導航:首頁 > 廢水知識 > 火電廠水處理電導表選型

火電廠水處理電導表選型

發布時間:2023-05-22 02:39:06

① 火力發電廠中給水加氧的原理

給水加氧處理(OT)是在高純度給水中加入適量的氧化劑(O2或H2O2)以達到減緩熱力設備腐蝕的目的,它與給水除氧的 AVT還原性水工況截然相反,是一種氧化性水工況。加氧處理是20世紀70年代德國開發出來的一種新型的爐水處理方式,不久便用於前蘇聯、義大利、丹麥等歐洲國家,近 20a來,澳大利亞、日本、美國等國家也相繼應用了這一技術。我國於20世紀80年代末首先在華東某電廠一台 300MW直流鍋爐上使用。OT 處理推廣應用較快,主要是由於該種處理方式有明顯的效益。採用OT處理後,鍋內沉積物量減少、腐蝕損壞降低、直流爐爐管和加熱器壓降快速升高問題得到了解決、鍋爐清洗頻率降低、凝結水凈化裝置運行周期延長、給水管道FAC大有改善等。因此,目前德國、日本、前蘇聯和中國等許多國家將OT 處理方式列入國家標准,如表1所示。
OT處理方式本身也在不斷發展。最初是中性處理(NWT),它是將O2加入中性的高純水中,由於NWT 處理對水的pH值不起任何緩沖性,少量酸性物就會引起 pH 值下降,甚至有導致酸性腐蝕和氫脆的可能,加之人們擔心碳鋼在低溫區的腐蝕速度高和銅合金的腐蝕等問題,研究開發了給水添加少量氨,將給水pH值由6.5-7.0提至8.0-8.5,同時加氧處理的方法,稱為聯合水處理(CWT)。從應用范圍來看,最初用於全鐵部件的直流爐,後又擴大到凝汽器和低壓加熱器是銅合金的直流爐,目前已用於汽包鍋爐。

1 加氧處理原理及主要控制指標
從熱力學觀點來看,鍋爐給水採用除氧的AVT處理時,碳鋼的腐蝕電位在-0.30V左右,給水pH在8.8-9.5之間,從Fe-H20 電位pH圖可以看到,處於鈍化區,鈍化膜是Fe3O4。給水加氧後,碳鋼的腐蝕電位會升高數百毫伏達到 0.15-0.30V,如圖 1所示,碳鋼表面原Fe3O4 膜中部分Fe 2+會進一步氧化生成 Fe2O3,其反應:
2Fe 2+ +1/2O2+2H2O——Fe2O3+4H+
因此,在有氧純水中,碳鋼表面形成雙層氧化膜,內層是磁性氧化鐵(Fe3O4)膜,外層是Fe2O3膜,這樣的雙層氧化膜能更有效阻止碳鋼的腐蝕。大量試驗證明:在中性純水(電導率〈0.1μS/cm)中,加氧使碳鋼的腐蝕速度降低 2-3個數量級。
在有氧的高純水中,影響碳鋼和銅合金腐蝕的主要因素有pH 值、氧濃度和電導率等。
1.1 給水pH 值
碳鋼在無氧除鹽水中的腐蝕速度與pH 值有關,隨著 pH 值的升高,碳鋼的腐蝕速度逐步降低;而在有氧的除鹽水中,碳鋼的腐蝕速度在 pH 值為7 時降得很低,並且不再隨著pH 值的升高有所改變,如圖2 所示。
從熱力學觀點來看,在無氧或有氧的高純水中,銅均處於鈍化狀態,不過在無氧的高純水中,銅表面形成淺黃色的氧化亞銅(Cu2O),在有氧的高純水中,形成黑色的氧化銅(CuO),後者在純水中的溶解度大於前者,且二者均受高純水pH 值的影響,pH值在 8.5-9.0 范圍內,銅合金的腐蝕速度可達很低(通常加氨量 100μg/l左右)。當 pH>10 時,由於生成銅氨絡合物,銅合金的腐蝕速度顯著增加。國內某電廠直流爐採用CWT處理結果表明:當給水pH 值控制在8.7±0.1范圍內,低壓加熱器出口水中銅含量均低於AVT處理時的5.0 μg/l水平,爐前給水的銅含量也可達到AVT處理時的 2.6μg/l 水平,而給水pH值降至 8.3 時,給水中銅含量將比AVT處理時增加60%。國內另一電廠實施 CWT處理時,pH值控制在8.7-8.9,低壓加熱器出口水中銅含量接近AVT處理時的 5.0μg/l 水平。
1.2 氧濃度
保持純水中的氧濃度是為了保證碳鋼的腐蝕電位高於其鈍化電位。日本等國在這方面做了一些有益的工作,圖 3為日本砂川電廠 4號機組採用CWT處理時,溶解氧量與腐蝕電位的關系,當水中溶解氧在 20-50 μg/l時,電位可以進入Fe2O3區域,加氧最低濃度為 20μg/l,但是世界上絕大多數採用CWT處理的國家推薦加氧最低濃度為50μg/l,此外,試驗還發現維持 Fe2O3 的電位所需氧濃度比生成 Fe2O3的電位所需氧濃度低得多。
圖4 為日本砂川電廠 4 號機組採用CWT處理時,在開、停爐期間腐蝕電位的變化情況。腐蝕電位在0-100mV 之間,變化最大值為100mV,電位仍然處於電位-pH 圖中 Fe2O3 區域,說明開、停機組期間也可採用 CWT處理。
在中性純水中,加氧會使銅合金的腐蝕速度急劇增大,如圖5 所示,因此,在低壓加熱器為銅合金材料的機組上採用 CWT 處理時,必須控制給水中氧濃度在合適的濃度。據原蘇聯介紹,通過低壓加熱器的給水氧濃度控制在70-120μg/l范圍,銅合金腐蝕速度最低;國內現場實驗結果表明:對於銅鐵部件的熱力系統,給水中氧濃度控制在100±20 μg/l 時,低壓加熱器系統出水和爐前給水中銅含量不會高於AVT處理時的值。可見兩者的實驗結果完全一致。
1.3 給水電導率
在加氧水中,電導率與碳鋼的腐蝕速度近似於線性關系,如圖 6 所示。隨著給水的電導率增加,碳鋼的腐蝕速度會顯著增加。實際上,水的電導率是水中雜質含量的綜合反映,電導率高,雜質含量就多,水中的雜質特別是氯離子妨礙正常的磁性氧化鐵保護膜的生成,反應如下:
2Fe 2+ +H2O +1/2O2 +8Cl- ——2[FeCl4]- +2OH-
研 究 結 果 表 明 : 當 水 的 陽 離 子 電 導 率 為0.1μS/cm 時,隨著氧濃度的增加(超過 50μg/l),碳鋼的腐蝕速度會顯著下降;而當陽離子電導達到0.3μS/cm 時,腐蝕速度開始增大,這就是為什麼世界各國將陽離子電導率=0.3 做為門限值,當給水陽離子電導率大於此值時,應停止加氧處理。

2 汽包鍋爐加氧處理
目前,加氧處理已開始在汽包爐上使用,表2是美國和我國汽包爐加氧處理給水和爐水控制指標。可以看出,與直流爐加氧處理相比,汽包鍋爐加氧處理有以下不同。
(1) 汽包鍋爐採用 OT 處理比直流爐要高些,前者要求給水陽離子電導率<0.1μS/cm,而後者只要求陽離子電導率<0.2μS/cm。
(2) 汽包鍋爐有爐水濃縮問題,因此,嚴格控制爐水水質是實施 OT處理的關鍵之一。美國規定爐水陽離子電導率<3μS/cm,我國空冷機組規定爐水陽離子電導率<1μS/cm,兩國標准中對爐水氯離子都有規定,且相同,即Cl-<100μg/l。
(3) 汽包鍋爐加氧處理還對下降管和底部水冷壁氧濃度有要求,規定必須小於 5μg/l,否則爐水中雜質發生濃縮時可能產生點蝕。

3 OT處理優點
長期現場應用證明OT處理具有以下優點:
3.1 汽水系統中 Fe濃度顯著降低
日本直流鍋爐採用 CWT處理後,熱力系統各部位的鐵濃度大大降低,僅為 AVT處理時的1/2-1/4。國內某電廠 1 台 500MW超臨界直流鍋爐採用CWT處理後,給水鐵離子平均值由過去AVT處理的5.6μg/l 下降至0.3μg/l,下降80%,凝結水和高加疏水的鐵離子濃度也有顯著下降,其濃度僅為 AVT 處理時間的 10-20%。
3.2 鍋爐的結垢速度明顯降低
日本現場使用發現,CWT處理時,鍋爐各部位的結垢速度僅為 AVT 處理時的 1/2-1/3。國內某電廠 1 台 300MW亞臨界直流鍋爐採用CWT 處理僅 1a,檢查發現:CWT處理期間鍋爐結垢速率為39.99g/(m2 a),與AVT 處理相比,結垢速度降低了54.6%。國內另一電廠直流鍋爐採用 CWT處理後,省煤器和水冷壁垢的沉積速度比 AVT處理時分別下降69%和87%。
3.3 鍋爐和給水加熱器的壓降顯著降低
國內某電廠 1台 500MW直流鍋爐,AVT處理運行 2 年多,鍋爐壓差從 4.4MPa上升至7.6MPa;而在CWT處理運行半年後,壓差已由原來的7.6MPa下降至 6.1MPa,給水泵轉速隨鍋爐壓差下降而減慢,滿負荷時汽泵轉速從4425r/min 下降到 4222r/min,耗汽量相應減少,機組效率提高。
日本某電廠運行經驗也證明:與AVT處理相比,CWT處理的鍋爐壓降和給水加熱器壓降分別減少 15kg/cm2 和 5kg/cm2。
3.4 凝結水除鹽設備運行周期延長
採用CWT處理後,凝結水除鹽設備再生頻率只有AVT 處理時的 1/5-1/10,從而減少了再生劑用量,降低了運行費用,也有利於環境保護。

② 水處理電導濾多少正常

你說的是反滲透設備的電導率嗎?
這個是根據你的水質要求,如果要做成純凈水的專話,屬反滲透水處理設備是雙級反滲透,國標的電導率值是在10個以內!
如果你是做其他使用的話,比如軟化水處理設備,超濾水處理設備,超純水處理設備的話,那就不同的工藝,國家有不同的要求標准了!

③ 煉鋼廠水處理結果中電導率影響什麼

首先你要說清楚是煉鋼的哪個工藝系統,電導率是以數字表示的溶液傳導電流回的能力,也可以通俗理解為答導電能力,電導率高說明溶液中導電離子含量高了,容易產生結垢和腐蝕(也要參考其他水質檢測結果)。濃縮倍數高要注意排水,(個別工藝如轉爐除塵水電導可以適當在高位,結晶水等要控制在低位)單電導率在不同工藝條件下說明不了會影響什麼,要結合很多其他條件才能進行判斷,希望能幫到你。一般的工業水電導控制在3000以下就好了。

④ 現代大型火力發電廠的主要技術參數(指標)及典型值是什麼

大型火力發電廠的主要技術參數(指標)及典型值:現代大型火力發電廠的主要技術參數是裝機容量(MW),我國典型值如下:

我國目前最大的火電廠:山西大同第二發電廠,裝機容量372萬KW(即3720MW),6台20萬KW(200MW)機組,2台60萬KW(600MW)機組,2台66萬KW(660MW)機組。

主要技術經濟指標:發電煤耗bf。

發電煤耗是指統計期內每發一千瓦時電所消耗的標煤量。發電煤耗是反映火電廠發電設備效率和經濟效益的一項綜合性技術經濟指標。

計算公式為:bf = Bb /Wf×106。


(4)火電廠水處理電導表選型擴展閱讀:

熱電是指發電的同時用產生的熱能取暖,為提高效率節省能源,一般是發電與供熱聯合的方式。即是在汽輪機某一級抽出一部分汽來供熱,其餘的仍沖轉汽輪機

帶動發電機發電,兩者可調整,可供熱多發電少,也可供熱少發電多。當前中國受能源政策影響,正在大力發展核電,水電,這些也可供熱,有的國家為了節約能源,有風力與地熱發電,而中國很少。

也就是說火力發電廠主要是用來發電的。熱電廠主要是提供熱能的, 也可是火力發電廠的副產品 。

⑤ 火電廠中比電導表的作用

起到到對水樣的監督作用。火力發電廠簡稱火電廠,是利用可燃物(例如煤)作為燃料生產電能伍洞的工廠。火電廠中腔察枯比電導表的作用是起到到對水樣的監督作用。比電導又稱電導率,指在特定條件下,規定尺寸地單位立方體的水沒枯溶液相對面之間測得的電阻倒數。

⑥ 熱電廠水處理節能減排措施

化學除鹽制水系統一般採用陽、陰離子進行除鹽,失效後用鹽酸液鹼進行再生。再生過程所產生廢酸液、廢鹼液一般是中和處理達到環保要求PH6-9這個范圍向外排放。
廢液呈酸性加鹼,呈鹼性加酸的中和方式。這樣即浪費優質資源,又增加工人勞動強度,即不經濟,又給周圍環境造成污染。
酸鹼廢液不採取合理利用,對環境造成污染,對企業增加費用開支。酸鹼廢液合理利用,能夠發揮其自身應有作用,減少優質資源消耗,減少水資源費、污染費開支。
酸鹼廢液合理利用使得企業排入周圍環境的污染物總量大大減少,有明顯的環境效益,同時酸鹼廢液合理利用的實施,符合國家提倡節約用水,廢水資源化的大方向,
能夠提升企業的社會形象,有很好的社會效益。
熱電廠除鹽制水系統於2002年6月投入運行,制水工藝陽床+脫碳+陰床,到2003年12月周期制水量由最初陽床500-600噸降至350-450噸。陰床350-400噸降至180-220噸,
陽床、陰床周期產水量明顯減少,再生極為頻繁,酸鹼耗量明顯增加,酸鹼廢水排量大增,經濟環保效益越來越差。為了切實解決上述問題,經過反復論證和大量試驗,
從2004年1月6日開始在1#陽床經行試驗性改進,然後又對1#陰床進行改進。陽、陰床經過無數次改進,直到2008年4月運行至今,才算取得很好的制除鹽水經濟環保效果。
某熱電廠水質分析報告,年補充除鹽水14萬噸:
項目 Ca2+ Mg2+ Fe+ Na+ K+ Ci- F- SO4^2- HCO2- NO3- 電導率us/cm

單位 117.0 14.41 0.0242 20.7 0.445 47.3 0.18 50.5 283.65 60 784(mg/L)

化學除鹽制水系統採用無頂壓逆流再生床(Φ1800、H5960)新改進工藝已安全、經濟、環保穩定運行,從2008年4月18日運行至今下面是改進前後數據對比
改前 784us/cm 一、改後 784us/cm 二、改後 784us/cm
水質指標
電導率us/cm <10 < 10 < 10
二氧化硅 ≤100 ≤100 ≤100
PH 7.5-9 7.5-9 7.5-9
消耗指標
鹽酸30%kg/t 3.68 1.54 0.4
氫氧化鈉30%kg/t 4.32 1.46 0.5
水耗 26% 3% 0.75%
周期制水量(t/h) 陽床 400 1400 5800
陰床 220 1200 5400
最大制水量 t/h 53 53 53
廢水排量(t/h) 陽床 350(次) 100(次) 25(次)
陰床 637(次) 117(次) 25(次)
制水成本 元/噸 4.5 1.2 0.8
再生一個床消耗除鹽水(噸)54-75 20-30 20-30
再生一個床排放廢水(噸) 54-75 20-30 20-30
經濟環保社會效益:
一、改後:
酸140000*(3.68-1.54)=299.6(噸)
鹼140000*(4.32-1.86)=344.4(噸)
少用除鹽水(350+637)*54-(100+117)*30
53298 - 6510 =46788
少用酸6788*2.14=100(噸) 少用鹼46788*2.46=115(噸)
總計少用酸399.36噸 鹼459.4噸
二、改後:
節約酸鹼: 酸 140000*(3.68-0.4)=459.2(噸)
鹼 140000*(4.32-0.5)=534.8(噸)
少排廢水: (350+637)*54-(25+25)*30=51798(噸)
少用再生除鹽水51798噸; 少用酸鹼:51798*3.28=169.9(噸)
51798*3.82=197.87(噸)

總計少用酸鹼: 酸:629.1(噸) 鹼:732.67(噸)

由於陽、陰床同時分流合理利用,基本上達到酸鹼廢液零排放。

QQ:562108650

⑦ 火電廠節能水處理方法措施

一、鍋爐補給水處理

傳統的鍋爐補給水預處理通常採用混凝與過濾處理。國內大型火電廠澄清處理設備多為機械加速攪拌澄清池,其優點是:反應速度快、操作控制方便、出力大。近年來,變頻技術不斷地應用到混凝處理中去,進一步提高了預處理出水水質,減少了人工操作。在濾池的發展方面,以粒狀材料為濾料的過濾技術經歷了慢濾池、快濾池、多層濾料濾池等發展階段,在改善預處理水質方面發揮了一定的作用。但由於粒狀材料的局限性,使過濾設備的出水水質、截污能力和過濾速度均受到較大的限制。目前,以纖維材料代替粒狀材料作為濾源的新型過濾設備不斷地出現,纖維過濾材料因尺寸小、表面積大及其材質柔軟的特性,具有很強的界面吸附、截污及水流調節能力。代表性的產品有纖維球過濾器、膠囊擠壓式纖維過濾器、壓力板式纖維過濾器等。

在鍋爐補給水預脫鹽處理技術方面,反滲透技術的發展已成為一個亮點。反滲透最大的特點是不受原水水質變化的影響,反滲透具有很強的除有機物和除硅能力,COD的脫除率可達83%,滿足了大機組對有機物和硅含量的嚴格要求。反滲透由於除去了水中的大部分離子(一般為90%左右),減輕了下一道工序中離子交換系統的除鹽負擔,從而減少酸、鹼廢液排放量,降低了排放廢水的含鹽量,提高了電廠經濟效益和環境效益。

在鍋爐補給水除鹽處理方面,混床仍發揮著不可替代的作用,而混床本身的發展主要體現在兩個方面:環保與節能。填充床電滲析器(電除鹽)CDI(EDI)是將電滲析和離子交換除鹽技術組合在一起的精脫鹽工藝,樹脂的再生是由通過H2O電離的H+和OH-完成,即在直流電場中電離出來的H+和OH-直接充當樹脂的再生劑,不需再消耗酸、鹼葯劑。同時,該裝置對弱電離子,如SO2、CO2的去除能力也較強。

二、鍋爐給水處理

鍋爐給水目前用氨和聯氨的揮發性處理較成熟,但它比較適用於新建的機組,待水質穩定後可轉為中性處理和聯合處理。加氧處理改變了傳統的除氧器、除氧劑處理,創造氧化還原氣氛,在低溫狀態下即可生成保護膜,抑制腐蝕。此法還可以降低給水系統的腐蝕產量,減少葯品用量、延長化學清洗間隔、降低運行成本。氧化性水化學運行方式在歐洲的應用較為普及,國內基本處於研試階段。必須強調的是,氧化性水化學運行方式僅適用於高純度的給水,並應注意系統材質與之的相容性。

三、鍋爐爐水處理

爐內磷酸鹽處理技術已有70餘年的歷史,現在全世界范圍內有65%的汽包鍋爐使用過爐水磷酸鹽處理。由於以前的鍋爐參數較低,水處理工藝落後,爐水中常常出現大量的鈣鎂離子,為防止鍋爐結垢,不得不向鍋爐中加入大量的磷酸鹽以去除爐水中的硬度,這樣,爐水的PH值就非常高,鹼性腐蝕問題顯得特別的突出。在這樣的情況下,協調磷酸鹽處理應運而生,並取得了一定的防腐效果。但隨著鍋爐參數不斷的提高,磷酸鹽的“隱蔽”現象越來越嚴重,由此引起的酸性腐蝕也越來越多。而在另一方面,高參數機組的鍋爐補給水系統已全部採用二級除鹽,凝結水系統設有精處理裝置。這樣,爐水中基本沒有硬度成分,磷酸鹽處理的主要作用也從除硬度轉為調整PH值防腐。因此,近10年來,人們又提出低磷酸鹽處理與平衡磷酸鹽處理。低磷酸鹽處理的下限控制在0.3~0.5mg/L,上限一般不超過2~3mg/L。平衡磷酸鹽處理的基本原理是使爐水磷酸鹽的含量減少到只夠與硬度成分反應所需的最低濃度,同時允許爐水中有小於1mg/L的游離NaOH,以保證爐水的PH值在9.0~9.6的范圍內。

四、凝結水處理

目前絕大部分300MW及以上的高參數機組均設有凝結水精處理裝置,並以進口為主,其再生系統的主流產品是高塔分離裝置與錐底分離裝置。但真正能實現長周期氨化運行的精處理裝置並不多,僅有廈門嵩嶼電廠等少數幾家,嵩嶼電廠混床的運行周期在100 天以上,周期制水量達50萬t以上。從環保與經濟的角度出發,實現氨化運行將是今後精處理系統的發展方向。另外,在設備投資、設備布置與工藝優化方面,應考慮盡可能多地利用電廠原有的公用系統,如減少樹脂再生用的風機及混床的再循環泵等,盡可能把系統的程式控制裝置和再生裝置安裝在鍋爐補給水側,以利實現集中化管理。

另一方面,具有過濾與除鹽雙重功能的粉末樹脂(POWDEX)精處理系統也逐步得到應用,如福州華能二期、南通華能二期等電廠。但由於粉末樹脂的'價格較高,主要依賴於進口,使得粉末樹脂精處理裝置的推廣應用受到了一定的限制。

五、循環水處理

採用閉式循環冷卻的火電廠,冷卻水的循環回用和水質穩定技術的開發是水處理工作的重點。發達國家循環水濃縮倍率已達6~8倍,國內火電廠應在提高循環水重復利用效率上下功夫。為避免磷系水處理葯劑對環境水體的二次污染,低磷和非磷系配方的高效阻垢分散劑、多元共聚物水處理葯劑逐漸得到應用。採用開式排放冷卻的火電廠,特別是以海水作為冷卻水的濱海電廠,冷卻水一般採用加氯處理,其常見的裝置是美國CaptialControl公司的產品。但是,也有部分電廠採用電解海水產生次氯酸鈉作為殺生劑。如漳州後石電廠、北侖港電廠等。

六、廢水處理

目前,國內大型的電廠工業廢水處理的布置基本套用寶鋼電廠的廢水處理模式,即採用廢水集中匯集,分步處理的方式。一般採用以鼓風曝氣氧化、PH調整、混凝澄清、污泥濃縮處理等為主的工藝。但這種處理方式的缺點是對水質復雜且變化范圍大的來水的處理難度較大,並影響到廢水的綜合回收利用。近年來,兩相流固液分離技術逐步得到應用,該技術採用一次加葯混凝、在一個組合設施內完成絮凝、沉澱、澄清、浮渣刮除和污泥濃縮等工藝過程,使水中的泥沙、懸浮固體物、藻類懸浮物和油在同一設施內分離出來。該處理技術提高了出水水質,降低了處理成本,擴大了回用范圍。

七、物理水處理

採用物理阻垢、濾料除污和濾料去除COD的工藝已在國外很多電廠和化工廠使用,在最小程度施葯的情況下,取得了很好的經濟效益和環境保護。如SSP物理阻垢,KL除污,CC去除COD已運用馬爾他熱電廠和德國聯合利華化工廠。

⑧ 火電廠中用水有哪些分類

火電廠是利用煤、石油、天然氣作為燃料生產電能的工廠,它的基本生產過程是:燃料在鍋爐中燃燒加熱水使成蒸汽,將燃料的化學能轉變成熱能,蒸汽壓力推動汽輪機旋轉,熱能轉換成機械能,然後汽輪機帶動發電機旋轉,將機械能轉變成電能。火電廠分類有:按燃料分:燃煤發電廠,燃油發電廠,燃氣發電廠,余熱發電廠,以垃圾及工業廢料為燃料的發電廠;按蒸汽壓力和溫度分:鍋爐內的工質都是水,水的臨界參數是:22.064MPa、373.99℃,在這個壓力和溫度時,水和蒸汽的密度是相同的,就叫水的臨界點,爐內工質壓力低於這個壓力就叫亞臨界鍋爐,大於這個壓力就是超臨界鍋爐,爐內蒸汽溫度不低於593℃或蒸汽壓力不低於31MPa被稱為超超臨界。

中低壓發電廠(3.92MPa,450度),高壓發電廠(9.9MPa,540度),超高壓發電廠(13.83MPa,540度),亞臨界壓力發電廠(16.77MPa,540度),超臨界壓力發電廠(22.11MPa,550度);從國際及國內已建成及在建的超臨界或超超臨界機組的參數選擇情況來說,對超臨界和超超臨界機組並無嚴格的界限,只是參數高了多少的一個問題,目前國內及國際上一般認為只要主蒸汽溫度達到或超過600℃,就認為是超超臨界機組。按原動機分:凝氣式汽輪機發電廠,燃氣輪機發電廠,內燃機發電廠,蒸汽—燃汽輪機發電廠等;按輸出能源分,凝汽式發電廠(只發電),熱電廠(發電兼供熱);按發電廠裝機容量分:小容量發電廠(100MW以下),中容量發電廠(100—250MW),大中容量發電廠(250—1000MW),大容量發電廠(1000MW以上);火力發電廠污水產生有工業廢水、生活污水、含煤廢水、酸鹼廢水幾類,具體根據分類來進行處理方法的選擇,工藝也不一樣。

⑨ 電子水處理器的設備選型

1、按處理水量選型,一般水處理器管徑應與用水管徑相等,如不符應選大一檔設備。版
2、本設備處理水硬度為權<800mg/L(以CoCO3計);特殊要求可訂做。
3、本產品禁止在蒸汽鍋爐或管架式鍋爐上使用。
4、L型電子水處理器可以水平安裝,也可以垂直安裝或傾斜安裝,不需注意進出水口方向。
5、防垢率:>98%,除垢率>98%,殺菌滅藻率>97%,管道銹蝕速度減少>95%。
6、使用壽命:10年以上。

⑩ 火電廠化學水處理流程

火電廠生活污水的處理方法與城市生活污水類似,但電廠生活污水中污染物濃度較低,BOD和ss一般在20~30mg/L,傳統的活性污泥處理法適用於污染物濃度高、水質穩定的污水,而用於火電廠生活污水處理基本上無法運行,由於有機物濃度較低,調試啟動與運行困難,有時要人為地往污水中加入有機物進行調整(如糞便等),但生化處理效果仍不理想。

有些電廠生化處理設施只能起到二級沉澱和曝氣作用,造成相應系統設備閑置、浪費。採用生物接觸氧化法是解決此類生活污水處理的有效途徑,即在處理池中設置填料並長滿生物膜,污水以一定速度流經其中,在充氧條件下,與填料接觸的過程中,有機物被生物膜上附著的微生物所降解,從而達到污水凈化的目的。低濃度下接觸氧化池中生物膜能否形成及成膜後能否保持穩定的活性是接觸氧化法處理的關鍵。吳碧君等¨對低濃度電廠生活污水處理進行了研究,在低濃度下培養並馴化生物膜,CODBOD的去除率分別達到75%和85%。近幾年來,國內很多電廠對生活污水的回用給予高度重視,接觸氧化處理後的電廠生活污水可作為中水使用,用於電廠綠化用水、沖洗用水等,對於水資源緊缺的電廠也可考慮將處理後的生活污水再進一步深度處理用作電廠循環冷卻水系統的補充水。此外,生活污水也可用於沖灰水系統。如淮陰電廠等將生活污水用泵打人輸渣管道,送人渣場進行澄清過濾,澄清水用作沖灰水閉路循環系統的補充水。

生活污水的處理方法有:

生物接觸氧化法、氧化絮凝復合床(OFR)處理法、厭氧一缺氧-好氧生物脫氮除磷工藝(AAO工藝)等。

1.生物接觸氧化法

該法處理生活污水的原理是:在處理池中設置填料,填料上長滿生物膜,污水以一定流速流入其中,在充氧條件下,與填料接觸的過程中,有機物被生物膜上附著的微生物所降解,從而使污水得以凈化。下圖表示南海市發電A廠生物接觸氧化法系統流程: 2.氧化絮凝復合床(OFR)處理法

此法的利用機理主要是基於電解生成H202後迅速產生的羥基自由基(.OH)對水中有機物的強氧化作用。其反應過程如下:

吸附在催化劑表面的02捕獲電子,形成過氧自由基離子.02-,然後通過溶液內的一系列反應形成H202: 氧化絮凝復合床裝置是從三維電極出發,巧妙配以催化氧化技術而構成的高新水處理技術。此裝置具有系統簡單、運行穩定、操作維護方便:佔地面積小、運行費用低:處理效果良好,污泥排放少,無二次污染等特點。

氧化絮凝復合床裝置是從三維電極出發,巧妙配以催化氧化技術而構成的高新水處理技術。此裝置具有系統簡單、運行穩定、操作維護方便:佔地面積小、運行費用低:處理效果良好,污泥排放少,無二次污染等特點。

3.厭氧一缺氧-好氧生物脫氮除磷工藝
此法是在1975年,南非的Bamard提出在曝氣池前設厭氧段的Phoredox工藝,繼而又將Bardenpho工藝和Phoredox工藝相結合,發展成為修正的Bardenpho法,即厭氧一缺氧一好氧系統,達到同時去除BOD、N、P的目的。此法在首段厭氧池主要是進行磷的釋放,使污水中磷的濃度升高,溶解性有機物被細胞吸收而使污水中的BOD濃度下降。在缺氧池中,反硝化細菌利用污水中的有機物作為碳源,將迴流混合液中帶入的大量NO3-N和NO2-N還原為氮氣釋放到空氣。B0D5濃度繼續下降,NO3-N濃度大幅度下降。
在好氧池中,反硝化細菌被微生物生化降解;有機氮被氨化,繼而被硝化,使NH3一N濃度顯著下降,但隨著硝化過程使NO3-N的濃度增加,而P隨著聚磷菌的過量攝取,也以較快的速率下降。

閱讀全文

與火電廠水處理電導表選型相關的資料

熱點內容
活性炭濾芯耗材多少錢 瀏覽:971
超濾管國產 瀏覽:141
紡織廢水pac加葯量一般是多少 瀏覽:428
福建中效袋式過濾器 瀏覽:19
南京公司水處理葯劑 瀏覽:776
離子交換樹脂的交換容量定義 瀏覽:403
碾磨機廢水 瀏覽:515
電鍍廢水如何消除cod 瀏覽:175
廣饒草西污水處理廠 瀏覽:980
英山縣污水改造 瀏覽:375
礦泉水廠廢水 瀏覽:244
化糞池前污水管直徑多少 瀏覽:846
低溫潤滑油蒸餾過濾 瀏覽:112
英非尼迪空調濾芯在哪裡 瀏覽:730
雲浮生活污水多少錢 瀏覽:557
清洗華帝熱水器水垢視頻 瀏覽:631
檸檬酸鈉除水垢的劑量 瀏覽:266
河源污水監測有哪些 瀏覽:72
污水處理葡萄糖投加 瀏覽:137
樂美的飲水機怎麼拆卸 瀏覽:500