Ⅰ 污水處理廠總氮高怎麼辦
總氮(TN)包括硝態氮、、氨氮(NH3-N)、有機氮。
氨氮超標去除:
一般通過以下幾種辦法去除。
(1)折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。
(2)利用微生物硝化和反硝化去除污水(廢水)中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。
2、有機氮過高去除
常用如下方法:
生物法,氮化合物在生物作用下可實現向氮氣的轉化
化學法,通過氧化使氮化合物直接從有機氮、氨氮直接轉化為氮氣
3、硝態氮超標去除
硝態氮主要是指硝酸根離子,目前有採用離子交換、膜滲透、吸附以及生物脫氮的方法。其中離子交換法、膜滲透法以及吸附法都只是硝酸根離子的濃縮與轉移,無法真正去除總氮,濃縮以後的硝酸根廢液需要進一步處理。
在生物脫氮中,主要是指硝酸根離子通過反硝化細菌降解轉化為氮氣的過程。
Ⅱ 污水處理總氮超標怎麼辦
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污染和自凈狀況。地表水中氮、磷物質超標時,微生物大量繁殖,浮游生物生長旺盛,出現富營養化狀態。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
第一、折點加氯氧化法,通過加入次氯酸鈉或者漂白粉進行氧化,將氨氮轉化為氮氣釋放,目前市場上常見的氨氮去除劑基本以漂白粉為主。其反應方程式如下所示:
2NH2Cl + HClO →N2↑+3H++3Cl- +H2O
第二、利用微生物硝化和反硝化去除廢水中的氨氮,其原理是硝化菌和反硝化菌的聯合作用,將水中氨氮轉化為氮氣以達到脫氮目的。首先通過硝化細菌和亞硝化細菌將氨氮轉化為亞硝酸鹽和硝酸鹽,然後再進行反硝化,將硝酸鹽轉化為氮氣。其反應原理結構式如下所示:
2NH3+3O2→HNO2+H2O+能量(亞硝化作用)
2HNO2+O2→ 2HNO3+能量(硝化作用)
HNO3+CH3OH→N2 + CO2+H2O+能量(反硝化作用)
註:總氮,簡稱為TN,水中的總氮含量是衡量水質的重要指標之一。總氮的定義是水中各種形態無機和有機氮的總量。包括NO3-、NO2-和NH4+等無機氮和蛋白質、氨基酸和有機胺等有機氮,以每升水含氮毫克數計算。常被用來表示水體受營養物質污染的程度。
水中的總氮含量是衡量水質的重要指標之一。其測定有助於評價水體被污
Ⅲ 如何處理總氮超標廢水
現有的大多數總氮超標廢水處理方式為生化處理,即通過微生物的厭氧硝化、耗氧反硝化作用進行總氮去除。
Ⅳ 污水總氮降不下怎麼辦
如果污水中的總氮含量降不下來,你可以考慮以下幾種方法:
改進污水處理工藝:審查並改進現有的污水處理工藝,可能需要增加氮素去除單元或採用更高級的氮素去除工藝,如生物脫氮、硝化-反硝化等。
調整操作參數:優化操作參數,如調整曝氣量、進水流量、混合液迴流比例等,以提高氮素的去除效率。
增加曝氣時間:增加曝氣時間可以促進氮素的氨氧化和硝化作用,從而提高氮素去除效率。
添加外部碳源:如果廢水中缺乏足夠的有機碳供氮素去除微生物利用,可以考慮添加外部碳源,如甲醇、乙醇等,以促進脫氮作用。
考慮後處理措施:如果以上方法無法滿足排放標准,可以考慮添加後處理單元,如活性炭吸附、反滲透、電化學處理等,以進一步去除氮素。
定期維護和清潔:確保污水處理設施的正常運行和維護,定期清潔關鍵設備,保證其正常操作和效率。
請注意,在實施任何改進措施之前,建議先進行詳細的調研和分析,以確定導致總氮降解不理想的具體原因,並制定相應的解決方案。同時,遵守當地的環境法規和標准,確保污水排放符合相關要求。
如果水天藍環保的回答對您有所幫助,希望能夠獲得您的採納!感謝支持!
Ⅳ 污水廠碳源不足,總氮(TN)不達標怎麼辦
如果污水廠碳源不足,導致總氮(TN)無法達到排放標准,可以考慮以下幾種方法來解決問題:
添加外部碳源:可以向污水處理系統中添加外部碳源,如甲醇、乙醇、乙酸鈉等有機物,以提供額外的碳源供微生物利用。這些碳源可以促進硝化和反硝化過程,有助於將氨氮轉化為氮氣,從而降低總氮含量。添加外部碳源需要仔細控制投加量,避免過量添加導致其他問題。
改變操作條件:可以調整污水處理系統的操作條件,以優化氮的去除效率。例如,增加曝氣量和提高混合液溶氧濃度,有利於氨氮通過硝化過程轉化為硝態氮。此外,調整曝氣時間、溫度和pH值等參數,也可以影響氮的去除效果。
進行工藝改進:考慮對污水處理工藝進行改進,引入更適合氮素去除的工藝單元。常見的改進方法包括增加硝化池、反硝化池或加強生物脫氮工藝察耐悉等。這些改進可以提高系統對氮的處理能力,使總氮達到排放標准。
優化污水源頭控制:通過加強污水源頭的控制,減少進入污水廠的總氮負荷。可以通過改善產業和生活污水的前處理措施,減少氮源的輸入量。例如,加強工業廢水的預處理,推行低氮排放標准,提高生活污水的分流和預處理效果等。
考慮外部處理:如果以上措施仍然無法解決總氮超標的問題,可以考慮將污水引導到其他污水處理廠或採用其他附加處理技術,如深度氮磷去除工藝、化學沉澱、吸附劑處理等,以進一步降低總氮含量。
綜合考慮實際情況,可以採取單一或綜合應用上述方畝跡法,以確保污水廠的總氮排放達到標准要求。在實施過程中,需要進行嚴密的監測和控制,確保處理效果和環境安全。同時,根據具體情況,可以咨詢專業的環境工程師或顧問,制定適合的解決方案。
如果水天藍環保的回答對您有所幫助,希望能夠獲得您的採納!感敗乎謝支持!
Ⅵ 奼℃按澶勭悊濂芥哀奼犳繪愛楂樻庝箞澶勭悊鐨勶紵
褰撴薄姘村勭悊濂芥哀奼犱腑鐨勬繪愛鍚閲忚緝楂樻椂錛屽彲閲囧彇浠ヤ笅鍑犵嶅勭悊鏂規硶錛
1銆佸炲姞澶栭儴紕蟲簮
濡傛灉濂芥哀奼犱腑鎬繪愛鍚閲忚緝楂橈紝鍙鑳芥槸鐢變簬鏈夋満鐗╀緵搴斾笉瓚沖艱嚧鐨勩傚湪榪欑嶆儏鍐典笅錛屽彲浠ュ炲姞澶栭儴紕蟲簮鐨勬坊鍔狅紝濡傞唻閰擱挔銆佺敳閱囩瓑錛屼互鎻愪緵鏇村氱殑鏈夋満鐗╃粰濂芥哀奼犱腑鐨勬皚姘у寲鑿屽拰紜濆寲鑿岋紝淇冭繘姘ㄦ哀鍖栧拰紜濆寲鍙嶅簲錛屼粠鑰岄檷浣庢繪愛鍚閲忋
2銆佸炲姞鍋囧熀璐
鍋囧熀璐ㄦ槸鎸囨坊鍔犱竴浜涚壒瀹氱殑鏈夋満鐗╂垨鍖栧︾墿璐錛屼互淇冭繘姘鐨勮漿鍖栧拰鍘婚櫎銆傛瘮濡傦紝鍙浠ュ悜濂芥哀奼犱腑娣誨姞紜濋吀鐩愭垨浜氱濋吀鐩愶紝鍒╃敤紜濆寲鍙嶅簲鍜屽弽紜濆寲鍙嶅簲鏉ラ檷浣庢繪愛鍚閲忋傛ゅ栵紝涔熷彲浠ユ坊鍔犱竴浜涚壒瀹氱殑搴熷純鐗╂垨搴熸按錛屽備箼閱囥佷鉤娓呯瓑錛屼互鎻愪緵棰濆栫殑鍩鴻川錛屽埡嬋奼℃按澶勭悊緋葷粺涓鐨勫井鐢熺墿鑿岀兢錛屽府鍔╁幓闄ゆ繪愛銆
3銆佹敼鍙樻搷浣滄潯浠
濂芥哀奼犱腑鎬繪愛榪囬珮鍙鑳芥槸鐢變簬鐜澧冩潯浠剁殑鏀瑰彉鎴栨搷浣滀笉褰撳紩璧風殑銆傚洜姝わ紝鍙浠ヨ皟鏁存搷浣滄潯浠訛紝渚嬪傝皟鏁村ソ姘ф睜涓鐨勬俯搴︺乸H鍊箋佹憾瑙f哀鍚閲忕瓑錛屼紭鍖栧ソ姘ф潯浠訛紝淇冭繘姘ㄦ哀鍖栧拰紜濆寲鍙嶅簲鐨勮繘琛岋紝騫舵敼鍠勬繪愛鐨勫幓闄ゆ晥鏋溿
4銆佸紩鍏ュ帉姘у弽紜濆寲
鍦ㄥソ姘ф睜鍚庡紩鍏ュ帉姘у弽紜濆寲榪囩▼錛屽皢濂芥哀奼犲嚭姘磋漿鍏ュ帉姘х幆澧冧腑錛屽埄鐢ㄥ帉姘у弽紜濆寲鑿屽皢紜濋吀鐩愬拰浜氱濋吀鐩愯繕鍘熶負姘姘旈噴鏀懼埌澶ф皵涓錛岃繘涓姝ラ檷浣庢繪愛鍚閲忋
5銆佸炲姞奼℃償榫
澧炲姞濂芥哀奼犱腑奼℃償鐨勫仠鐣欐椂闂達紝澧炲姞寰鐢熺墿鐢熼暱鐨勬椂闂達紝鏈夊埄浜庡井鐢熺墿鐨勭箒孌栧拰闄嶈В奼℃煋鐗╋紝浠庤屾彁楂樻繪愛鐨勫幓闄ょ巼銆傚彲浠ラ氳繃澧炲姞濂芥哀奼犵殑瀹圭Н銆佸噺灝戞薄娉ョ殑鍥炴祦鐜囩瓑鏂瑰紡瀹炵幇杈冮暱鐨勬薄娉ラ緞銆
鎬諱箣錛屽湪澶勭悊濂芥哀奼犳繪愛楂樼殑闂棰樻椂錛岄渶瑕佺患鍚堣冭檻紕蟲簮渚涘簲銆佸井鐢熺墿緹よ惤銆佺幆澧冩潯浠剁瓑澶氫釜鍥犵礌錛屽苟閰屾儏閲囧彇涓婅堪鎺鏂戒腑鐨勪竴縐嶆垨澶氱嶈繘琛岃皟鏁達紝浠ヨ揪鍒版湁鏁堝幓闄ゆ繪愛鐨勭洰鐨勩傚悓鏃訛紝鏍規嵁瀹為檯鎯呭喌榪涜屽疄楠屽拰鐩戞祴錛屼笉鏂浼樺寲鎿嶄綔鏂規堬紝紜淇濇薄姘村勭悊緋葷粺鐨勭ǔ瀹氳繍琛屽拰楂樻晥澶勭悊銆
Ⅶ 污水處理廠總氮高怎麼辦
我們在給某污水處理廠配套風機時,常遇到污水廠的總氮指標經過處理設施處理後的濃度總是達不到預期的處理效率的情況,現將我們掌握的總氮濃度偏高不下的原因歸納總結如下,希望能幫到您:
(1)污泥負荷與污泥齡。由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。
(2)內、外迴流比。生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。
(3)反硝化速率。反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3- -N/gMLVSSd。
(4)缺氧區溶解氧。對反硝化來說,希望DO盡量低,是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。
(5)BOD5/TKN。因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。
(6)pH。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。
(7)溫度。反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。