和樹脂的親和力有關,主要是靜電吸引,其次是疏水作用。
樹脂的交聯度,即樹脂基體版聚合時所用二權乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強。
而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。
(1)離子交換樹脂洗脫離子濃度擴展閱讀:
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。
大孔樹脂還有多種優點耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
❷ D001型離子交換樹脂使用後的洗脫方法。
苯乙烯系樹脂是先使用的,丙烯酸系樹脂則用得較後。 這兩類樹脂的吸附性能丙烯酸系樹脂能交換吸附大多數離子型色素,脫色容量大,而且吸附物較易洗脫,
❸ 能直接用DMSO洗脫離子交換樹脂嗎各種類型的離子交換樹脂對不同離子(包括有機和無機)的交換能力順序
離子交換樹脂一般為有機高聚物為基體,使用DMSO容易造成樹脂溶解,所以不能使用DMSO洗脫。
一般陰陽離子交換樹脂的交換能力與離子半徑和離子價態有關,價態越高,越容易吸附,同時跟離子濃度也有關系,一般都是從高濃度向低濃度交換。
❹ 陰離子交換樹脂洗脫下的是什麼離子
不是,和那電荷無關,和你溶液中離子的濃度有關,濃度越低越容易洗脫,大的話就很難洗脫
❺ 如何提高陽離子交換樹脂的洗脫率
使用10%鹽酸稀溶液,通過虹吸裝置清洗,清洗時間45分鍾,然後原水洗去鹽酸即可.
❻ 我想比較我用了幾種離子交換樹脂進行吸附洗脫後的物質的多少,比較一下那種樹脂吸附效果好,怎麼檢測
怎麼檢測?當然是檢測不同液體中物質含量的變化以及液體體積進行計算了。
❼ 陽離子交換樹脂再生用鹽酸的濃度
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低版的酸、鹼或鹽。
1、大孔吸附樹脂權簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
❽ 廢水中鈣鎂離子濃度太高,用離子交換樹脂處理,我擔心離子交換樹脂的再生太平繁。
首先需要確認你的廢水種類,一般高濃度鹽水去除二價鈣鎂離子選擇螯合樹脂專D851即可,如果屬是中水回用的零排放項目,一般選用鈉床+弱酸陽床即可,至於你擔心樹脂頻繁再生的問題,離子交換樹脂都是有交換當量的,你可以根據原水離子濃度計算得出單台設備的周期處理量,從而得出再生周期。如果原水中鈣鎂離子過高,則可先用石灰軟化或石灰純鹼軟化法降低鈣鎂離子濃度後,再用離子交換法處理。如有疑問歡迎追問或點擊頭像聯系。
❾ 離子交換樹脂的交換原理
離子交換樹脂的內部結構,由三部分組成,分別是:
1、高分子骨。
由交聯的高分子聚合物組成;
2、離子交換基團。
它連在高分子骨架上,帶有可交換的離子(稱為反離子)的離子型官能團或帶有極性的非離子型官能團;
3、孔。
它是在干態和濕態的離子交換樹脂中都存在的高分子結構中的孔(凝膠孔)和高分子結構之間的孔(毛細孔)。
在交聯結構的高分子基體(骨架)上,以化學鍵結合著許多交換基團。這些交換基團也是由兩部分組成:固定部分和活動部分。
交換基團中的固定部分被束縛在高分子的基體上,不能自由移動,所以稱為固定離子;交換基團的活動部分則是與固定離子以離子鍵結合的符號相反的離子,稱為反離子或可交換離子。反離子在溶液中可以離解成自由移動的離子,在一定條件下,它能與符號相同的其他反離子發生交換反應。
1、離子交換的選擇性定義:
離子交換劑對於某些離子顯示優先活性的性質。離子交換樹脂吸附各種離子的能力不一,有些離子易被交換樹脂吸附,但吸著後要置換下來就比較困難;而另一些離子很難被吸著,但被置換下來卻比較容易,這種性能稱為離子交換的選擇性。離子交換樹脂對水中不同離子的選擇性與樹脂的交聯度、交換基團、可交換離子的性質、水中離子的濃度和水的溫度等因素有關。
離子交換作用即溶液中的可交換離子與交換基團上的可交換離子發生交換。一般來說,離子交換樹脂對價數較高的離子的選擇性較大。對於同價離子,則對離子半徑較小的離子的選擇性較大。在同族同價的金屬離子中,原子序數較大的離子其水合半徑較小,陽離子交換樹脂對其的選擇性較大。對於強酸性陽離子交換樹脂來說,它對一些離子的選擇性順序為:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。離子交換反應是可逆反應,但是這種可逆反應並不是在均相溶液中進行的,而是在固態的樹脂和溶液的接觸界面間發生的。這種反應的可逆性使離子交換樹脂可以反復使用。
2、以001×7強酸陽離子交換樹脂為例說明:
001×7強酸陽離子交換樹脂是一種凝膠型離子交換樹脂,其內部的網狀結構中有無數四通八達的孔道,孔道裡面充滿了水分子,在孔道的一定部位上分布著可提供交換離子的交換基團。當原水當中的Ca2+,Mg2+等陽離子-擴散到樹脂的孔道中時,由於該樹脂對Ca2+,Mg2+等陽離子選擇性強於對H+的選擇性,所以H+就與進入樹脂孔道中的Ca2+,Mg2+等陽離子發生快速的交換反應,Ca2+,Mg2+等陽離子被固定到樹脂交換基團上面,被交換下來的H+向樹脂的孔道中-擴散,最終擴散到水中。
(1)邊界水膜內的擴散
水中的Ca2+,Mg2+等陽離子向樹脂顆粒表面遷移,並擴散通過樹脂表面的邊界水膜層,到達樹脂表面;
(2)交聯網孔內的擴散(或稱孔道擴散)
Ca2+,Mg2+等陽離子進入樹脂顆粒內部的交聯網孔,並進行擴散,到達交換點;
(03)離子交換
Ca2+,Mg2+等陽離子與樹脂基團上的可交換的H+進行交換反應;
(4)交聯網孔內的擴散
被交換下來的H+在樹脂內部交聯網孔中向樹脂表面擴散。
(5)邊界水膜內的擴散
最終擴散到水中。
鑒於離子交換樹脂反應的可逆性,反應後的樹脂通過處理,重新轉化為原來的離子交換樹脂,這樣又可以進入下一循環,其循環次數視所用樹脂類型不同而定。
❿ 離子交換分離操作中,以高濃度鹽溶液進行洗脫的原理是
用離子交換樹脂進行分離的操作程序包括三個步驟,具體操作過程如下文中所述.
(1)交換柱的制備首先選擇合適的離子交換樹脂類型,用相應的溶液進行處理,如強酸性陽離子交換樹脂需要在稀鹽酸中浸泡,以除去雜質並使之溶脹和完全轉變成H式.然後用蒸餾水洗至中性,裝入充滿蒸餾水的交換柱中.注意防止氣泡進入樹脂層.
(2)交換使待處理水樣以合適的流速通過交換柱進行離子交換.交換完畢後用蒸餾水洗去殘留的溶液及交換過程中形成的酸、鹼或鹽類等.
(3)洗脫洗脫是將已交換到樹脂上的離子分離出來的過程.選擇合適的洗脫液,使之以適宜速度通過交換柱進行洗脫.(更多質量檢測、分析測試、化學計量、標准物質相關技術資料請參考中檢所對照品查詢 www.rmhot.com)
陽離子交換樹脂常用鹽酸溶液作為洗脫液;陰離子交換樹脂常用鹽酸溶液、氯化鈉或氫氧化鈉溶液作洗脫液.對於分配系數相近的離子,可用含有機絡合劑或有機溶劑的洗脫液,以提高洗脫過程的選擇性.
離子交換技術在富集和分離微量或痕量元素方面應用很廣.例如分離水中的鋰離子、錳離子、銅離子、鐵離子、鋅離子等多種金屬離子,首先加入鹽酸使一部分離子轉變為絡合陰離子,然後將水樣通過強鹼性陰離子交換樹脂,各種離子均被交換在樹脂上,最後用不同濃度的鹽酸溶液進行洗脫分離.鋰離子不生成絡合陰離子,不發生交換,可用12mol/L HCl溶液最先洗脫出來