⑴ 鎳系電鍍廢水處理如何實現最優化
電鍍過程中產生的廢水成分非常復雜。重金屬廢水是電鍍工業中一種極具潛在危害性的廢水。鎳是一種致癌的重金屬。此外,它是一種昂貴的金屬資源(價格是銅的2-4倍)。
電鍍鎳因其優異的耐磨性、耐蝕性和可焊性,廣泛應用於電鍍生產中,其加工體積僅次於鍍鋅,在整個電鍍工業中排名第二。
在鍍鎳過程中產生大量電鍍的含鎳廢水。如果電鍍含鎳廢水未經任何處理排放,不僅會危害環境和人體健康,還會浪費貴金屬資源。以下是鎳基電鍍廢水處理工藝優化的討論。
1 中和沉澱法的優化
本文對電鍍鎳廢水的處理工藝進行了研究。首先介紹了中和沉澱法的優化。為了方便地去除鎳基電鍍廢水中的鎳離子,首先將鎳離子轉化為含有鎳元素的沉澱,然後通過一些其它方法過濾掉鎳基電鍍廢水中的沉澱。先進的化學工藝。下面筆者對中和沉澱法進行了簡單的分析。
所謂中和沉澱法,就是在鍍鎳廢水中加入氫氧化鈉,將廢水的ph值調節到一定的值,在此基礎上,加入一個質量分數一定的凝結劑pam,使鍍鎳廢水中的鎳離子成為氫氧化鎳沉澱法。
然而,經過大量的實驗研究和資料分析,得出中和沉澱法對於鎳系電鍍廢水處理的最大限度只能到達86%,因此,鎳系電鍍廢水中還是存在著相當多的重金屬鎳。
在用中和沉澱法去除電鍍鎳廢水中鎳離子的過程中,電鍍鎳廢水中也含有鎳離子絡合物。在這種情況下,添加氫氧化鈉和助凝劑並不能實現電鍍鎳廢水的優化。
中和沉澱法可以從鍍鎳廢水中去除鎳離子,但效果不是很好,有一定的局限性。為了改善鍍鎳廢水的處理,在接下來的闡述中,作者將對其進行中和。在沉澱法的基礎上,提出了一種較好的處理工藝。
2 硫化鈉沉澱法的優化
為了突破中和沉澱法的局限性,提出了硫化鈉沉澱法處理電鍍鎳廢水的優化工藝。
硫化鈉沉澱法,顧名思義,是在電鍍鎳廢水中加入硫化鈉,實現重金屬轉化為沉澱的一種方法。與中和沉澱法相比,硫化鈉沉澱法的效果較好,但在中和沉澱法的基礎上,其基本操作較為復雜。首先,在電鍍鎳廢水中加入氫氧化鈉,將廢水的酸鹼度調節到10。然後,向廢水中加入混凝劑PAM。在連續攪拌過程中,加入硫化鈉,然後進行一定時間的攪拌,加入混凝劑PAC,再次加入混凝劑PAM。
凝結劑的作用是幫助沉澱的形成,在硫化鈉沉澱中,共需要三種凝結劑,需要更多的步驟,在最後觀察鎳電鍍廢水的處理時,鎳離子的配合物仍然有很多,雖然硫化鈉沉澱對復雜的鎳離子的去除有一定的作用,但尚未發揮重要作用。
為了最好地處理鎳基電鍍廢水並符合相關國家標准,有必要在中和沉澱法和硫化鈉沉澱法的基礎上進行一定的改進和改進。
3 Fenton試劑破碎絡合物+化學沉澱法的優化
優化了化學沉澱法,在鍍鎳廢水處理中具有不可估量的作用。一方面,該方法的應用促進了鍍鎳廢水中鎳離子的去除;另一方面,在中和沉澱法和硫化鈉沉澱法的基礎上,還可以打破鍍鎳廢水中的鎳離子。
該方法的使用可以優化鎳基電鍍廢水的最佳工藝,提高廢水處理的優化效果,並在一定程度上降低廢水排放對人體健康的危害。
芬頓試劑法加化學沉澱法的基本原理是氧化機理和自由基機理。亞鐵離子與過氧化氫反應生成羥基自由基,形成沉澱,有效地破壞配合物。
在這種方法中,芬頓試劑的反應過程如下:首先,二價鐵離子與過氧化氫反應生成羥基自由基,然後生成的羥基自由基與二價鐵離子反應生成氫氧根離子和三價鐵離子。三價鐵離子與過氧化氫反應生成水,最後水與三價鐵離子反應生成二價鐵離子和氧氣。
正是在這個過程中,實現了鎳基電鍍廢水的最佳優化。該方法是中和沉澱法和硫化鈉沉澱法的補充,值得推廣和使用。
⑵ 急需一遍優化環境的文章(關於污水處理方面的)
前言
隨著工業化和城市化的發展,水環境污染、水資源緊缺日益嚴重,水污染控制、水環境保護已刻不容緩。我國現在新建城市或城區採用雨污分流制,但老城市或老城區大多仍然是雨污合流的排水體制,許多合流污水是直接排放到水體。而將舊合流制改為分流制,受現狀條件限制大,許多老城區建成年代較長,地下管線基本成型,地面建築擁擠,路面狹窄,舊合流制改分流制難度較大。合流污水的一大特點是旱季和雨季的水質、水量變化大,雨季污水BOD濃度低,不利於生化處理。國家提出,2010的我國城市污水處理率要求達到40%,因此,研究有效的合流污水處理方法,對加快城市污水處理步伐具有重要的意義。本文針對合流污水處理的有關情況,談一些個人看法。
2 污水處理工藝要求
我國目前不少城市,新城區與老城區並存,合流制與分流制並存。因此,新建或擴建的污水處理廠,在滿足城市總體規劃和排水規劃需要的同時,還應能達到如下要求:
(1)具備接納舊城區合流污水的能力,具有較強的適應沖擊負荷的能力。污水處理廠污水來源包括兩部分:一是新城區分流污水 ;二是老城區合流污水。與合流污水相比,分流污水水質、水量變化幅度小得多,對污水處理廠調節緩沖的要求小得多。對於合流污水,降雨前期因雨水沖涮街區,合流污水較臟,但水量相對較小;降雨後期水量較大,但污水中有機物濃度相對較小。因此,降雨前期合流污水,可考慮與分流污水一起經預處理後進入污水處理構築物。降雨後期合流污水,除一部分與分流污水一起經污水預處理構築物進入污水處理構築物外,另一部分可考慮通過雨污溢構築物進入雨污溢流沉定池後排入附近水體。為了對進入污水處理構築物的合流污水高峰流量、水質波動進行緩沖調節,污水處理構築物前端可設緩沖調節池,以均衡水質、儲存水量。
(2)具有可靠的BOD、COD、SS去除功能及氮磷去除功能,保證最終出水水質穩定。通常情況下,城市污水中難降解有機物較少,BOD、COD去除比較容易實現,而氮磷去除則較復雜。我國現行的污水排放標准,對污水處理廠出水氮磷指標有嚴格的要求,故城市污水處理都必須達到氮磷的有效去除。在現行城市污水脫氮除磷工藝中,A2/0採用較為廣泛。針對A2/0工藝存在的問題,目前出現了許多改進工藝,每種工藝又都存在各自的特點和局限。由於合流污水引起的水質、水量波動較大,對污水廠各處理單元產生沖擊,為了適應受納水體的要求,為了使BOD、COD等指標進一步降
物業管理
環境保護
門窗型材
建築節能
燃氣管網
城市規劃
水處理
污水處理
房屋拆遷
建築工程
低,進一步去除污水中的細菌及氮、磷等植物性營養物質,在污水廠與受納水體之間可設氧化塘。
(3)具有靈活多變的運行方式,可根據收集的污水量、進水水質以及季節變化調整運行方式。常規A2/0工藝,很難做到靈活方便地調整運行方式。但A2/0工藝從構成原理上講,是在曝氣段前加厭氧段和缺氧段。這一原理用於氧化溝技術中,便可形成各種適應不同水質、水量、季節變化的運行方式。污水廠可根據實際情況設兩個以上的氧化溝,每個溝設一定數量的水力推進器,池底均勻分布微孔爆氣器。通過調整氧化溝污水進水管閥門、曝氣器的開及關的區域、內迴流比大小、污泥迴流比大小及水力推進器運行個數,便可形成串聯、並聯等若干種運行方式,每種運行方式具有各自區域大小不同的厭氧段、缺氮段、曝氣段。當旱季污水量小,則採用串聯運行方式;雨季污水量大,則採用並聯運行方式。夏季溫度高,硝化反應速度快,則採用具有較小曝氣區域、較小硝化段的運行方式,相應反硝化區域增加、功能加強;冬季情況則正好相反。如進水碳源濃度較低,則採取串聯的、使後續反硝化段的碳源能得到補充的運行方式。
3 工藝流程選擇及特點說明
根據污水合流制與分流制並存的特點,及處理後污水排放水體的要求,採用工藝流程見圖1。
來自新城區的分流污水,經格柵處理後進入後續污水處理構築物;來自老城區的合流污水,平時直接進入污水處理系統。降雨時,前期的較臟、水量較小的合流污水,與分流污水一起經格柵後進入後續污水處理構築物;降雨後期的合流污水水量較大,主要含泥砂,一部分經雨污溢流構築物,在沉澱池作短暫停留,去除部分泥砂後,直接排放水體,另一部分則與分流污水一起經格柵後進入後續處理構築物。
格柵用以去除污水中的大塊懸浮物、漂浮物等污物,以消除大塊污物對後續處理系統的不良影響。曝氣沉砂池用以去除較大砂粒及其他無機污染物顆粒,以提高
污泥活性有機組分含量、減輕對管道設備的磨損、減輕後續沉澱池負荷、改善系統運行條件。初沉池主要用以去除SS,在初沉池中,根據進水水質情況,可適時外加碳源和氨氮,以保證有足夠量和適當比例的C、N、P來源,為後續生化反應正常運行創造條件。緩沖池主要作用是在合流污水高峰流量時均衡水質、儲存水量。
氧化溝是一種簡易、高效、經濟的城市污水處理工藝,近幾十年發展迅速。在流態上,它既是完全混合式,又具有推流式特徵。由於溝渠溶解氧濃度的遞減變化規律,通過適當安排進水口、出水口、迴流污泥入口位置,氧化溝可形成一個倒置A2/0工藝,見圖2、圖3:
根據硝化、反硝化,生物除磷及好氧活性污泥微生物的代謝特點,在缺氧段,主要功能是脫氮,迴流污泥中反硝化菌以原水中有機物為碳源,以來自好氧段的硝化液中的硝酸鹽為電子受體,將硝態氮(NO-3-N)還原為氣態氮(N2)。在厭氧段,主要功能是釋磷,迴流污泥中聚磷菌分解釋放體內聚磷酸鹽,同時攝入污水中的有機物,以PHB及糖原等形式儲存於細胞內。對於缺氧段與厭氧段的過渡過區域,既非嚴格的厭氧狀態,而溶解氧濃度又低於缺氧段,脫氮與釋磷過程都將存在,但都不易取得競爭優勢。在好氧段,功能有三:一、好氧活性污泥中微生物,使污水中有機物得到降解、去除,好氧微生物本身得以增殖,活性污泥得以增長;二、在亞硝化菌和硝化菌作用下,將污水中氨氮(NH+4-N)氧化成硝態氮(主要為NO-3-N);三、聚磷菌體內PHB氧化產生大量能量,一部分用於從污水中過量吸收磷酸鹽,並以聚磷的形式貯存於體內,一部分供給細菌合成和維持生命。與A2/0工藝相比,前置缺氧段不僅可優先從污水中獲得碳源,強化反硝化過程。同時,因先經歷反硝化過程,消除了硝酸鹽的大量存在對聚磷菌厭氧釋磷過程的不利影響。
通過對曝氣器的控制,溝渠內可形成區域大小適宜的缺氧段、厭氧段、曝氣段,在去除BOD的同時進行生物脫氮除磷,能取得較好的氮磷去除效果。特別是能夠
通過對曝氣區域大小和進出水管閥門的控制,形成靈活多變的運行方式,適應污水水量、水質、季節性的變化,具有廣闊的發展應用前景。
當水質波動幅度不大時,通過前述的預處理、生物處理後的污水,一般能排放水體,但由於各種不確定偶發因素的影響,這樣考慮處理水排放存在不小風險。當水質、水量大幅波動時,這種情況更為突出。由於水污染、生態破壞的嚴峻形勢,城市污水處理廠必須從技術上嚴格把關,從工藝上確保處理水安全排放水體。若在生物處理工藝之後設置熟化塘,不僅可在污水處理廠和受納水體之間起緩沖作用,還能通過藻類-動物性浮游生物-魚類等食物鏈和生態系統,使BOD、COD指標、細菌及氮磷等植物性營養物濃度進一步降低,具有良好穩定的處理效果。特別是在熟化塘系統中,通過塘內生態系中多條食物鏈的物質遷移、轉化和能量逐級傳遞、轉化,在去除污染的同時,以水產資源形式達到物質、能量的回收,將污水處理與利用相結合,實現污水資源化。
4 結語
(1)合流制污水水質、水量波動幅度大,技術工藝必須滿足緩和沖擊負荷的要求,設置緩沖池均衡水質、儲存水量比較適宜。
(2)通過多個氧化溝構成若干個串、並聯運行方式,在適應進水水質、水量、季節性變化方面能夠發揮重要作用。
(3)通過安排適當的進出水口位置、迴流污泥入口位置,氧化溝可形式一個倒置A2/0工藝,在去除BOD的同時,能取得較好的氮磷去除效果。
(4)熟化塘的應用,為處理水安全排放水體,能夠提供可靠的技術保證。熟化塘投資省、運行費用低、管理維護方面、污水處理與利用相結合,在防治水污染、保護水環境及生態環境綜合治理方面具有明顯優勢。如果美化熟化塘表觀,設置噴泉等設施,形成供人們休閑、游樂的人工景點,協調城市建設中土地資源的合理配置,那麼熟化塘佔地面積較大這一不足,就不會成為突出的問題。
參考文獻:
[1] 楊根權.舊合流制排水管渠系統的改造. 給水排水,2001,27(5):8~11.
[2] 鄭興爛等.《污水除磷脫氮技術》. 北京:中國建築工業出版社.
[3] 鄭榮森等.四川城市污水處理示範工程- 一體化氧化溝. 給水排水,2001,27(4):1~4.
[4] 張波等.生物脫氮除磷工藝厭氧/缺氧環境倒置效應. 中國給水排水,1997,12(2):29~31.
[5] 王寶貞等. 生態塘-簡易高效的污水處理技術設計應用. 城市環境與城市生態. 1998,11(2):1~5.
⑶ 污水處理設備網站怎麼樣開展SEO營銷尋求一套推廣優化方案
學seo是可以提高關抄鍵詞排名的,學習要好長時間呢,你不如直接買個旺道系統,就可以開始做優化了,
且同時可以學到的是實戰經驗(不是理論哦),專業做營銷策劃和網路排名的,我買過排名效果明顯。
旺道就是做營銷策劃和網路排名的,我買過效果明顯。
⑷ 污水處理曝氣池過程優化問題
好氧處理中曝氣量並不是恆定不變的。它需要根據污泥性狀、進水水質濃度版、排泥時間(污泥齡)以及工權藝的選擇來綜合確定。
曝氣池的優化主要從兩個方面去調整,一個就是曝氣量及曝氣時間,第二個就是控制排泥次數及排泥量。
⑸ 如何優化污水處理廠運營管理
黨的十七屆四中抄全會明確提襲出把全面推進生態文明建設作為加強和改進新形勢下黨的建設若乾重大問題之一。在這個要求下,優化污水處理廠運營管理就顯得尤為重要。文章首先分析了污水處理廠運營管理存在的一些問題,其次,從城市污水處理廠運營管理需要市場化;要加大監管力度,強化內部管理,在運行質量上嚴把關;要強化工作人員的專業素質,確保治污設施平穩運行;要精心組織,強化技術管理,確保安全生產等方面,就的問題進行了深入的探討。
⑹ 數學建模題求解——污水處理曝氣池過程優化問題
關於水污染的話題不斷被提起,2014 年 9 月有媒體曝光內蒙古和寧夏交界 處的騰格里沙漠存在企業非法排污現象,已對周圍環境造成污染,由此引起大家 對水污染嚴重程度的廣泛關注和民眾環保意識的覺醒。 污水處理被廣泛應用於建築、農業、交通、能源、石化、環保、城市景觀、 醫療、餐飲等各個領域。活性污泥法是污水處理的常用方法,據報告 95%以上的 城市污水和 35%以上的工業廢水採用活性污泥法處理。曝氣池是所有活性污泥法 的心臟,其作用是攪拌混合液使泥、水充分接觸和向微生物供氧。一種攪拌方式 是使同時進曝氣池的泥和水充分混合並一直保持到流出池子,而不和已在池中的 混合液相混以免發生短路現象。曝氣池採用長條形就是以保證同時入池的泥和水 都同時出池,使同時入池的廢水有相同的曝氣時間。 化學需氧量(COD,Chemical oxygen demand)是污水處理最重要的處理指 標,用來表明在出水或純凈水中還有多少殘留的有機污染。某污水處理廠採用活 性污泥法,記錄了曝氣池工段2014年上半年的主要參數值:進水流量、入口COD、 溶解氧、鼓風機風管壓力、活性污泥濃度、鼓風機出口閥開度、鼓風機入口閥開 度、氧化還原點位、出口 COD 等;典型的 COD 等參數每半小時為一個歷史記 錄周期;流量、開度等其他參數每 10 分鍾一個歷史記錄周期。具體數據參見附 件 1 和附件 2。 問題一:延遲估計問題。分析原有數據中各個參數對出口 COD 的時間延遲 關系,並進行結果輸出。 問題二:參照前一個問題的結果,建立各個參數對 COD 的非線性預測模型。 問題三:參照前兩個問題的結果,為了使 COD 的值降低到 35,應該怎麼調 節各個參數。其中如果 COD 值已經達到 35,則不需要調整其他參數。