A. 論重金屬工業污水的處理
一 重金屬工業污水傳統葯劑處理的特性
重金屬工業污水的重要污染物為重金屬,在實際處理過程中需要對重金屬進行析出和脫離。由於重金屬不易被自熱生物降解,在重金屬工業污水處理中,多採用將目的物生成不溶於水的狀態後加以處理的方法。這也就是傳統的改質處理技術。在重金屬工業污水改質中,需要採用石油成分或石油分解物等葯劑作為改質的原料,使得重金屬與之反應,得以固化析出。在處理過程中,改質劑的母體具有強烈的疏水性,在與親水性基團進行結合時很容易成為水溶性分子,從而使得重金屬類和改質劑生成固態化合物。因此,重金屬工業污水處理的效果在很大程度上取決於對改質劑的合理選擇。
二 重金屬工業污水處理的工藝流程
在重金屬工業污水傳統葯劑處理中,改質劑對污水中的重金屬進行捕收、脫除後還可以進行回收處理。在經過相應的再生裝置再生後,仍可以返回使用。這就使得污水處理的成本大大降低,更有利於資源的節約和充分利用。因此,重金屬工業污水處理的工藝流程可以表示為:
(1)改質工序?原水從貯水槽導入攪拌槽,對水溶液中的重金屬按克分子比1:0.1~3添肆唯寬加相當的改質劑。此時,改質劑立即捕收重金屬類。水溶液的PH值按規定值調整,然後泵送至泡沫塔。(2)泡沫處理工序?從泡沫塔底部壓人空氣,將捕收了重金屬的改質劑以泡沫方式脫除回收。(3)再生工序?通過PH調整等簡單的處理後,使改質劑再生,然後反覆使用。
三 重金屬工業污水處理的新技術
隨著科學技術的發展,重金屬工業污水處理技術也得到了較大的提升,在不斷深化研究過程中,涌現出來新的處理技術,新的葯劑被應用於重金屬工業污水處理中顯現出良好的效果。
(1)新型改質劑對重金屬工業污水的處理
就重金屬工業污水處理新技術的優勢來看,其所使用改質劑的性能特點主要表現在:能溶於水;捕收重金屬後產生強起抱力;捕裂亮收重金屬後仍能溶解於水中;吹人空氣後,捕收了重金屬的改質劑,靠其起飽力形成抱沫,並與混存的懸濁物也共同連續地脫除回收,回收率在90~100%之間;對從弱酸性到強鹼性的廢水都可廣泛使用;對污水中溶存的有機物懸濁物不必預先處理;處理時間短,10~20分鍾;能選擇地捕收不同重金屬等諸多方面。用泡沫處理裝置對重金屬工業污水進行處理的效率相對較高,並能實現改質劑能再生反覆使用的目標。
(2)電化學方法和納米光催化氧化對重金屬污水的處理
在重金屬工業污水處理過程中,電化學方法和納米光催化氧化技術的應用是通過具有導電性和光敏性的廉價特殊的電極材料,將電化學方法和納米光催化氧化進行有機結合,實現對中重金屬工業污水進行有效處理的方法,主要針對有機物高濃度、高毒性、高色度和難生化的重金屬污水處理。在對重金屬進行脫離的同時,電化學方法和納米光催化氧化相結合的方法能夠除去工業廢水中的有機毒物,更具有脫色的作用,從而達到對工業污水多種物質進行處理的效果。
四 重金屬工業污水處理其他方法分析
以鹼性物質析出、沉澱重金屬,以有機化合物析出、泡沫附著重金屬,以及以離子交換劑吸附或溶媒抽提重金屬的方法進行重金屬工業污水處理是目前重金屬工業污水處理的常用手段。在污水問題解決過程中,生產費用、脫除率、二次污染、操作性能等特點的不同,使得各處理方法有著各自的優勢和弊端。本文從以下幾個方面進行了簡要分析。
(1)從水溶液中析出溶解的重金屬後以浮選脫除的方法?1)與共沉劑或硫化劑反應,生成的析出物用浮選脫除的方法用氫氧化高鐵作共沉劑,硫化鈉作硫化劑,這些葯劑單獨或講用,從水中析出重金屬後,添加浮選葯劑進行浮選。2)呈氫氧化物析出,析出物用浮選脫除的方法。加鹼使重金屬呈氫氧化物析出,用烷基苯磺酸鈉作浮選葯劑浮選分離。3)和黃葯反應,析出物用浮選脫除的方法山。加入黃葯,析出氣抱吸附性反應物浮選分離。4)用其他葯劑處理析出,將析出物浮選脫除的方法。其中有氨基十八烷二叛酸鈉,酞化氨基酸的氨化物,a一磺基十二烷酸鈉、單烷基磷酸,脂肪酸二梭酸鈉、二硫代氨基甲酸鈉,十六烷三甲基澳化按等和重金屬離子反應,對其析出物進行浮選的研究報告。
(2)溶媒萃取法?例如,溶於己烷等有機溶媒中的二甲基乙二肪、高分子量胺等和溶於水溶液中的重金屬離子反應,將反應物萃取到有機溶媒中的方法。
(3)溶媒萃取和浮選法聯山大合法?加入葯劑與水中溶解的重金屬鹽反應,生成難溶於水的反應物,在反應物吸附在氣泡上浮出後,使其溶解在不與水混合的上層有機溶媒中藉以脫除的方法。
(4)利用離子交換劑等吸附劑脫除的方法?利用沸石,離子交換樹脂,烷基苯磺酸鈉等的離子交換能除去水溶液中重金屬離子的方法。除此之外,還有使用天然敘永石和超微鱗片,硝基腐殖酸,纖維素硫代叛酸,二苯硫代偕腆蹤一類構造的贅合樹脂,氯化乙烯原料活性炭,骨炭,氮化活性炭,硅酸鈣等吸附重金屬離子脫除的方法。
此外,用耐汞性細菌將汞化合物分解脫除的方法以及蒙脫石與黃葯餅用析出沉澱脫除也是重金屬五十處理常用的方法之一。
五 結語
工業廢水的排放是造成自然資源和環境污染的重要因素之一,對於生態環境的可持續發展有著嚴重的影響。特別是重金屬工業污水,其肆意排放對於人類的生存有著巨大的危害,其難以自然降解的特點使得重金屬工業污水的有效處理的重要性尤為突出。因此,我們必須在不斷深化研究的基礎上,重視對重金屬工業污水處理技術的研發,從而提高重金屬工業污水處理的社會經濟效益。
相信經過以上的介紹,大家對論重金屬工業污水的處理也是有了一定的認識。歡迎登陸中達咨詢,查詢更多相關信息。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
B. 工業重金屬離子廢水處理技術
下面是中達咨詢給大家帶來關於工業重金屬離子廢水處理技術,以供參考。
工業重金屬離子廢水處理技術
含重金屬廢水處理新技術主要包括兩方面,一方面是對傳統技術的改進,另一方面是處理重金屬廢水的新方法。
1.1化學沉澱法
化學沉澱法有中和沉澱法、硫化物沉澱法、鋇鹽沉澱法和鐵氧體法,其中較為新型的技術是鐵氧體法。鐵氧體法是日本電氣公司(NEC)研究出的一種從廢水中去除重金屬離子的新方法。做法是:在含重金屬離子的廢水中加入鐵鹽,利用共沉法從廢水中製取鐵氧體粉末。鐵氧體法可一次去除廢水中多種重金屬離子,鐵氧體沉澱不再溶解。鐵氧體法處理重金屬廢水效果好,投資省,設備簡單,沉渣量少,且化學性質比較穩定鍵迅。在自然條件下,一般不易造成二次污染。鐵氧體法捕集金屬離子的機理是通過晶格取代的方式而非一般磨亮旅的化學反應,因此有可能突破溶度積常數的限制而同時對多種重金屬離子產生作用,特別適用於處理工業生產中所產生的含多種重金屬離子的廢水。
1.2吸附法
吸附法是利用多孔性固態物質吸附水中污染物的一種方法。海泡石是一種天然纖維狀含鎂水合硅酸鹽粘土,對廢水中重金屬的吸附有很好的效果,理想分子式為[Si12Mg8(OH)4](H2O)48H2O.海泡石對水中的Ni2+,Co2+,Pb2+,Cu2+和Cd2+有較好的吸附效果,尤其對高濃度重金屬有較好的吸附性能。有機硅吸附劑對重金屬也有較好的吸附效果。有機硅吸附劑是一類由碳官能有機硅單體制備的聚合物或經這些單體處理過的無機材料或合成材料。化工及金屬冶煉企業所排出的廢水中常含有有色金屬及有毒金屬元素,採用含NHC(S)CH3和NHC(S)NH官能團的有機硅可有效地吸附這些元素,它們具有很高的吸附容量及分配系數。此類有機硅吸附劑對Hg,Cu,As,Sb的吸附容量最大,對Cu,Hg,Te,Th,Bi的分配系數大。利用這些吸附劑可以同時分離多種金屬,並且可以在很寬的pH范圍內吸附重金屬,一般不需要特定的pH值,但凈化污水的最佳pH值為5~9.未改解的水解木質素本身可以作為吸附劑,主要用於吸附去除各種重金屬離子。Karsheva等人研究發現,水溶性木質素是一種有效的吸附劑,可用於去除水中的鉛離子。Lalvani發現一種可以吸附溶液中的Cr3+和Cr6+的木質素,該木質素可以去除63%的Cr6+、100%的Cr3+.
1.3離子交換法
由於重金屬廢水中的重金屬大多以離子狀態存在,所以用離子交換法處理能有效地除去和回收廢水中的重金屬。採用微波輻射促進化學反應技術,引用氧化還原引發體系,可在纖維素上接枝丙烯酸/丙烯醯胺來合成具有特定功能的吸附樹脂。研究表明:在最佳的合成工藝條件下,樹脂對Cu2+的吸附率為99.2%,吸附容量為49.6mg/g,用8%NH3H2O作為淋洗液對樹脂洗脫再生,洗脫率在85%以上。大昂吸附樹脂重復使用7次時,對重金屬離子的吸附率仍可保持在90%以上,具有良好的再生使用壽命。超級吸水樹脂SAPC也可以脫除廢水中的重金屬離子,SAPC對Cr3+,Co2+離子的富集能力強,對Hg2+,Pb2+,Ni2+富集能力次之。
1.4改性濾料法
同濟大學高乃雲教授分別用氧化鋁塗層砂和氧化鐵塗層砂去處水中的金屬鋅,發現pH>9時,塗瞎凳層砂除鋅率達100%.印度工業學院Jiban K.Satpathy用平均尺寸為0.71mm的過濾石英砂塗以硝酸鐵,將塗層濾料(15cm高度)置於直徑1.1cm的玻璃柱中,實現了分別在不同的pH值條件下從鍍鎘、鍍鉻廢水中有效去除鎘、鉻。Edwards等人用鐵氧化物覆蓋的砂粒柱進行了Pb2+,Cd2+,Ni3+和Cr3+吸附實驗,結果表明:水中溶解態的重金屬離子Pb2+,Cd2+,Ni3+,Cr3+在pH為8.5時幾乎可以全部除去。高乃雲等在用氧化鐵塗層改性濾料除砷,實驗中發現除砷效果顯著,去除率可以達到95%以上,且遵循pH值、高去除率的規律[8].
1.5萃取法
萃取法屬於物化處理法,是水處理技術中的一個重要方法,大多數重金屬廢水可以用萃取法處理。傳統重金屬的溶劑萃取,前處理費時費力,還必須使用大量有機溶劑,如果後期處理不當,會對環境造成二次污染。而超臨界CO2流體(CO2SFE),選擇性好,流程簡便,萃取速度快,能耗低,後處理簡單,具有溶劑萃取所沒有的優勢。超臨界流體是指處於臨界溫度和臨界壓力以上的流體。SFE化學性質穩定,萃取條件溫和,萃取後可回收,無溶劑殘留,被稱為「綠色溶劑」,是目前應用最為廣泛的超臨界流體萃取劑。盡管利用CO2SFE萃取技術大規模治理環境重金屬污染的經濟性尚無定論,但隨著工業級CO2SFE流體萃取技術的日益完善,其節能、節時、省力的優勢會逐漸顯現出來。
1.6新工藝法
1.6.1無害化誘導結晶新工藝
無害化誘導結晶新工藝利用誘導結晶原理,以碳酸鈉為沉澱劑,使重金屬離子形成難溶鹽在流態化的硅砂表面結晶沉積從而達到去除重金屬的目的。這種工藝操作方便,處理量大,佔地面積小,而且在硅砂表面產生的金屬沉積物,結構密實,含水率低。對反應飽和後的硅砂可採取加酸溶解回收重金屬或採用水泥固化硅砂的措施,從而達到對重金屬廢水的最終無害化處理。重金屬廢水經流態化結晶沉積法及過濾處理後,重金屬離子去除率可達99%,無需沉澱池,反應速度快,且無污泥產生。
1.6.2微電解生物法組合工藝
採用微電解生物法組合工藝處理含鉻廢水時,在實驗過程中,電鍍廢水中的重金屬離子通過微電解法預處理可去除90%以上,剩餘部分被後續工藝的微生物功能菌去除。實驗結果表明:對Cr6+含量為50mg/L,Cu2+含量為15mg/L,Ni2+含量為10mg/L的廢水,經處理後,重金屬離子的凈化率達99.9%,且無二次污染。微電解法利用機械加工過程中的廢鐵屑處理電鍍廢水,不僅處理效果較好,而且成本低廉,操作簡便。生物法凈化含鉻電鍍廢水的優點是污泥量少,凈化效果好。實際工程運用中,對電鍍廢水選用廉價的鐵碳法進行預處理,再用SR功能菌進行深度處理,也不失為一種降低處理費用提高處理效率的好方法。利用微電解生物法組合工藝處理含鉻電鍍廢水,完全能夠達到國家規定的排放標准。
1.6.3鐵屑固定床工藝
鐵屑固定床處理重金屬廢水工藝是指:電鍍生產工藝過程中產生的含Cr6+廢水,經過鐵屑固定床的綜合作用,出水在進入沉澱池沉澱後,上清液可作為處理水排放或回用。其基本原理是鐵屑對絮體的電附集和對反應的催化作用,以及電池反應產物的混凝、新生絮體的吸附和床層的過濾等作用的綜合效應的結果,其中主要作用是氧化還原和電附集。該工藝具有省水、節電、運行費用低、無二次污染等特點,可以解決重金屬廢水治理難題,對於其他重金屬的處理,只需調整工藝參數即可。
1.7生化處理法
生化處理法是藉助微生物或植物的絮凝、吸收、積累、富集等作用去除廢水中重金屬的方法,包括生物吸附、生物絮凝、微生物代謝等方法。
1.7.1生物吸附法
生物吸附法是指生物體藉助化學作用吸附金屬離子的方法。藻類和微生物菌體對重金屬有很好的吸附作用,並且具有成本低、選擇性好、吸附量大、濃度適用范圍廣等優點,是一種比較經濟的吸附劑。用生物吸附法從廢水中去除重金屬的研究,美國等國家已初見成效.有研究者預處理假單胞菌的菌膠團後,將其固定在細粒磁鐵礦上來吸附工業廢水中Cu2+,發現當濃度高至100mg/L時,除去率可達96%,用酸解吸,可以回收95%銅,預處理可以增加吸附容量。但生物吸附法也存在一些不足,例如吸附容量易受環境因素的影響,微生物對重金屬的吸附具有選擇性,而重金屬廢水常含有多種有害重金屬,影響微生物的作用,應用上受限制等,所以還需再進行進一步研究。
1.7.2生物絮凝法
生物絮凝法是利用微生物或微生物產生的代謝物進行絮凝沉澱的一種除污方法。生物絮凝法的開發雖然不到20年,卻已經發現有17種以上的微生物具有較好的絮凝功能,如黴菌、細菌、放線菌和酵母菌等,並且大多數微生物可以用來處理重金屬。生物絮凝法具有安全無毒、絮凝效率高、絮凝物易於分離等優點,具有廣闊的發展前景。邵穎和葉玉漢研究了聚合鋁與天然陽離子有機高分子殼聚糖復合後的絮凝特徵及復合絮凝劑對重金屬廢水的處理應用。結果表明,聚合鋁與殼聚糖復合能相互促進其絮凝效能,對重金屬廢水的去除率可達97%以上。
2、結語
由於重金屬廢水處理比較復雜,且水體中含有多種重金屬離子,所以在處理過程中應該考慮採用多種方法和工藝的綜合運用,以達到最好的處理效果。在選擇方法上也應該遵循經濟、方便、不產生二次污染的原則。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
C. 含砷的廢水該如何處理
處理含砷廢水,目前國內外主要有中和沉澱法、絮凝沉澱法、鐵氧體法、硫化物沉澱法等,適用於高濃度含砷廢水,生成的污泥易造成二次污染。在化學法方面的研究已經比較成熟,很多人曾在這方面做了深入的研究。1 化學法處理含砷廢水中和沉澱法作為工程上應用較廣的一種方法,很多人在這方面作了深入的研究,機理主要是往廢水中添加鹼(一般是氫氧化鈣)提高其pH,這時可生成亞砷酸鈣、砷酸鈣和氟化鈣沉澱。這種方法能除去大部分砷和氟,且方法簡單,但泥渣沉澱緩慢,難以將廢水凈化到符合排放標准。絮凝共沉澱法,這是目前處理含砷廢水用得最多的方法。它是藉助加入(或廢水中原有)Fe3+、Fe2+、Al3+和Mg2+等離子,並用鹼(一般是氫氧化鈣)調到適當pH,使其形成氫氧化物膠體吸附並與廢水中的砷反應,生成難溶鹽沉澱而將其除去。其具體方法有,石灰-鋁鹽法、石灰-高鐵法、石灰-亞鐵法等。鐵氧體法,在國外,自70年代起已有較多報道,工藝過程是在含砷廢水中加入一定數量的硫酸亞鐵,然後加鹼調pH至8.5-9.0,反應溫度60-70℃,鼓風氧化20-30分鍾,可生成咖啡色的磁性鐵氧體渣。Nakazawa Hiroshi 等研究指出,在熱的含砷廢水中加鐵鹽(FeSO4或Fe2(SO4)3),在一定pH下,恆溫加熱1 h。用這種沉澱法比普通沉澱法效果更好。特別是利用磁鐵礦中Fe3+鹽處理廢水中As(III)、As(V),在溫度90℃,不僅效果很好,而且所需要的Fe3+濃度也降到小於0.05mg/L。趙宗升曾從化學熱力學和鐵砷沉澱物的紅外光譜兩個方面探討了氧化鐵砷體系沉澱除砷的機理,發現在低pH值條件下,廢水中的砷酸根離子與鐵離子形成溶解積很小的FeAsO4,並與過量的鐵離子形成的FeOOH羥基氧化鐵生成吸附沉澱物,使砷得到去除。馬偉等報道,採用硫化法與磁場協同處理含砷廢水,提高了硫化渣的絮凝沉降速度和過濾速度,並提高了硫化劑的利用率。研究發現經磁場處理後,溶液的電導率增加,電勢降低,磁化處理使水的結構發生了變化,改變了水的滲透效果。國外曾有人提出在高度厭氧的條件下,在硫化物沉澱劑的作用下生成難溶、穩定的硫化砷,從而除去砷。化學沉澱法作為含砷廢水的一種主要處理方法,工程化比較普遍,但並不是採用單一的處理方式,而是幾種處理方式的綜合處理,如鈣鹽與鐵鹽相結合,鐵鹽與鋁鹽相結合等等。這種綜合處理能提高砷的去除率。但由於化學法普遍要加入大量的化學葯劑,並成為沉澱物的形式沉澱出來。這就決定了化學法處理後會存在大量的二次污染,如大量廢渣的產生,而這些廢渣的處理目前尚無較好的處理處置方法,所以對其在工程上的應用和以後的可持續發展都存在巨大的負面作用。
2 物化法處理含砷廢水物化法一般都是採用離子交換 、吸附、萃取、反滲透等方法除去廢液中的砷。物化法大都是些近年來發展起來的較新方法,實用的尚不多見,但是有眾多學者在這方面做了深入的研究,並取得了顯著的成果。陳紅等曾利用MnO2對含As(III)廢水進行了吸附實驗,結果表明,MnO2對As(III)有著較強的吸附能力,其飽和吸附量為44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),陰離子的存在使MnO2吸附量有所下降,一些陽離子(如Ga3+、In3+)可增加其吸附量,吸附後的MnO2經解吸後可重復使用。胡天覺等報道,合成制備了一種對As(III)離子高效選擇性吸附的螯合離子交換樹脂,用該離子交換柱脫砷:含As(III)5 g/L的溶液脫砷率高於99.99%,脫砷溶液中砷含量完全達標,而且離子交換柱用2mol/L的氫氧化鈉(含5% 硫氫化鈉)作洗脫液洗滌,可完全回收As(III)並使樹脂再生循環利用。劉瑞霞等也曾制備了一種新型離子交換纖維,該離子交換纖維對砷酸根離子具有較高的吸附容量和較快的吸附速度。實驗表明該纖維具有較好的動態吸附特性,30mL 0.5mol/L氫氧化鈉溶液可定量將96.0 mg/g吸附量的砷從纖維上洗脫。另外,還有不少人作了用鋼渣、選礦尾渣、高爐冶煉礦渣等廢渣處理含砷廢水的研究,取得了不錯的成果。但由於物化法只能處理濃度較低,處理量不大,組成單純且有較高回收價值的廢水,而工業廢水的成分較復雜,所以物化法的工程化程度較低。3 微生物法處理含砷廢水與傳統物理化學方法相比,用微生物法處理含砷廢水具有經濟、高效且無害化等優點,已成為公認最具發展前途的方法。3.1 活性污泥國內外諸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金屬離子,尤其是重金屬離子,他們與ECP的絡合更為穩定。關於吸附機制,在ECP的復雜成分中吸附重金屬離子的似乎是糖類。Brown和Lester(1979)指出ECP中的中性糖和陰離子多糖有著吸附不同金屬離子的結合點位,不同價態或不同電荷的金屬離子可以在不同的點位與 ECP結合,如中性糖的羥基、陰離子多聚物的羥基都可能是金屬的結合位。Kasan、Lester、Modak和Natarajam等認為:活性污泥對重金屬離子的吸附有兩種機制即表面吸附和胞內吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲殼素、殼聚糖等)含有配位基團—OH,—COOH,—NH2,PO43-和—HS等,他們與金屬離子進行沉澱、絡合、離子交換和吸附,其特點是快速、可逆和不需要外加能量,與代謝無關;胞外吸收通過金屬離子和胞內的透膜酶、水解酶相結合而實現,速度較慢需要能量,而且與代謝有關。
此外,Ralinske指出:好氧生物能大量富集各種重金屬離子,這些離子積累於細胞外多聚物中,並在厭氧條件下釋放回液相中。這就有利於我們在二沉池中分離和沉降重金屬離子。在活性污泥法處理含砷廢水的實驗中,存在許多影響因素,主要影響因素如下:
(1)砷的濃度及價態不同價態的砷對活性污泥的毒性不同。實驗表明,As(III)對脫氫酶的毒性比As(V)平均大53倍。As(III)對蛋白酶活性的毒性約為As(V)的75倍。還有,As(III)對活性污泥脲酶活性的毒害作用是As(V)的35倍。所以處理含砷廢水時有必要將As(III)氧化成As(V)。實驗還表明,活性污泥對低濃度砷的去除率高於對高濃度砷的去除率,這是由於污泥的吸附能力有限所造成的。
此外,重金屬離子濃度小於5mg·L-1時,活性污泥法對污水中有機物的處理效果不受重金屬影響,當重金屬離子濃度大於30mg·L-1時,活性污泥法污水中有機物的處理效果則大大受到影響。
(2)有機負荷有機負荷對活性污泥去除五價砷也有較大的影響,有機負荷高,去除率也高。主要有兩方面的原因:
一是污水中的有機物本身可和五價砷相結合,降低了污水中砷的濃度;二是有機物濃度高有利微生物生長繁殖,這進一步提高活性污泥對五價砷的去除率。
此外,有機負荷高還可以防止污泥膨脹。因為在高有機負荷環境中絮狀菌比大多數絲狀菌有更強的吸附和存貯營養物能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長。在低負荷下混合液中底物濃度長時間都低,由於缺少足夠的營養底物,絮狀菌的生長受到抑制,而絲狀菌具有較大的比表面積,當環境不利於微生物的生長時,絲狀菌會從菌膠團中伸展出來以增加其攝取營養物質的表面積。一方面,伸出絮體之外的絲狀菌更易吸收底物和營養,其生長速率高於絮狀菌,從而成為活性污泥中的優勢菌種;另一方面,絲狀菌越多,其菌絲越長,活性污泥越不易沉降,SVI越高,導致了污泥膨脹。
(3)pHpH 對金屬去除影響很大,因為pH不僅影響金屬的沉降狀態,而且影響吸附點的電荷。一般pH 升高有利於污泥對陽離子金屬的吸附。直至產生氫氧化物沉澱,反之則有利於對呈負電荷狀態存在的金屬的吸附。但是,過高或過低的pH對微生物生長繁殖不利,具體表現在以下幾個方面:
①pH過低(pH=1.5),會引起微生物體表面由帶負電變為帶正電,進而影響微生物對營養物的吸收。
②過高或過低的 PH還可影響培養基中有機化合物的離子化作用,從而間接影響微生物。
③酶只有在最適宜的pH時才能發揮其最大活性,極端的pH使酶的活性降低,進而影響微生物細胞內的生物化學過程,甚至直接破壞微生物細胞。
④過高或過低的pH均降低微生物對高溫的抵抗能力。
(4)生物固體停留時間(Qc)Qc對陽離子金屬去除有較大影響,因為活性污泥表面常被難溶性或微溶性的多聚物所包圍(如多糖),這些多聚物表面的電荷可使金屬迅速地得以去除。已經證實,細菌多聚物產生和細菌生長相有關,穩定相和內源呼吸階段多聚物產量最大,而Qc增大,污泥中細菌處於穩定相和內源呼吸階段,有利於對金屬的去除。
(5)污泥濃度污泥濃度高,吸附點也隨著增加,從而有利於金屬的去除。從去除金屬的角度出發,高有機負荷,高污泥濃度的運行方式最為理想。活性污泥法處理含砷廢水,不論在處理費用,還是二次污染,或者工程化方面,都比傳統處理方法具有相當突出的優勢。雖然在理論研究方面還不是十分完善,但是在處理機制和影響因素方面都已達成一定的共識。如果在處理工藝上再進行一定的改進,如往污泥中投加優勢菌種,可以改善污水的處理效果;此外,還可以引進生活污水進行混合處理並進行曝氣,這樣不僅降低了砷的濃度以及砷對污泥的毒害作用,同時還解決了活性污泥的營養源問題,為活性污泥法處理含砷廢水的工程化應用開辟了一片新天地。3.2 菌藻共生體國外研究表明,生物遷移轉化作為一種新的微生物法處理重金屬廢水,與傳統方法相比,具有更高效,費用更低等優點。用小球藻的生物遷移轉化處理重金屬廢水的工藝,有一些已投入工程運作。菌藻共生體對砷的去除機理可認為是藻類和細菌的共同作用。許多研究表明,在去除金屬過程中,微生物的表面起著重要作用。菌藻共生體中,藻類和細菌表面存在許多功能鍵,如羥基、氨基、羧基、硫基等。這些功能鍵可與水中砷共價結合,砷先與藻類和細菌表面上親和力最強的鍵結合,然後與較弱的鍵結合,吸附在細胞表面的砷再慢慢滲入細胞內原生質中。因而在藻類和細胞吸附砷中,可能經過快吸附過程和較慢吸附兩過程後,吸附作用才趨於平衡。廖敏等人曾研究了菌藻共生體對廢水中砷的去除效果。研究發現:培養分離所得菌藻共生體中以小球藻為主,此時菌藻共生體積累砷達7.47 g/kg乾重。在引入菌藻共生體並培養16h後,其對無營養源的含As(III),As(V)的廢水除砷率達80%以上,並趨於平衡,含營養源的As(III)、As(V)的廢水中,菌藻共生體對As(V)的去除率大於As(III),對As(V)去除率超過70%,但對As(III)的去除率也在50%以上,在除砷過程中同時出現砷的解吸現象。在無營養源條件下,對As(III)、As(V)混合廢水的除砷率超過80%。菌藻共生體是一種易培養獲得的材料。其對廢水中的砷具有較強的去除力,並能同時去除廢水中的營養物,因此其在含砷廢水的處理運用中有著廣闊的前景。3.3 投菌活性污泥法投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是將具有強活力的細菌投入到曝氣池裡去,使曝氣池混合液內的各種細菌處於最佳活性狀態,這樣.不僅投入了吸氣池內所缺少的細菌,在流入污水水質不變的條件下,微生物氧化作用顯著,而且,當污水水質改變,環境變異的情況下,微生物仍能適應,保持活性,其氧化代謝過程依然充分,投入菌液後使曝氣池耐沖擊負荷,提高污水處理廠的處理效果,改善了出水水質。投菌活性污泥法(LLMO)是出之一種新的概念,它是根據在同一環境里,最適宜的細菌能自然繁殖,同樣,污水處理廠曝氣池混合液內的細菌也會自然繁殖到一定數目,自然界無處不可找到細茵,然而,在同一環境里並非可以找到一切細菌這一原則,作為理論指導,從自然界土壤內篩選出污水廠中的有用細菌製成液態的或固態的產品。液態菌液微生物成活率高;固態菌使用前需先用水溶成液態,細菌的成活率較液態菌液低,使用時按一定比例將液態菌液投入曝氣池內或投到需用處,投菌活性污泥法(LLMO)在國外已收到良好的應用效果。因此,我們可望通過向活性污泥中投加對砷具有高耐受力,對砷具有特殊處理效果的混合菌種,達到對砷的高效處理,凈化工業含砷廢水。
4 前景展望隨著冶金、化工等產業的日益發展,以及含砷製品市場的日益拓大,含砷廢水的排放和污染問題,必將影響到人們的生活水平的提高,影響到人類生存環境的改善,所以解決含砷廢水的污染問題已迫在眉睫。然而傳統的處理方法都存在一定的問題。如化學法,雖然在工程上有了一定的應用,處理效果也較明顯,但由於化學葯劑的添加,導致了產生大量的廢渣,而這些廢渣目前尚無較好的處置辦法。而物理法的處理費用較高,處理投資非常大,無法進行工程運作。微生物法作為一種最有前途的處理方法,不僅具有高效、無二次污染,而且處理費用低等優點。其中,活性污泥法處理含砷廢水的理論在國內外處於熱點研究探索中,又由於活性污泥具有的來源廣泛,容易培養,處理後二次污染小等一系列優點,使其在工程上的應用成為可能,成為含砷廢水的主要處理方法。
此外,若對單純活性污泥法進行工藝上的改進,如引進優勢菌種,或摻入生活污水進行混合處理等工藝上的改進,都可能為活性污泥法的應用創造更為廣闊的前景。
D. 重金屬廢水的主要治理方法有哪些,它的各自特點是什麼
重金屬廢水的常用處理技術方法及特點:
一、化學沉澱
化學沉澱法是使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物的方法,包括中和沉法和硫化物沉澱法等。
1、中和沉澱法
在含重金屬的廢水中加入鹼進行中和反應,使重金屬生成不溶於水的氫氧化物沉澱形式加以分離。中和沉澱法操作簡單,是常用的處理廢水方法。實踐證明在操作中需要注意以下幾點:
(1)中和沉澱後,廢水中若pH值高,需要中和處理後才可排放;
(2)廢水中常常有多種重金屬共存,當廢水中含有Zn、Pb、Sn、Al等兩性金屬時,pH值偏高,可能有再溶解傾向,因此要嚴格控制pH值,實行分段沉澱;
(3)廢水中有些陰離子如:鹵素、氰根、腐植質等有可能與重金屬形成絡合物,因此要在中和之前需經過預處理;
(4)有些顆粒小,不易沉澱,則需加入絮凝劑輔助沉澱生成。
2、 硫化物沉澱法
加入硫化物沉澱劑使廢水中重金屬離子生成硫化物沉澱後從廢水中去除的方法。
與中和沉澱法相比,硫化物沉澱法的優點是:重金屬硫化物溶解度比其氫氧化物的溶解度更低,反應時最佳pH值在7—9之間,處理後的廢水不用中和。硫化物沉澱法的缺點是:硫化物沉澱物顆粒小,易形成膠體;硫化物沉澱劑本身在水中殘留,遇酸生成硫化氫氣體,產生二次污染。為了防止二次污染問題,在需處理的廢水中有選擇性的加入硫化物離子和另一重金屬離子(該重金屬的硫化物離子平衡濃度比需要除去的重金屬污染物質的硫化物的平衡濃度高)。由於加進去的重金屬的硫化物比廢水中的重金屬的硫化物更易溶解,這樣廢水中原有的重金屬離子就比添加進去的重金屬離子先分離出來,同時能夠有效地避免硫化氫的生成和硫化物離子殘留的問題。
二、氧化還原處理
1、化學還原法
電鍍廢水中的Cr主要以Cr6+離子形態存在,因此向廢水中投加還原劑將Cr6+還原成微毒的Cr3+後,投加石灰或NaOH產生Cr(OH)3沉澱分離去除。化學還原法治理電鍍廢水是最早應用的治理技術之一,在中國有著廣泛的應用,其治理原理簡單、操作易於掌握、能承受大水量和高濃度廢水沖擊。根據投加還原劑的不同,可分為FeSO4法、NaHSO3法、鐵屑法、SO2法等。
應用化學還原法處理含Cr廢水,鹼化時一般用石灰,但廢渣多;用NaOH或Na2CO3,則污泥少,但葯劑費用高,處理成本大,這是化學還原法的缺點。
2、 鐵氧體法
鐵氧體技術是根據生產鐵氧體的原理發展起來的。在含Cr廢水中加入過量的FeSO4,使Cr6+還原成Cr3+,Fe2+氧化成Fe3+,調節pH值至8左右,使Fe離子和Cr離子產生氫氧化物沉澱。通入空氣攪拌並加入氫氧化物不斷反應,形成鉻鐵氧體。其典型工藝有間歇式和連續式。鐵氧體法形成的污泥化學穩定性高,易於固液分離和脫水。鐵氧體法除能處理含Cr廢水外,特別適用於含重金屬離子種類較多的電鍍混合廢水。中國應用鐵氧體法已經有幾十年歷史,處理後的廢水能達到排放標准,在國內電鍍工業中應用較多。
鐵氧體法具有設備簡單、投資少、操作簡便、不產生二次污染等優點。但在形成鐵氧體過程中需要加熱(約70oC),能耗較高,處理後鹽度高,而且有不能處理含Hg和絡合物廢水的缺點。
3、電解法
電解法處理含Cr廢水在中國已經有二十多年的歷史,具有去除率高、無二次污染、所沉澱的重金屬可回收利用等優點。大約有30多種廢水溶液中的金屬離子可進行電沉積。電解法是一種比較成熟的處理技術,能減少污泥的生成量,且能回收Cu、Ag、Cd等金屬,已應用於廢水的治理。不過電解法成本比較高,一般經濃縮後再電解經濟效益較好。
近年來,電解法迅速發展,並對鐵屑內電解進行了深入研究,利用鐵屑內電解原理研製的動態廢水處理裝置對重金屬離子有很好的去除效果。
另外,高壓脈沖電凝系統()為當今世界新一代電化學水處理設備,對表面處理、塗裝廢水以及電鍍混合廢水中的Cr、Zn、Ni、Cu、Cd、CN-等污染物有顯著的治理效果。高壓脈沖電凝法比傳統電解法電流效率提高20%—30%;電解時間縮短30%—40%;節省電能達到30%—40%;污泥產生量少;對重金屬去除率可達96%一99%。
三、溶劑萃取分離溶劑萃取法是分離和凈化物質常用的方法。由於液一液接觸,可連續操作,分離效果較好。使用這種方法時,要選擇有較高選擇性的萃取劑,廢水中重金屬一般以陽離子或陰離子形式存在,例如在酸性條件下,與萃取劑發生絡合反應,從水相被萃取到有機相,然後在鹼性條件下被反萃取到水相,使溶劑再生以循環利用。這就要求在萃取操作時注意選擇水相酸度。盡管萃取法有較大優越性,然而溶劑在萃取過程中的流失和再生過程中能源消耗大,使這種方法存在一定局限性,應用受到很大的限制。
四、吸附法
吸附法是利用吸附劑的獨特結構去除重金屬離子的一種有效方法。利用吸附法處理電鍍重金屬廢水的吸附劑有活性炭、腐植酸、海泡石、聚糖樹脂等。活性炭裝備簡單,在廢水治理中應用廣泛,但活性炭再生效率低,處理水質很難達到回用要求,一般用於電鍍廢水的預處理。腐植酸類物質是比較廉價的吸附劑,把腐植酸做成腐植酸樹脂用以處理含Cr、含Ni廢水已有成功經驗。有相關研究表明,殼聚糖及其衍生物是重金屬離子的良好吸附劑,殼聚糖樹脂交聯後,可重復使用10次,吸附容量沒有明顯降低。利用改性的海泡石治理重金屬廢水對Pb2+、Hg2+、Cd2+有很好的吸附能力,處理後廢水中重金屬含量顯著低於污水綜合排放標准。另有文獻報道蒙脫石也是一種性能良好的粘土礦物吸附劑,鋁鋯柱撐蒙脫石在酸性條件下對Cr6+的去除率達到99%,出水中Cr6+含量低於國家排放標准,具有實際應用前暑。同時可以查看中國污水處理工程網更多技術文檔。
五、膜分離法
膜分離法是利用高分子所具有的選擇性來進行物質分離的技術,包括電滲析、反滲透、膜萃取、超過濾等。用電滲析法處理電鍍工業廢水,處理後廢水組成不變,有利於回槽使用。含Cu2+、Ni2+、Zn2+、Cr6+等金屬離子廢水都適宜用電滲析處理,已有成套設備。反滲透法已大規模用於鍍Zn、Ni、Cr漂洗水和混合重金屬廢水處理。採用反滲透法處理電鍍廢水,已處理水可以回用,實現閉路循環。膜萃取技術是一種高效、無二次污染的分離技術,該項技術在金屬萃取方面有很大進展。
六、離子交換法
離子交換處理法是利用離子交換劑分離廢水中有害物質的方法,應用的離子交換劑有離子交換樹脂、沸石等等,離子交換樹脂有凝膠型和大孔型。前者有選擇性,後者製造復雜、成本高、再生劑耗量大,因而在應用上受到很大限制。離子交換是靠交換劑自身所帶的能自由移動的離子與被處理的溶液中的離子通過離子交換來實現的。推動離子交換的動力是離子間濃度差和交換劑上的功能基對離子的親和能力,多數情況下離子是先被吸附,再被交換,離子交換劑具有吸附、交換雙重作用。這種材料的應用越來越多,如膨潤土,它是以蒙脫石為主要成分的粘土,具有吸水膨脹性好、比表面積大、較強的吸附能力和離子交換能力,若經改良後其吸附及離子交換的能力更強。但是卻較難再生,天然沸石在對重金屬廢水的處理方面比膨潤土具有更大的優點:沸石是含網架結構的鋁硅酸鹽礦物,其內部多孔,比表面積大,具有獨特的吸附和離子交換能力。研究表明,沸石從廢水中去除重金屬離子的機理,多數情況下是吸附和離子交換雙重作用,隨流速增加,離子交換將取代吸附作用佔主要地位。若用NaCl對天然沸石進行預處理可提高吸附和離子交換能力。通過吸附和離子交換再生過程,廢水中重金屬離子濃度可濃縮提高30倍。沸石去除銅,在NaCl再生過程中,去除率達97%以上,可多次吸附交換,再生循環,而且對銅的去除率並不降低。
E. 工業廢水的重金屬超標怎麼處理
中和沉澱法
原理:在廢水中投加鹼性物質,使得重金屬生成溶解度很小的氫氧化物沉澱而被去除。
硫化物沉澱法
原理:投加硫化鈉等硫化劑,使得重金屬離子形成溶度積很小的重金硫化物沉澱而被去除。
葯劑沉澱法
原理:該方法主要是向廢水中投加重金屬捕捉劑,其一種能與重金屬離子強力螯合的化工產品,採用接枝合成工藝,其枝鏈上的螯合基團能與螯合重金屬形成不溶物而沉澱。
希望可以幫到你~