1. 常用的分離技術有哪兩類各包括哪些這些常用的分離技術的基本原理是什麼
分離方法開始主要用於化工行業中化工產品的分離,但是隨著生物工程技術下游技術的不斷發展,結合傳統的化工分離方法,新的高效的分離方法被人們高度重視起來。
常用到得分離方法:鹽析、萃取分離法(包括溶劑萃取、膠團萃取、雙水相萃取、超臨界流體萃取、固相萃取、固相微萃取、溶劑微萃取等)、醫學|教育|網搜集整理膜分離方法(包括滲析、微濾、超濾、納濾、反滲透、電滲析、膜萃取、膜吸收、滲透汽化、膜蒸餾等)、層析方法(離子交換層析、尺寸排阻層析、疏水層析、固定離子交換層析IMAC、親和層析等)。在這些方法中膜分離的方法和層析技術越來越受到人們的重視。
基本原理:
1、雙水相萃取的原理:
雙水相萃取與水 -有機相萃取的原理相似 ,都是依據物質在兩相間的選擇性分配 ,但萃取體系的性質不同 。當物質進入雙水相體系後 ,由於表面性質、電荷作用和各種力 (如憎水鍵、氫鍵和離子鍵等 )的存在和環境因素的影響 ,使其在上、下相中的濃度不同 .{主要:靜電作用和疏水作用}
2、差速離心法原理:
採用逐漸增加離心速度或低速和高速交替進行離心,使沉降速度不同的顆粒在不同的分離速度及不同的離心時間下分批離心的方法,稱為差速離心法。當以一定離心力在一定的離心時間內進行離心時,在離心管底部就會得到和*重顆粒的沉澱,分出的上清液在加上加速轉速下再進行離心,又得到第二部分較大、較重顆粒的「沉澱」及含小和輕顆粒「上清液」,如此,多次離心處理,即能把液體中的不同顆粒較好分開,這時所得沉澱是不純的,需經再懸浮和再離心(2-3次),才能得到較純顆粒。
3、速率-區帶離心原理:
不同顆粒之間存在沉降系數差時,在一定離心力作用下,顆粒各自以一定離心速度沉降,在密度梯度不同區域上形成區帶的方法。介質梯度應預先形成,介質的密度要小於所有樣品顆粒的密度。
4、等密度梯度離心原理:
當不同顆粒存在浮力密度差時,在離心力場下,在密度梯度介質中,顆粒或向下沉降,或向上浮起,一直移動到與他們各自的密度恰好相等的位置上形成區帶,從而使不同浮力密度的物質得到分離。
2. 納濾的過濾原理是
納濾過濾技術是一種復合過濾技術,一方面過濾孔徑高達0.001微米,在回壓力差推動力作用答下,無機鹽等小分子物質透過膜表面,截留大分子物質;另外一方面膜表面又帶有帶有荷電基團,通過靜電相互作用,產生「道南效應」,對高價金屬離子進行截留同時,保留低價金屬離子及非金屬離子,也就是俗稱的有益礦物質;所以納濾技術其實是比反滲透過濾更先進的過濾技術,雖然反滲透的過濾孔徑更小,但是有益有害的統統過濾,幾乎僅保留水分子;而納濾可以做到既去除水中有害物質,又保留水中有益礦物質;市面上目前納濾技術比較成熟的是GE凈水,我知道通用凈水的GE納濾凈水器就能保留水中的鉀、鈉、鈣、鎂、硒、偏硅酸等一些有益的微量元素,相當於在家喝礦泉水。
3. 納濾膜對離子分離技術的操作條件具體分析
納濾膜對離子的截留率受到共離子的強烈影響,對同一種膜在分離同種離子並在該離子濃度恆定條件下,共離子價數相等,共離子半徑越小,膜對該離子的截留率越小,共離子價數越高,膜對該離子的截留率越高。納濾膜對二價離子的截留率較一價離子截留率高得多,主要是由於離子半徑和靜電斥力作用影響造成的。
一、陶氏膜組件操作條件
納濾膜的分離性能有直接影響,操作壓力的提高可提高水通量和脫鹽率,回收率的提高可降低水通量和脫鹽率,料液速率的提高可提高水通量和脫鹽率。納濾膜的耐壓密性好,水通量和截留率隨操作時間延長基本不變,對分子量數百的有機小分子和高價離子有較高的脫除率。
二、陶氏納濾膜元件其它條件
由於道南離子效應的影響、物料的荷電性、離子價數、離子濃度、溶液pH值等對納濾膜的分離效率有一定的影響。
三、納濾膜分離技術具有的典型特徵:
一是截留分子量為200 ~2000Da,其值介於反滲透和超濾之間。
二是納濾膜表面分離層通常帶有電荷,對不同價態的離子具有道南效應,其分離性能具有離子選擇性。
陶氏DOW納濾膜技術以其獨特的分離性能在許多領域中佔有不可替代的地位。目前,國內關於納濾技術的研究多在膜材料、膜結構及分離機理領域,納濾膜元件的運行特性包括測試特性與運行特性兩個方面。測試特性系指特定運行條件下膜元件的運行參數,例如特定給水含鹽量、給水溫度、膜通量及回收率條件下的膜元件工作壓力與透鹽率兩項指標。
4. 膜分離技術都有哪些種類各類膜分離技術的分離原理是什麼
膜分離技術來種類有:微濾(源MF)、超濾(UF)、納濾(UF)、反滲透(RO)、膜生物反應器(MBR)、膜集成技術等。
膜分離技術廣泛應用於紡織、電力、機械、發酵、食品、醫葯化工、生物、環保、農葯化工、冶金、能源、石油、水處理、電子、仿生等領域,在提高分離效率的同時,能耗大大降低。
5. 納濾膜的結構以及原理
納濾膜可以過濾水中二價以上金屬離子(一般水中一價離子含量極少,且都是對人體有益的礦物質),而納濾膜的運行壓力要遠遠低於反滲透,同時出水量要遠遠高於反滲透,完全可以去除水中易結垢的鈣鎂離子,使用納濾膜足以滿足飲用水的需求。
6. 請比較說明微濾,超濾,納濾和反滲透等四種常用膜分離技術的異同點
微濾microfiltration以壓力為驅動力,分離0.1-1微米的微粒的過程,簡稱為MF
超濾ultrafiltration以壓力差為動力,膜孔徑約0.001-0.2微米的物理篩分過程,簡稱為UF
1,微濾和超濾同屬於微孔膜范疇,微孔過濾是一種物理篩分過程,其功能在於截留分子量為幾百至幾百萬的物質,包括大分子有機物,微生物等,而不是以脫鹽為目的。
2,微孔膜的孔徑為一個范圍值:微濾在0.1-1微米,超濾為0.001-0.2微米
3,在學術領域,微濾膜的過濾精度一般用孔徑表示,而超濾的過濾精度一般用切割分子量來表示
4,微濾和超濾的過程均以壓力為驅動力,用於溶液體系中的物質分離。
5,膜的材料分為有機高分子和無機高分子材料。
納濾:nanofiltration以壓力為驅動力,用於脫除二價及二價以上的多價離子和分子量200以上有機物的膜分離過程,簡稱為NF
1, 納濾技術是繼反滲透後出現的一種新的分離技術,其分離機理基本和反滲透一致。
2, 納濾理論精度為0.001-0.005微米,略大於反滲透,因此所需工作壓力低於反滲透,早期被稱為「鬆散反滲透」
3, 納濾的作用在於去除二價及二價以上離子和分子量200以上的物質,對一價離子的去除率較低,其綜合脫鹽率低於反滲透
反滲透reverse
osmosis在膜的進水一側施加比溶液滲透壓高的外界壓力,只允許溶液中水和某些組分選擇性透過,其他物質不能透過而被截留在表面的過程,簡稱RO
1,反滲透的概念始於滲透現象,當把只允許水透過的高分子半透膜作為介質,兩側分別是鹽水和純水時,由於純水測水的濃度高於鹽水測的濃度,純水將向鹽水側擴散透過,這種濃度差異導致的遷移過程,就是滲透,他是自然界中在生物體內存在的一個普遍現象。
2,反滲透是一種由人類創造力產生的非自然現象或一種水溶液分離技術,其原理是通過施加機械外壓,克服濃度差導致的逆向遷移的過程。
3, 反滲透僅適用於液相體系(水溶液體系)中溶質和溶劑的分離,在凈水器中運用較多。
4, 反滲透現象必須在外界壓力作用下發生,且壓力必須高於水溶液的滲透壓。
7. 納濾設備的工作原理
納濾工作原理
膜分離是利用膜對混合物中各組分的選擇滲透作用性能的差異,專以外界能量或化學屬位差為推動力對雙組分或多組分混合的氣體或液體進行分離、分級、提純和富集的方法。膜孔徑處於納米級,適宜於分離分子量在100~1000,分子尺寸約為1 nm的溶解組分的膜工藝被稱為納濾(NF)。NF膜分離需要的跨膜壓差一般為0.5~2.0 MPa,比用反滲透膜達到同樣的滲透能量所必需施加的壓差低0.5~3 MPa。根據操作壓力和分離界限,可以定性地將NF排在反滲透和超濾之間,有時也把NF稱為"低壓反滲透"或"疏鬆反滲透"。20世紀70年代J. E. Cadotte 研究NS-300膜,即為研究NF膜的開始。當時,以色列脫鹽公司用" 混合過濾"來表示介於反滲透與超濾之間的膜分離過程,後來美國的公司把這種膜技術稱為納濾,一直沿用至今。之後,NF發展得很快,膜組件於80 年代中期商品化。目前,NF已成為世界膜分離領域研究的熱點之一。
8. 不同膜分離技術存在哪些不同的原理
在生物化工過程中常用的膜分離技術有微濾(MF)、超濾(UF)、反滲透(RO)、納濾(NF)、電滲析(ED)、液膜(LM)等。
微濾
微濾是以多孔細小的薄膜作為過濾的介質,以篩分原理為根據的薄膜過濾。在壓力作為推動力的作用下,溶劑、水、鹽類及大分子物質均能透過薄膜,而微細顆粒和超大分子等顆粒直徑大於膜孔徑的物質均被滯留下來,以達到分離的目的,進一步使溶液凈化。微濾是目前膜分離技術中應用最廣且經濟價值最大的技術,主要應用於生物化工中的制葯行業。
超濾
超濾是根據篩分原理,以一定的壓力差為推動力,從溶液中分離出溶劑的操作。同微濾過程相比,超濾過程受膜表面孔的化學性質影響較大,在一定的壓力差下溶劑或小分子量的物質可以透過膜孔,而大分子物質及微細顆粒卻被截留,以達到分離目的。超濾膜通常為不對稱膜,膜孔徑的大小和膜表面的性質分別起著不同的截留作用。超濾主要應用於濃縮大分子溶液的凈化等.在生物化工過程中應用最廣。
反滲透
反滲透過程主要是根據溶液的溶解、擴散原理,以壓力差為推動力的膜分離過程。它與自然的滲透過程剛好相反。滲透和反滲透均是通過半透膜來完成的。在濃溶液一側,當施加壓力高於自然滲透壓力時,就會迫使溶液中溶劑反向透過膜層,流向稀溶液一側,從而達到分離提純的目的。反滲透過程主要應用於低分子量組分的濃縮,如氨基酸濃縮(甘氨酸HGB
3075—79)、乙醇濃縮(GB 679-65)等。其滲透壓的大小與膜的種類無關,而與溶液的性質有關。
納濾
納濾也是根據吸附、擴散原理,以壓力差為推動力的膜分離過程。它除了有本身的工作原理外,還具有反滲透和超濾的工作原理。納濾又可以稱為低壓反滲透,是一種新型的膜分離技術,這種膜過程,拓寬了液相膜分離的應用,分離性能介於超濾和反滲透之間,其截斷分子量約為200~2000。納米膜屬於復合膜,允許一些無機鹽和某些溶劑透過膜。納濾過程所需壓力比反滲透低得多,具有節約動力的優點。它能截斷易透過超濾膜的那部分溶質,同時又可能被反滲透膜所截斷的溶質透過,其特有功能是反滲透和超濾無法取代的。納濾膜具有良好的熱穩定性、pH
穩定性和對有機溶劑的穩定性,因此現已廣泛應用於各個工業領域,尤其是醫葯、生物化工行業的分離提純過程。納濾膜是現今最先進的膜分離技術。微濾、超濾、反滲透、納濾4種分離技術沒有太明顯的分界線,均是以壓力作為推動力,被截斷的溶質的直徑大小在某些范圍內相互重疊。
電滲析
電滲析是以電位差為推動力,在直流電作用下利用離子交換膜的選擇透過性,把電解質從溶液中分離出來,從而實現溶液的淡化、精製或純化目的。
液膜
液膜是懸浮在液體中的一層乳液微粒,形成液相膜。依據溶解、擴散原理,通過這層液相膜可以將兩個組成不同而又互溶的溶液分開,並通過滲透的現象起到分離、提純的效果,它克服了固體膜存在的選擇性低和通量小的特點。液膜一般由溶劑、表面活性劑和添加劑構成。
9. 納濾的原理
納濾膜是荷電膜,能進行電性吸附。在相同的水質及環境下制水,納濾膜所需的壓力小於反滲透膜所需的壓力。所以從分離原理上講,納濾和反滲透有相似的一面,又有不同的一面。納濾膜的孑L徑和表面特徵決定了其獨特的性能,對不同電荷和不同價數的離子又具有不同的Donann電位;納濾膜的分離機理為篩分和溶解擴散並存,同時又具有電荷排斥效應,可以有效地去除二價和多價離子、去除分子量大於200的各類物質,可部分去除單價離子和分子量低於200的物質;納濾膜的分離性能明顯優於超濾和微濾,而與反滲透膜相比具有部分去除單價離子、過程滲透壓低、操作壓力低、省能等優點 。
10. 什麼事一級RO膜
反滲透技術是當今最先進和最節能有效的膜分離技術。其原理是在高於溶液滲透壓的作用下,依據其他物質不能透過半透膜而將這些物質和水分離開來。由於反滲透膜的膜孔徑非常小(僅為10A左右),因此能夠有效地去除水中的溶解鹽類、膠體、微生物、有機物等(去除率高達97%-98%)。反滲透是目前高純水設備中應用最廣泛的一種脫鹽技術,它的分離對象是溶液中的離子范圍和分子量幾百的有機物;反滲透(RO)、超過濾(UF)、微孔膜過濾(MF)和電滲析(EDI)技術都屬於膜分離技術。 具體原理:滲透是一種物理現象.當兩種含有不同鹽類的水,如用一張半滲透性的薄膜分開就會發現,含鹽量少的一邊的水分會透過膜滲到含鹽量高的水中,而所含的鹽分並不滲透,這樣,逐漸把兩邊的含鹽濃度融合到均等為止.然而,要完成這一過程需要很長時間,這一過程也稱為滲透壓力.但如果在含鹽量高的水側,試加一個壓力,其結果也可以使上述滲透停止,這時的壓力稱為滲透壓力.如果壓力再加大,可以使方向相反方向滲透,而鹽分剩下.因此,反滲透除鹽原理,就是在有鹽分的水中(如原水),施以比自然滲透壓力更大的壓力,使滲透向相反方向進行,把原水中的水分子壓力到膜的另一邊,變成潔凈的水,從而達到除去水中雜質、鹽分的目的.納濾納濾 ( NF,Nanofiltration)是一種介於反滲透和超濾之間的壓力驅動膜分離過程,納濾膜的孔徑范圍在幾個納米左右。與其他壓力驅動型膜分離過程相比,出現較晚。它的出現可追溯到70年代末J.E. Cadotte的NS-3 0 0膜的研究,之後,納濾發展得很快,膜組器於80年代中期商品化。納濾膜大多從反滲透膜衍化而來,如CA、CTA膜、芳族聚醯胺復合膜和磺化聚醚碸膜等。但與反滲透相比,其操作壓力更低,因此納濾又被稱作「低壓反滲透」或「疏鬆反滲透」( Loose RO )。納濾分離作為一項新型的膜分離技術,技術原理近似機械篩分。但是納濾膜本體帶有電荷性。這是它在很低壓力下仍具有較高脫鹽性能和截留分子量為數百的膜也可脫除無機鹽的重要原因。微濾微濾又稱微孔過濾,它屬於精密過濾,截留溶液中的砂礫、淤泥、黏土等顆粒和賈第蟲、隱抱子蟲、藻類和一些細菌等,而大量溶劑、小分子及少量大分子溶質都能透過膜的分離過程。基本原理是篩分過程,操作壓力一般在0.7-7kPa,原料液在靜壓差作用下,透過一種過濾材料。過濾材料可以分為多種,比如折疊濾芯、熔噴濾芯、布袋式除塵器、微濾膜等。透過纖維素或高分子材料製成的微孔濾膜,利用其均一孔徑,來截留水中的微粒、細菌等,使其不能通過濾膜而被去除。決定膜的分離效果的是膜的物理結構,孔的形狀和大小。微孔膜的規格目前有十多種,孔徑范圍為0.1~75 μm,膜厚120~150µm。膜的種類有:混合纖維酯微孔濾膜;硝酸纖維素濾膜;聚偏氟乙烯濾膜;醋酸纖維素濾膜;再生纖維素濾膜;聚醯胺濾膜;聚四氟乙烯濾膜以及聚氯乙烯濾膜等。超濾超濾是以壓力為推動力的膜分離技術之一。以大分子與小分子分離為目的,膜孔徑在20-1000A°之間。中空纖維超濾器(膜)具有單位溶器內充填密度高,佔地面積小等優點。 在超濾過程中,水深液在壓力推動下,流經膜表面,小於膜孔的深劑(水)及小分子溶質透水膜,成為凈化液(濾清液),比膜孔大的溶質及溶質集團被截留,隨水流排出,成為深縮液。超濾過程為動態過濾,分離是在流動狀態下完成的。溶質僅在膜表面有限沉積,超濾速率衰減到一定程度而趨於平衡,且通過清洗可以恢復。超濾是一種加壓膜分離技術,即在一定的壓力下,使小分子溶質和溶劑穿過一定孔徑的特製的薄膜,而使大分子溶質不能透過,留在膜的一邊,從而使大分子物質得到了部分的純化。超濾技術的優點是操作簡便,成本低廉,不需增加任何化學試劑,尤其是超濾技術的實驗條件溫和,與蒸發、冷凍乾燥相比沒有相的變化,而且不引起溫度、pH的變化,因而可以防止生物大分子的變性、失活和自溶。在生物大分子的制備技術中,超濾主要用於生物大分子的脫鹽、脫水和濃縮等。超濾法也有一定的局限性,它不能直接得到乾粉制劑。對於蛋白質溶液,一般只能得到10~50%的濃度。