㈠ 什麼是危險源
危險源是指一個系統中具有潛在能量和物質釋放危險的,可造成人員傷害,在一定的觸發因素作用下可轉化為事故的部位,區域,場所,空間,崗位,設備及其位置。它的實質是具有潛在危險的源點或部位,是爆發事故的源頭,是能量危險物質集中的核心,是能量從那裡傳出來或爆發的地方。
在《職業健康安全管理體系
要求GB/T
28001-2011》中的定義為,可能導致人身傷害和(或)健康損害的根源、狀態或行為,或其組合。危險源本身是一種「根源」,事故隱患可能導致傷害或疾病等的主體對象,或可能誘發主體對象導致傷害或疾病的狀態。
危險源應由三個要素構成,潛在危險性、存在條件和觸發因素。危險源的潛在危險性是指一旦觸發事故,可能帶來的危害程度或損失大小,或者說危險源可能釋放的能量強度或危險物質量的大小。危險源的存在條件是指危險源所處的物理、化學狀態和約束條件狀態。
危險源分級一般按危險源在觸發因素作用下,轉化為事故的可能性大小與發生事故的後果的嚴重程度劃分。危險源分級實質上是對危險源的評價,
按事故出現可能性大小可分為非常容易發生、容易發生、較容易發生、不
容易發生、難以發生、極難發生。
根據危害程度可分為可忽略、臨界的、
危險的、破壞性等級別。也可按單項指標來劃分等級,從控制管理角度,通常根據危險源
的潛在危險性大小、控制難易程度、事故可能造成損失情況進行綜合分級,根據危險源的性質、場所、設備、設施等的不同分類。
(1)污水處理危險源點是什麼擴展閱讀;
當無法直接判定或直接不能確定是否為重要危險源時,評價是否為重要危險因素為,風險值(D)=發生事故或危險的可能性(L)*暴露於危險環境的頻次(E)*發生事故可能產生的後果(C)。
D值越大,說明該系統危險性大,需要增加安全措施,或改變發生事故的可能性,或減少人體暴露於危險環境中的頻繁程度,或減輕事故損失,直至調整到允許范圍內。
這是一種評價具有潛在危險性環境中作業時的危險性半定量評價方法,它是用與系統風險率有關的3種因素指標值之積來評價系統人員傷亡風險大小,這3種因素是,L為發生事故的可能性大小,E為人體暴露在這種危險環境中的頻繁程度,C為一旦發生事故會造成的損失後果。
參考資料 搜狗網路--危險源
㈡ 廢水門崗有哪些危險源
污水處理崗位會用到的危險化學品:鹽酸,硫酸。
污水,污泥含有大量的細菌和病毒,
另外還可能產生硫化氫等有毒氣體。
㈢ 污水處理廠的安全隱患有哪些
污水處理廠的安全隱患有:
1、安全設施配備數量不足,消防器材有些已過期、有些未年檢,需要更換;
2、部分設備電纜接線頭裸露,電纜地溝內有積水影響用電安全;
3、部分構築物圍欄損壞、缺失,安全警示標志不全;各廠未進行全面的應急預案演練;
4、安全持證上崗情況較差;
5、未進行廠區安全危險源評估等問題。從污染源排出的污(廢)水,因含污染物總量或濃度較高,達不到排放標准要求或不適應環境容量要求,從而降低水環境質量和功能目標時,必需經過人工強化處理的場所,這個場所就是污水處理廠,又稱污水處理站。
㈣ 風險點和危險源的區別是什麼怎麼區分
1、明確風險和危險的概念不同。風險是事件發生的不確定性,這種不確定可能是損失也可能是收益。而危險就是指純粹的風險。兩者的概念有明顯的差別。
2、危險源的三個要素是:潛在危險性、存在條件和觸發因素。能夠帶來風險的人或物,又或事件都可被視為風險源,相應的可能導致死亡、傷害、職業病、財產損失、工作環境破壞或這些情況組合的根源或狀態。
3、危險源是風險的載體,風險是危險源的屬性。即討論風險必然是涉及哪類或哪個危險源的風險,沒有危險源,風險則無從談起。任何危險源都會伴隨著風險。只是危險源不同,其伴隨的風險大小往往不同。"
股票(stock)是股份公司所有權的一部分,也是發行的所有權憑證,是股份公司為籌集資金而發行給各個股東作為持股憑證並藉以取得股息和紅利的一種有價證券。股票是資本市場的長期信用工具,可以轉讓,買賣,股東憑借它可以分享公司的利潤,但也要承擔公司運作錯誤所帶來的風險。每股股票都代表股東對企業擁有一個基本單位的所有權。每家上市公司都會發行股票。
同一類別的每一份股票所代表的公司所有權是相等的。每個股東所擁有的公司所有權份額的大小,取決於其持有的股票數量占公司總股本的比重。
股票是股份公司資本的構成部分,可以轉讓、買賣,是資本市場的主要長期信用工具,但不能要求公司返還其出資。股票是股份制企業(上市和非上市)所有者(即股東)擁有公司
資產和權益的憑證。上市的股票稱流通股,可在股票交易所(即二級市場)自由買賣。非上市的股票沒有進入股票交易所,因此不能自由買賣,稱非上市流通股。
這種所有權為一種綜合權利,如參加股東大會、投票標准、參與公司的重大決策、收取股息或分享紅利等,但也要共同承擔公司運作錯誤所帶來的風險。
股票是一種有價證券,是股份公司在籌集資本時向出資人發行的股份憑證,代表著其持有者(即股東)對股份公司的所有權。股票是股份證書的簡稱,是股份公司為籌集資金而發行給股東作為持股憑證並藉以取得股息和紅利的一種有價證券。每股股票都代表股東對企業擁有一個基本單位的所有權。股票是股份公司資本的構成部分,可以轉讓、買賣或作價抵押,是資金市場的主要長期信用工具。"
㈤ 電廠化學水處理有什麼風險及危險源,如何進行控制
有能量(包括動能、勢能、電能等)、有毒害、會窒息等。根據危險源的種類去一一消除防範
㈥ 水處理區域直接造成人員死亡的危險源有哪些應該怎樣防護
危險源的區域各有不同。
解決危險源辯識存在問題的有效對策,加強信息數據化管理,提高安全可靠性。
㈦ 誰有污水處理廠的危險源識別啊,謝謝
這是說明書
第一章 設計資料
一、自然條件
1、 氣候:該城鎮氣候為亞熱帶海洋季風性季風氣候,常年主導風向為東南風。
2、 水文:最高潮水位 6.48m(羅零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放現狀
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生產廢水量按近期1.5萬m3/d,遠期2.4萬m3/d;
(3)公用建築廢水量排放系數按近期0.15,遠期0.20考慮;
(4)處理廠處理系數按近期0.80,遠期0.90考慮。
2、污水水質
(1) 生活污水水質指標為
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工業污染源參照沿海開發區指標,擬定為:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根據經驗確定為30md/L。
三、污水處理廠建設規模與處理目標
1、 建設規模
該污水處理廠服務面積為10.09km2, 近期(2000年)規劃人口為6.0萬人,遠期(2020年)規劃人口為10.0萬人。處理水量近期3.0萬m3/d,遠期6.0萬m3/d。
2、 處理目標
根據該城鎮環保規劃,污水處理廠出水進入的水體水質按國家3類水體標准控制,同時執行國家關於污水排放的規范和標准,擬定出水水質指標為
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建設原則
污水處理工程建設過程中應遵從下列原則:污水處理工藝技術方案,在達到治理要求的前提下應優先選擇基建投資和運行費用少、運行管理簡便的先進的工藝;所用污水、污泥處理技術和其他技術不僅要求先進,更要求成熟可靠;和污水處理廠配套的廠外工程應同時建設,以使污水處理廠盡快完全發揮效益;污水處理廠出水應盡可能回用,以緩解城市嚴重缺水問題;污泥及浮渣處理應盡量完善,消除二次污染;盡量減少工程佔地。
第二章 污水處理工藝方案選擇
一、工藝方案分析
本項目污水以有機污染為主,BOD/COD=0.54 可生化性較好,重金屬及其他難以生物降解的有毒有害污染物一般不超標,針對這些特點,以及出水要求,現有城市污水處理技術的特點,以採用生化處理最為經濟。由於將來可能要求出水回用,處理工藝尚應硝化。
根據國內外已運行的大、中型污水處理廠的調查,要達到確定的治理目標,可採用「普通活性污泥法」或「氧化溝」法。
普通活性污泥法,也稱傳統活性污泥法,推廣年限長,具有成熟的設計運行經驗,處理效果可靠,如設計合理,運行得當,出水BOD5可達10-20mg/L,它的缺點是工藝路線長,工藝構築物及設備多而復雜,運行管理困難,運行費用高。
氧化溝處理技術是20世紀50年代有荷蘭人首創。60年代以來,這項技術在國外已被廣泛採用,工藝及構築物有了很大的發展和進步。隨著對該技術缺點(佔地面積大)的克服和對其優點的逐步深入認識,目前已成為普遍採用的一項污水處理技術。
氧化溝工藝一般可不設初沉池,在不增加構築物及設備的情況下,氧化溝內不僅可完成碳源的氧化,還可實行脫氮,成為A/O工藝,由於氧化溝內活性污泥已經好氧穩定,可直接濃縮脫水,不必厭氧消化。
氧化溝污水處理技術已被公認為一種成功的革新的活性污泥法工藝,與傳統活性污泥系統相比較,它在技術、經濟等方面具有一系列獨特的優點。
1、 工藝流程簡單、構築物少,運行管理方便。一般情況下,氧化溝工藝可比傳統活性污泥法少建初沉池和污泥厭氧消化系統,基建投資少。另外,由於不採用鼓風曝氣和空氣擴散器,不建厭氧硝化系統,運行管理方便。
2、 處理效果穩定,出水水質好。
3、 基建投資省,運行費用低。
4、 污泥量少,污泥性質穩定。
5、 具有一定承受水量、水質沖擊負荷的能力。
6、 佔地面積少。
污水處理廠的基建投資和運行費用與各廠的污水濃度和建設條件有關,但在同等條件下的中、小型污水廠,氧化溝比其他方法低,據國內眾多已建成的氧化溝污水處理廠的資料分析,當進水BOD5在120-180mg/L時,單方基建投資約為700-900元/(m3.d),運行成本為0.15-0.30元/m3污水。
由以上資料,經過簡單的分析比較,氧化溝工藝具有明顯優勢,故採用氧化溝工藝。
二、工藝流程確定:(如圖所示)
說明:由於不採用池底空氣擴散器形成曝氣,故格柵的截污主要對水泵起保護作用,擬採用中格柵,而提升水泵房選用螺旋泵,為敞開式提升泵。為減少柵渣量,格柵柵條間隙已擬定為25.00mm。
曝氣沉砂池可以克服普通平流沉砂池的缺點:在其截流的沉砂中夾雜著一些有機物,對被有機物包裹的沙粒,截流效果也不高,沉砂易於腐化發臭,難於處置。故採用曝氣沉砂池。
本設計不採用初沉池,原則上應根據進水的水質情況來確定是否採用初沉池。但考慮到後面的二級處理採用生物處理,即氧化溝工藝。初沉池會除去部分有機物,會影響到後面生物處理的營養成分,即造成C/N比不足。因此不予考慮。
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准,故污泥負荷和污泥泥齡分別低於0.15kgBOD/kgss*d和高於20.0d。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
為了使沉澱池內水流更穩定(如避免橫向錯流、異重流對沉澱的影響、出水束流等)、進出水更均勻、存泥更方便,常採用圓形輻流式二沉池。向心式輻流沉澱池採用中心進水,周邊出水,多年來的實際和理論分析,認為此種形式的輻流沉澱池,容積利用率高,出水水質好。設計流量 Q=2.85萬m3/d=1208.3 m3/h,迴流比 R=0.7。
第三章 污水處理工藝設計計算
一、水質水量的確定
1. 水量的確定
近期水量:生活廢水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工業廢水Q工業=1.5×104m3/d
公用建築廢水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的處理系數為0.8,故近期污水處理廠的處理量
Qp=3.57×104×0.8=2.856×104m3/d
遠期水量:生活廢水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工業廢水Q工業=2.4×104m3/d
公用建築廢水Q公用=3.0×104×0.2=0.6×104m3/d
所以遠期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
遠期的處理系數為0.9,故遠期污水處理廠的處理量
Qp=6.0×104×0.9=5.4×104m3/d
通常設計污水處理廠時遠期的設計處理量為近期的兩倍,綜合考慮近期和遠期的處理水量,取近期的設計處理水量Qp=3.0×104m3/d,遠期的設計處理水量Qp=6.0×104m3/d。
2. 水質的確定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
遠期COD:
COD= =240 mg/L
遠期BOD5:
BOD5= =128mg/L
NH3-N按規定取為30 mg/L
所以處理廠的處理水質確定為COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝氣沉砂池設計計算說明書
沉砂池的作用是從污水中去除砂子、煤渣等比重比較大的無機顆粒,以免這些雜質影響後續構築物的正常運行。常用的沉砂池有平流式沉砂池、曝氣沉砂池、豎流沉砂池和多爾沉砂池等。平流式沉砂池構造簡單,處理效果較好,工作穩定,但沉砂中夾雜一些有機物,易於腐化散發臭味,難以處置,並且對有機物包裹的砂粒去除效果不好。曝氣沉砂池在曝氣的作用下顆粒之間產生摩擦,將包裹在顆粒表面的有機物除掉,產生潔凈的沉砂,通常在沉砂中的有機物含量低於5%,同時提高顆粒的去除效率。多爾沉砂池設置了一個洗砂槽,可產生潔凈的沉砂。渦流式沉砂池依靠電動機機械轉盤和斜坡式葉片,利用離心力將砂粒甩向池壁去除,並將有機物脫除。後3種沉砂池在一定程度上克服了平流式沉砂池的缺點,但構造比平流式沉砂池復雜。
和其它形式的沉砂池相比,曝氣沉砂池的特點是:一、可通過曝氣來實現對水流的調節,而其它沉砂池池內流速是通過結構尺寸確定的,在實際運行中幾乎不能進行調解;二、通過曝氣可以有助於有機物和砂子的分離。如果沉砂的最終處置是填埋或者再利用(製作建築材料),則要求得到較干凈的沉砂,此時採用曝氣沉砂池較好,而且最好在曝氣沉砂池後同時設置沉砂分選設備。通過分選一方面可減少有機物產生的氣味,另一方面有助於沉砂的脫水。同時,污水中的油脂類物質在空氣的氣浮作用下能形成浮渣從而得以被去除,還可起到預曝氣的作用。只要旋流速度保持在0.25~0.35m/s范圍內,即可獲得良好的除砂效果。盡管水平流速因進水流量的波動差別很大,但只要上升流速保持不變,其旋流速度可維持在合適的范圍之內。曝氣沉砂池的這一特點,使得其具有良好的耐沖擊性,對於流量波動較大的污水廠較為適用,其對0.2mm顆粒的截流效率為85%。
由於此次設計所處理的主要是生活污水水中的有機物含量較高,因此採用曝氣沉砂池較為合適。
曝氣沉砂池的設計參數:
(1)旋流速度應保持0.25—0.3m/s;
(2)水平流速為0.08—0.12 m/s;
(3)最大流量時停留時間為1—3min;
(4)有效水深為2—3m,寬深比一般採用1~1.5;
(5)長寬比可達5,當池長比池寬大得多時,應考慮設置橫向擋板;
(6)1 污水的曝氣量為0.2 空氣;
(7)空氣擴散裝置設在池的一側,距池底約0.6~0.9m,送氣管應設置調節氣量的閥門;
(8)池子的形狀應盡可能不產生偏流或死角,在集砂槽附近可安裝縱向擋板;
(9)池子的進口和出口布置,應防止發生短路,進水方向應與池中旋流方向一致,出水方向應與進水方向垂直,並考慮設置擋板;
(10)池內應考慮設置消泡裝置。
一、 曝氣沉砂池的設計與計算
1. 最大設計流量Qmax
Qmax=Kz×Qp
式中的Kz為變化系數,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s
2. 池子的有效容積
V=60Qmaxt
式中 V——沉砂池有效容積,m3;
Qmax——最大設計流量,m3/s;
t——最大設計流量時的流動時間,min,設計時取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流斷面面積
A=
式中 A——水流斷面面積,m2
Qmax——最大設計流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池寬B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,滿足要求。
5. 池長
L= = m,取L=10.5m
此時L/B=5滿足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之間,滿足要求
7.曝氣沉砂池所需空氣量的確定
設每立方米污水所需空氣量 d=0.2m3空氣/m3污水
8.沉砂槽的設計
若設吸砂機工作周期為t=1d=24h,沉砂槽所需容積
式中Qp的單位為m3/h
設沉砂槽底寬0.5m,上口寬為0.7,沉砂槽斜壁與水平面夾角60°,
沉砂槽高度為 h1=
沉砂槽容積為
9.沉沙池總高
設池底坡度為0.3,坡向沉砂槽,池底斜坡部分的高度為
h2=0.3×0.7=0.21m
設超高 ,沉沙池水面離池底的高
m
10.曝氣系統的設計
採用鼓風曝氣系統,羅茨鼓風機供風,穿孔管曝氣
(1)干管直徑d1:由於設置兩座曝氣沉砂池,可將空氣管供應兩座的氣量,即主管最大氣量為q1=0.0694×2=0.1388m3/s,取干管氣速v=12m/s,
干管截面積A= = =0.0116m2
d1= = m=120mm,
因為沒有120mm的管徑,所以採用接近的管徑100mm。
回算氣速v=17.7m/s 雖然超過15 m/s,但若取150的管氣速又過小,所以還是選擇管徑100mm。
(2)支管直徑d2:由於閘板閥控制的間距要在5m以內,而曝氣的池長為10.5米,所以每個池子設置三根豎管,設支管氣速為v=5m/s,
支管面積 A= m2
d2= = mm,
取整管徑d2=80mm
校核氣速v=4.6m/s (滿足3—5m/s)
(3)穿孔管:採用管徑為6mm的穿孔管,孔出口氣速為設5m/s,孔口直徑取為5mm(在2~6mm之間)
一個孔的平均出氣量 q= =9.81×10-5m3/s
孔數:n= 個
孔間隔 為 ,在10~15mm之間,符合要求。
穿孔管布置:在每格曝氣沉砂池池長一側設置1根穿孔管曝氣管,共兩根。
二、細格柵的選型和計算
選用XG1000型細格柵,參數如下
設備寬B:1000mm 有效柵寬B1:850㎜ 有效柵隙:5㎜ 耙線速度:2 m/min 電機功率:1.1kw 安裝角度:60° 渠寬B3:1050㎜ 柵前水深h2:1.0m/s 流體流速:0.5~1.0m/s
柵條寬度s=0.01m
1. 柵前後的水頭損失
水流斷面面積 m2
柵前流速
在0.4~0.9m/s范圍內,復合要求
設過柵流速為v=0.6m/s
設柵條斷面為銳邊矩形斷面,取k=3 ,則通過格柵的水頭損失為:
。
3. 柵槽總長度
柵前的渠道超高設為0.45m,所以渠道高度為1.45m
因為安裝高度是取60°,所以格柵所佔的渠道長為1.45×ctg =1.45×ctg60°=0.84m
柵後長1米。
所以渠道的總長度
L=0.5+0.84+1=2.34m
三、水面標高
根據經驗值污水每經過一個障礙物水面標高下降3~5cm,根據曝氣沉砂池的有效水深以及砂斗的高度可推算出各個構築物的水面標高,本次設計以經過一個障礙物水位下降5cm來計算,以曝氣沉砂池的砂槽底為0米進行計算。
曝氣沉砂池的水面標高:2.38m
細格柵與曝氣沉砂池之間的配水井的水面標高: 2.43m
細格柵柵後水面標高: 2.48m
細格柵柵前水面標高:2.48+0.29=2.77m
配水井外套桶水面標高: 2.82m
配水井內套桶水面標高: 2.88
設配水井超高為0.35m
則整個曝氣沉砂池系統的最高標高為3.23m
則曝氣沉砂池的超高為h1=3.23-2.38=0.85m
四、配水井的計算
設配水井的平均停留時間為T=1.5min,Qp=0.347 m3/s,假設配水井水柱高為5.03米。
配水井面積為
配水井直徑為
因為進水管徑為1000,管離底為200mm。所以覆土厚度為1.28m。
五、砂水分離器和吸砂機的選擇
(1)選用直徑LSSF型螺旋式砂水分離器
(2)根據池寬選用LF-W-CS型沉砂池吸砂機,其主要參數為:
潛污泵型號:AV14-4(潛水無堵塞泵)
潛水泵特性 揚程:2m,流量:54m3/h,功率:1.4kw
行車速度為2-5m/min,提耙裝置功率 0.55kw
驅動裝置功率: 0.37×2kw
鋼軌型號 15kg/mGB11264-89
軌道預埋件斷面尺寸(mm) (b1-20) 60 10(b1:沉砂池牆體壁厚)
軌道預埋件間距 1000mm
四、氧化溝
1、設計說明
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准。採用卡式氧化溝的優點:立式表曝機單機功率大,調節性能好,節能效果顯著;有極強的混合攪拌與耐沖擊負荷能力;曝氣功率密度大,平均傳氧效率達到至少2.1kg/(kW*h);氧化溝溝深加大,可達到5.0以上,是氧化溝佔地面積減小,土建費用降低。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
2、設計計算
(1).設計參數:
qv=30000m3/d(設計採用雙池,則單池流量=15000 m3/d),
設計溫度15℃,最高溫度25℃,
進水水質:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
遠期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水質:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).確定採用的有關參數:
取MLSS=3500mg/L,假定其70%是揮發性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩餘鹼度:100mg/L(以CaCO3),所需鹼度7.14mg鹼度/mgNH3-N氧化;產生鹼度3.0mg鹼度/mgNO3-N還原,硝化安全系數:3。
(3).設計泥齡:
確定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,設計泥齡θc=3*4.5=13.5d
為了保證污泥穩定,應選擇泥齡為30d
(4).設計池體體積:
①確定出水中溶解性BOD5的量:
出水中懸浮固體BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧區容積計算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留時間t1= V1/ qv =9278/30000=0.31d=7.4h
③脫氮計算:
產生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假設污泥中大約含12.4%的氮,這些氮用於細胞合成,
用於合成的氮=0.124*860=106.6kg/d,轉化為:106.6*1000/30000=3.55mg/L
故脫氮量=30-10-3.55=16.45mg/L。
④鹼度計算:
剩餘鹼度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大於100mg/L,可以滿足pH>7.2
⑤缺氧區容積計算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留時間t2=V2/qv=6295/30000=0.21d=5h
⑥總池容積計算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝氣量計算
①計算需氧氣量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②實際需氧量
Ro』=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之間 符合)
6.溝型尺寸設計及曝氣設備選型
採用卡式氧化溝(兩座並聯):
取有效水深H=3.5m,單溝的寬度b=7.8m,進水量15000 m3/d,
則單溝長=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
單溝好氧區總長度=單溝長*4* V1 /V=126m
單溝厭氧區總長度=單溝長*4* V2 /V=76m
採用四溝道,兩台55kW的立式表曝氣機(單池)
曝氣設備:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,
7.配水井設計
污水在配水井的停留時間最少不低於3min(不計迴流污泥的量),
設截面中半圓的半徑為r,矩形的寬度為r,長度為2r,設計的有效水深為4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附屬構築物的設計
工程設計中牆的厚度為250mm;氧化溝體表面設置走道板的寬度為800mm;;倒流牆的設計半徑為3.9m;配水井的進水管道採用的規格為DN900,污泥迴流管道採用的規格為DN500;出水井的設計尺寸為3000mm*1000mm*1000mm,出水堰高為100mm,堰孔直徑為40mm,出水管採用的規格為DN700。
五、輻流式二沉池
1.設計說明
1.1二沉池的類型
二沉池的類型有:平流式二沉池、豎流式二沉池、輻流式二沉池、斜流式二沉池。其中,輻流式二沉池又分為:中進周出式、周進周出式、中進中出式。
1.2選擇輻流式(中進周出)二沉池的原因
由於平流式二沉池佔地面積大;豎流式二沉池多用於小型廢水中絮凝性懸浮固體的分離;斜流式二沉池較多時候,在曝氣池出口污泥濃度高,而且沒有設置專門的排泥設備,容易造成阻塞。因此選擇輻流式二沉池。從出水水質和排泥的方面考慮,理論上是周進周出效果最好。但是,實際上,考慮異重流,是中進周出的效果最好。因此,選擇了選擇輻流式(中進周出)二沉池。
2.設計計算
2.1污泥迴流比:
2.2沉澱部分水面面積:
流量: ;
最大流量(設計流量):
單個池子的設計流量:
污泥負荷q取1.1m3/(m2.h), 池子數n為2 。
沉澱部分水面面積:
2.3校核固體負荷:
因為142<150,符合要求。
2.4池子直徑
池子直徑: 根據選型取池子直徑為35.0m。
2.5沉澱部分的有效水深
沉澱時間t為2.5s 有效水深:
2.6沉澱池總高
2.7校核徑深比:
徑深比為 符合要求。
2.8進水管的設計
單體設計污水流量:
進水管設計流量:
取管徑D=700mm ,流速為
因為,0.697>0.6符合要求,所以進水管直徑為D=700mm。
2.9穩流筒
進水井的流速為0.8m/s ,則過水面積為
過水面積和泥管面積的總和:
由過水面積和泥管面積的總和求出直徑為
筒壁厚為250mm, 取管徑為900mm。
進行校核:過水面積為
流速為 。
筒上有8個小孔 ,孔面積為S2= ,所以 。
二沉池採用的是ZBX型周邊傳動吸泥機,穩流筒的直徑為3880mm。
取穩流筒出流速度為0.1m/s, 則過水面積為
穩流筒下部與池底距離為
所以穩流筒下部與池底距離大於0.2m,即符合要求。
2.10配水井
配水井設計為馬蹄形,在外圍加寬700mm為污泥井。
時間取3分鍾 流量為
取配水井直徑為D=3000mm 則配水井高度
其中,設計水深為7.0m,超高為0.6m。
2.11出水部分單池設計流量:
出水溢流堰設計
(1) 堰上水頭 H=0.05mH2O
(2) 每個三角堰的流量0.783L/s
(3) 三角堰個數 因此取n=223(個)
2.12排泥部分
迴流污泥量為
剩餘污泥量為
因為剩餘污泥量小,所以忽略不計,即總污泥量為0.188m3/s。
取流速為0.8(m/s) 直徑為 取直徑為D=400mm
校核:流速為 0.6<0.75<0.9 因此符合要求。
綜上, 二沉池採用的是ZBX型周邊傳動吸泥機 池徑為35000mm.
希望能夠幫助你!
㈧ 鋼鐵廠污水處理的危險源有哪些
鋼鐵廠污水處理車間基本上是比較安全的,危險因素有觸電危險,水池溺水危險,污泥脫水器機械傷害,車輛行駛傷害等。
㈨ 什麼是危險源和危險源點,有幾個層次
根據《生產過程危險和有害因素分類與代碼》(GB/T 13861-1992)的規定,將生產過程中的危險、有害因素分為以下6大類。
物理性危險、有害因素
(1)設備、設施缺陷(強度不夠、剛度不夠、穩定性差、密封不良、應力集中、外形缺陷、外露運動件、操縱器缺陷、制動器缺陷、控制器缺陷、設備設施其他缺陷等); (2)防護缺陷(無防護、防護裝置和設施缺陷、防護不當、支撐不當、防護距離不夠、其他防護缺陷等); (3)電危害(帶電部位裸露、漏電、雷電、靜電、電火花、其他電危害等); (4)雜訊危害(機械性雜訊、電磁,陛雜訊、流體動力性雜訊、其他雜訊等); (5)振動危害(機械性振動、電磁性振動、流體動力性振動、其他振動危害等); (6)輻射(電離輻射,包括X射線、γ射線、α粒子、β粒子、質子、中子、高能電子束等;非電離輻射,包括紫外線、激光、射頻輻射、超高壓電場等); (7)運動物危害(固體拋射物、液體飛濺物、墜落物、反彈物、土/岩滑動、料堆(垛)滑動、飛流卷動、沖擊地區、其他運動物危害等); (8)明火; (9)能造成灼傷的高溫物質(高溫氣體、高溫液體、高溫固體、其他高溫物質等); (10)能造成凍傷的低溫物質(低溫氣體、低溫液體、低溫固體、其他低溫物質等); (11)粉塵與氣溶膠(不包括爆炸性、有毒性粉塵與氣溶膠); (12)作業環境不良(基礎下沉、安全過道缺陷、採光照明不良、有害光照、缺氧、通風不良、空氣質量不良、給/排)水不良、涌水、強迫體位、氣溫過高、氣溫過低、氣壓過高、氣壓過低、高溫高濕、自然災害、其他作業環境不良等); (13)信號缺陷(無信號設施、信號選用不當、信號位置不當、信號不清、信號顯示不準、其他信號缺陷等); (14)標志缺陷(無標志、標志不清晰、標志不規范、標志選用不當、標志位置缺陷、其他標志缺陷等); (15)其他物理性危險和有害因素。
化學性危險、有害因素
(1)易燃易爆性物質(易燃易爆性氣體、易燃易爆性液體、易燃易爆性固體、易燃易爆性粉塵與氣溶膠、遇濕易燃物質和自燃性物質、其他易燃易爆性物質等); (2)反應活性物質(氧化劑、有機過氧化物、強還原劑); (3)有毒物質(有毒氣體、有毒液體、有毒固體、有毒粉塵與氣溶膠、其他有毒物質等); (4)腐蝕性物質(腐蝕性氣體、腐蝕性液體、腐蝕性固體、其他腐蝕性物質等); (5)其他化學性危險和有害因素。
生物性危險、有害因素
(1)致病微生物(細菌、病毒、其他致病性微生物等); (2)傳染病媒介物; (3)致害動物; (4)致害植物; (5)其他生物危險和有害因素。
心理、生理性危險、有害因素
(1)負荷超限(體力負荷超限、聽力負荷超限、視力負荷超限、其他負荷超限); (2)健康狀況異常; (3)從事禁忌作業; (4)心理異常(情緒異常、冒險心理、過度緊張、其他心理異常); (5)識別功能缺陷(感知延遲、識別錯誤、其他識別功能缺陷); (6)其他心理、生理性危險和有害因素。
行為性危險、有害因素
(1)指揮錯誤(指揮失誤、違章指揮、其他指揮錯誤); (2)操作錯誤(誤操作、違章作業、其他操作錯誤); (3)監護錯誤; (4)其他行為性危險和有害因素。
其他危險、有害因素
(1)搬舉重物; (2)作業空間; (3)工具不合適; (4)標識不清。
㈩ 危險區域的界定指劃定重大危險源點的范圍對嗎
危險區域的界定指劃定重大危險源點的范圍,對的。
危險區域的界定即劃定重大危險源點的范圍。在確定危險源區域時,可按以下方法界定:
1、按危險源是固定還是移動界定。如運輸車輛,分廠內的搬運設備為移動式,其危險區域隨設備的移動空間而定。而鍋爐、壓力容器、儲油罐等則是固定源,其區域范圍也是可以固定的。
2、按危險源是點源還是線源界定,一般線源引起的危險范圍較點源的大。
3、按危險作業場所來劃分危險源的區域。如有發生爆炸、火災危險的場所,有被車輛傷害的場所,有觸電危險的場所,有高處墜落危險的場所,有腐蝕、放射、輻射、中毒和窒息危險的場所等。
4、按危險設備所處位置作為危險源的區域。如鍋爐房、氧氣站、變配電站等。
5、按能量形式界定危險源。如化學危險源、電氣危險源、機械危險源、輻射危險源和其他危險源等。
危險源的調查的內容有:
1、生產工藝設備及材料情況:工藝布置、設備名稱、容積、溫度、壓力、工藝設備的固有缺陷,所使用的材料種類、性質、危害等。
2、作業環境情況:安全通道情況,生產設備的結構、布局、作業空間布置等。
3、操作情況:操作過程中的危險,工人接觸危險的頻率等。
4、事故情況:過去事故及危害狀況,事故處理應急方法,故障處理措施。