1. 離子交換
鉬(Ⅵ)與大量鐵(Ⅲ)的0.5mol/LHCl溶液,通過陽離子交換樹脂後,可用0.04mol/L硫氰酸銨溶液淋洗鉬(Ⅵ版)。鉬(Ⅵ)與錸權的氫氧化鈉溶液通過陰離子交換樹脂後,可用1mol/L草酸鉀溶液淋洗鉬(Ⅵ),再用7mol/LHCl淋洗錸。
2. 離子交換樹脂的交換速率為什麼很重要
離子交換樹脂的交換速率很重要,因為這個樹立關乎到交換樹脂的正常運轉狀況,如果交換速率不在正常范圍之內,則會導致交換樹脂出現故障。
3. 離子交換速度公式
沒有,沒去研究這,關鍵是跟水的流速和離子的狀態有關系,
4. 離子交換法的發展歷程
因為超濾膜反滲透膜的飛速發展,離子交換法在很多領域正逐步退出市場。
特別在處理水版量較大的行業,如權電廠、水廠等,因為膜法處理佔地面積小(就目前見過的,同等產水佔地至少小一半),維護簡便,
因此即使初期投資比離子交換法大,很多新建水處理項目還是採用膜法處理。
但是離子交換法有些技術還不是膜法能達到,其出水較混床純度低,因此需要製取高純水等級的
經常採用膜法+離子交換混合使用,或者加用EDI。離子交換還有些設備暫時沒有其他可以替代,例如高速混床。
離子交換的發展方向就是樹脂交換速度更快,結構更穩定耐用。交換容量更大這些方面了。
說實話我不看好離子交換的未來,我就是學這個,畢業也在電廠用過離子交換和膜法,膜法優勢實在太大,佔地小、維護簡單、維護一般不涉及酸鹼(化學清洗除外)。只有混床是好東西,膜法要達到同樣效果只有用EDI,那投資和運行成本比混床高,雖然佔地、維護還是劣勢,但費用比混床高多了。
以上就是我了解的離子交換法在水處理行業的境遇,至於其他離子交換法法用途,例如層析、萃取等實驗室用途,不了解╮(╯▽╰)╭
看樹脂種類,發展歷史,你可以找找美國羅門哈斯樹脂,那是全球最大樹脂供應商,品質也是最好那批。
5. 在進行離子交換操作過程中,為什麼要控制流出液的流速,如太快,將會
保持液面下是防止表層樹脂乾燥,沒有交換效果還有水對樹脂的沖擊,造成樹脂浮游,還有會帶人空氣,造成氣穴,影響樹脂裝填規整,影響交換效果。
控制水的流量是保證水與樹脂能有充分的接觸時間完成交換,否則流量太快可能有部分水分子沒有充分作用,達不到交換效果,一般保證每小時5倍樹脂體積的流量比較合適。
溶液中待交換的離子與交換樹脂中的離子交換有一個過程:溶液中待交換的離子向樹脂顆粒表面遷移並通過樹脂表面的邊界水膜,進入樹脂內部的孔道與樹脂的離子交換,被交換下的離子再從樹脂孔道往外移動,穿孔樹脂膜到溶液中,這個交換過程是需要一定時間的。
如果待處理的液體流速太快,就有一部份離子來不及交換,造成泄漏,影響處理質量;如果速度太慢就會減小處理流量,降低處理效率.所以要控制液體流速。
(5)離子交換速度的控制分為五步擴展閱讀:
水溶液中的一些陽離子進入反離子層,而原來在反離子層中的陽離子進入水溶液,這種發生在反離子層與正常濃度處水溶液之間的同性離子交換被稱為離子交換作用。
離子交換主要發生在擴散層與正常水溶液之間,由於黏土顆粒表面通常帶的是負電荷,故離子交換以陽離子交換為主,故又稱為陽離子交換。離子交換嚴格服從當量定律,即進入反離子層的陽離子與被置換出反離子層的陽離子的當量相等。
6. 離子交換樹脂的運行流速
離子交換樹脂的運抄行流速,我想你這里講得是離子交換樹脂在工作時水流通過樹脂的速度,這種速度是以m/h為單位,意思是水在樹脂層中每小時行進多少米。
床層體積 W=Fh,式中F是床層的橫截面和,h是床層高。而床層高與水流速度的關系為 h=TVH/q (m) 式中T——軟化工作時間,V——水流速度,H——原水硬度,q——樹脂工作交換容量,mmol/L。
W=FTVH/q,水流速度 V=Wq/(FTH),這就是水流速度與床層體積的關系。
7. 在離子交換分離中,為什麼要控制流出液的流量,淋洗液為什麼要分幾次加入
溶液中待交換的離子與交換樹脂中的離子交換有一個過程:溶液中待交換的離子向樹內脂顆粒表面遷移容並通過樹脂表面的邊界水膜,進入樹脂內部的孔道與樹脂的離子交換,被交換下的離子再從樹脂孔道往外移動,穿孔樹脂膜到溶液中.這個交換過程是需要一定時間的.如果待處理的液體流速太快,就有一部份離子來不及交換,造成泄漏,影響處理質量;如果速度太慢就會減小處理流量,降低處理效率.所以要控制液體流速.
【精銳】
8. 離子交換床的形式有哪幾種
從大體上分兩抄種,浮動床襲固定床
浮動床工作時在水沖擊下樹脂懸浮工作因此得名,工作流速高,但因為反洗要抽脂,樹脂損傷大,還有末期出水差等原因基本淘汰
固定床分為順流床逆流床混合床
順流床簡單,不考慮成本就這么干,方便實用
逆流床分為單層雙層雙室三種,逆流再生節省再生劑,節省開銷但是再生比較復雜。雙層雙室可以提高平均交換容量
混合床用於處理一級除鹽設備的出水進一步除鹽
分為普通混床高速混床
高速混床運行速度大約是普通混床兩倍
普通混床交換容量較大
9. 請問為速率分離的過程的是
按物理化學原理,工業常用的傳質分離操作可分為平衡分離過程和速率分離過程兩大類: 1、平衡分離過程藉助分離媒介(如熱能、溶劑和吸附劑),使均相混合物系統變成兩相系統,再以混合物中各組分在處於相平衡的兩相中不等同的分配為依據而實現分離。根據兩相的狀態可分為:①氣(汽)液傳質過程,如蒸餾、吸收等;②液液傳質過程,如萃取;③氣(汽)固傳質過程,如吸附、色層分離、參數泵分離等;④液固傳質過程,如浸取、吸附、離子交換、色層分離、參數泵分離等。 平衡時組分在兩相中的濃度關系,可以用相平衡比(或分配系數)Ki表示: 式中yi和xi分別表示組分i在兩相中的濃度。對於x和y相的命名,按習慣把吸收、蒸餾中的氣相或汽相稱為y相,把萃取中的萃取液作為y相。一般說,相平衡比取決於兩相的特性以及物系的溫度和壓力。i和j兩個組分的相平衡比Ki和Kj之比值稱為分離因子αij: 在某些傳質分離過程中,分離因子往往又有專門名稱。例如:在蒸餾中稱為相對揮發度;在萃取中稱為選擇性系數。一般將數值大的相平衡比Ki作分子,故αij大於1。只要兩組分的相平衡比不相等(即αij≠1),便可採用平衡分離過程加以分離,αij越大就越容易分離。大多數系統的相平衡比和分離因子都不大,一次接觸平衡所能達到的分離效果很有限,需要採取多級逆流操作來提高分離效果。為適應各種不同的系統以及操作條件和分離要求,要相應地使用多種不同類型的傳質設備。 2、速率分離過程在某種推動力(濃度差、壓力差、溫度差、電位差等)的作用下,有時在選擇性透過膜的配合下,利用各組分擴散速度的差異實現組分的分離。這類過程所處理的原料和產品通常屬於同一相態,僅有組成上的差別。速率分離方法可分為:①膜分離,如超過濾、反滲透、滲析和電滲析等。②場分離,如電泳、熱擴散、超速離心分離等。 膜分離與場分離的區別是:前者用膜分隔兩股流體,後者則是不分流的。不同類型的速率分離過程,分別應用不同的設備,並採用不同的方法進行設計計算和操作控制。編輯本段技術展望傳質分離過程中的蒸餾、吸收、萃取等一些具有較長歷史的單元操作已經應用很廣,並進行過大量的研究,積累了豐富的操作經驗和資料。但在進一步深入研究這些過程的機理和傳質規律,開發高效的傳質設備,研究和掌握它們的放大規律,改進設備的設計計算方法等方面,仍有許多工作要做。傳質分離過程的能量消耗,常構成單位產品能耗的主要部分,因此降低傳質分離過程的能耗,受到普遍重視。膜分離和場分離是一類新型的分離操作,在處理稀溶液和生化產品的分離、節約能耗、不污染產品等方面,已顯示出它們的優越性。研究和開發新的分離方法,各種分離方法聯合使用以提高效益,以及利用化學反應來進行分離等都是很值得重視的發展方向。