑(如苯、正己烷等)作流動相。 反相分配色譜用非極性物質作固定相,極性溶劑(如水、甲醇、己腈等)作流動相。
一般地,正相色譜是固定液的極性大於流動相的極性,而反相色譜是固定相的極性小於流動相的極性。正相色譜適宜於分離極性化合物,反相色譜則適宜於分離非極性或弱極性化合物。
③液-液色譜法的固定相 常用的固定液為有機液體,如極性的β,β′氧二丙腈(ODPN),非極性的十八烷(ODS)和異二十烷(SQ)等。
缺點:塗漬固定液容易被流動相沖掉。 採用化學鍵合固定相則可以避免上述缺點。
使固定濃與擔體之間形成化學鍵,例如在硅膠表面利用硅烷化反應:形成Si-O-Si-C型鍵,把固定液的分子結合到擔體表面上。
優點:
化學鍵合固定相無液坑,液層薄,傳質速度快,無固定液的流失。 固定液上可以結合不同的官能團,改善分離效能。 固定液不會溶於流動相,有利於進行梯度洗提。
④液-液色譜法的應用
液-液色譜法既能分離極性化合物,又能分離非極性化合物,如烷烴、烯烴、芳烴、稠環、染料、留族等化合物。化合物中取代基的數目或性質不同,或化合物的相對分子質量不同,均可以用液-液色譜進行分離。
3、離子交換色譜法
原理:離子交換色譜法是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的被測離子進行可逆交換,由於被測離子在交換劑上具有不同的親和力(作用力)而被分離。
①離子交換色譜法的作用機制
聚合物的分子骨架上連接著活性基團,如:-SO3-,-N(CH3)3+等。為了保持離子交換樹脂的電中性,活性基團上帶有電荷數相同但正、負號相反的離子X,稱為反離子。
②溶劑和固定相
兩種類型:多孔性樹脂與薄殼型樹脂。
多孔性樹脂:極小的球型離子交換樹脂,能分離復雜樣品,進樣量較大;缺點是機械強度不高,不能耐受壓力。
薄殼型離子交換樹脂:在玻璃微球上塗以薄層的離子交換樹脂,這種樹脂柱效高,當流動相成分發生變化時,不會膨脹或壓縮;缺點是但柱子容量小,進樣量不宜太多。
③離子交換色譜法的應用
主要用來分離離子或可離解的化合物,凡是在流動相中能夠電離的物質都可以用離子交換色譜法進行分離。
廣泛地應用於:無機離子、有機化合物和生物物質(如氨基酸、核酸、蛋白質等)的分離。 4.凝膚色譜法(空間排阻色譜法)
凝膠是一種多孔性的高分子聚合體,表面布滿孔隙,能被流動相浸潤,吸附性很小。凝膠色譜法的分離機制是根據分子的體積大小和形狀不同而達到分離目的。
①凝膠色譜法的作用機制
體積大於凝膠孔隙的分子,由於不能進入孔隙而被排阻,直接從表面流過,先流出色譜柱;小分子可以滲入大大小小的凝膠孔隙中而完全不受排阻,然後又從孔隙中出來隨載液流動,後流出色譜柱;中等體積的分子可以滲入較大的孔隙中,但受到較小孔隙的排阻,介乎上述兩種情況之間。
凝膠色譜法是一種按分子尺寸大小的順序進行分離的一種色譜分析方法。
②凝膠色譜法的固定相
軟質凝膠、半硬質凝膠和硬質凝膠三種。
③凝膠色譜法的應用特點
保留時間是分子尺寸的函數,適宜於分離相對分子質量大的化合物,相對分子質量在400~8×105的任何類型的化合物。
保留時間短,色譜峰窄,容易檢測。
固定相與溶質分子間的作用力極弱,趁於零,柱的壽命長。
不能分辨分子大小相近的化合物,分子量相差需在10%以上時才能得到分離。
10. 離子交換色譜適合下面哪一種物質的分離
離子交換色譜法是利用離子交換原理和液相色譜技術的結合來測定溶液中陽離子內和陰離子的一容種分離分析方法。凡在溶液中能夠電離的物質通常都可以用離子交換色譜法進行分離。現在它不僅適用於無機離子混合物的分離,亦可用於有機物的分離,例如氨基酸、核酸、蛋白質等生物大分子,因此應用范圍較廣。