導航:首頁 > 廢水知識 > 工業園區污水處理研究進展

工業園區污水處理研究進展

發布時間:2022-07-31 19:19:47

1. 膜技術在工業廢水處理中的應用研究進展怎樣

隨著我國全民經濟的迅速發展,工業在國內生產總值中的地位不斷專攀升,同時,工業對水的污屬染也在不停加劇,工業污水的處理已然成為人們關注的焦點,工業污水不合理的排放,對自然環境以及人類身體健康都會帶來危害,因此,如何處理工業廢水以及將污水凈化後回用是我國工業生產的當務之急。本文主要針對膜技術在工業廢水處理中的實際應用進行深入探究,其目的是為了找到解決工業廢水的處理方法,促進工業的發展,從而帶動國民經濟的進步。

2. 去關於污水處理廠處理的實踐報告3000個字

環境保護是我國的基本國策。世界經濟發展的實踐證明,為實現經濟的持續穩定的發展,必須解決好發展與環境保護的矛盾。隨著我國社會和經濟的高速發展,城市環境污染特別是水污染的問題日趨嚴重。城鎮生活污水的排放量逐年增加,2002年全國工業和城鎮生活廢水排放總量為439.5億噸,比上年增加1.5%。其中工業廢水排放量207.2億噸,比上年增加2.3%;城鎮生活污水排放量232.3億噸,比上年增加0.9%,其中僅有10%得到處理。[1]生活污水中含有較高的氮、磷等營養物質,未經處理直接排入江河湖海,是導致水域富營養化污染的主要原因。2002年監測數據顯示,遼河、海河水系污染嚴重,劣V類水體佔60%以上;淮河幹流水質以III-V類水體為主,支流及省界河段水質仍然較差;黃河水系總體水質較差,幹流水質以III-IV類水體為主,支流污染普通嚴重;松花江水系以III-IV類水體為主;珠江水系水質總體良好,以II類水體為主;長江幹流及主要一級支流水質良好,以II類水體為主。由於「污染性」造成的水資源短缺,已成為嚴重製約我國社會經濟持續發展的突出問題,丞待解決。目前我國水污染控制的重點已從以工業點源為主,逐步轉變為以城市污水污染為主的控制。根據預測 [2],到2010年我國城市污水排放總量為1050億m3,城市污水處理率要達到50%,預計需新建污水處理廠1000餘座,而決定城市污水處理廠投資和運行成本的主要因素是污水處理工藝和技術的選擇,因此開發適合我國國情的、高效、低耗、能滿足排放要求、基建和運行費用低的污水處理新技術和新工藝,具有十分重要的現實意義。
二、生活污水處理工藝研究和應用領域共同關注的問題
長期以來,城市生活污水的二級生物處理多採用活性污泥法,它是當前世界各國應用最廣的一種二級生物處理流程,具有處理能力高,出水水質好等優點。但卻普遍存在著基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹、污泥上浮等問題,且不能去除氮、磷等無機營養物質。對於我國這樣一個資源不足、人口眾多的發展中國家,從可持續發展的角度來看,並不適合中國國情。由於污水處理是一項側重於環境效益和社會效益的工程,因此在建設和實際運行過程中常受到資金的限制,使得治理技術與資金問題成為我國水污染治理的「瓶頸」。歸納起來,目前在城市生活污水處理研究和應用領域,普遍存在的問題有:
(1)採用傳統的活性污泥法,往往基建費、運行費高,能耗大,管理較復雜,易出現污泥膨脹現象;工藝設備不能滿足高效低耗的要求。
(2)隨著污水排放標準的不斷嚴格,對污水中氮、磷等營養物質的排放要求較高,傳統的具有脫氮除磷功能的污水處理工藝多以活性污泥法為主,往往需要將多個厭氧和好氧反應池串聯,形成多級反應池,通過增加內循環來達到脫氮除磷的目的,這勢必要增加基建投資的費用及能耗,並且使運行管理較為復雜。
(3)目前城市污水的處理多以集中處理為主,龐大的污水收集系統的投資遠遠超過污水處理廠本身的投資,因此建設大型的污水處理廠,集中處理生活污水,從污水再生回用的角度來說不一定是唯一可取的方案。
因此,如何使城市污水處理工藝朝著低能耗、高效率、少剩餘污泥量、最方便的操作管理,以及實現磷回收和處理水回用等可持續的方向發展。已成為目前水處理技術研究和應用領域共同關注的問題,就要求污水處理不應僅僅滿足單一的水質改善,同時也需要一並考慮污水及所含污染物的資源化和能源化問題,且所採用的技術必須以低能耗和少資源損耗為前提。
三、生物膜法處理工藝在生活污水處理中的應用研究發展
在污水生物處理的發展和應用中,活性污泥和生物膜法一直占據主導地位。隨著新型填料的開發和配套技術的不斷完善,與活性污泥法平行發展起來的生物膜法處理工藝在近年來得以快速發展。由於生物膜法具有處理效率高,耐沖擊負荷性能好,產泥量低,佔地面積少,便於運行管理等優點,在處理中極具競爭力。
1.生物膜法凈化污水機理
污水中有機污染物質種類繁多,成分復雜。但對於生活污水來說,其有機成分歸納起來主要包括:蛋白質(40%-60%),碳水化合物(25%-50%)和油脂(10%),此外還含有一定量的尿素[3]。生物膜法依靠固定於載體表面上的微生物膜來降解有機物,由於微生物細胞幾乎能在水環境中的任何適宜的載體表面牢固地附著、生長和繁殖,由細胞內向外伸展的胞外多聚物使微生物細胞形成纖維狀的纏結結構,因此生物膜通常具有孔狀結構,並具有很強的吸附性能。
生物膜附著在載體的表面,是高度親水的物質,在污水不斷流動的條件下,其外側總是存在著一層附著水層。生物膜又是微生物高度密集的物質,在膜的表面上和一這深度的內部生長繁殖著大量的微生物及微型動物,形成由有機污染物 →細菌→原生動物(後生動物)組成的食物鏈。生物膜是由細菌、真菌、藻類、原生動物、後生動物和其他一些肉眼可見的生物群落組成。其中細菌一般有:假單苞菌屬、芽苞菌屬、產鹼桿菌屬和動膠菌屬以及球衣菌屬,原生動物多為鍾蟲、獨縮蟲、等枝蟲、蓋纖蟲等。後生動物只有在溶解氧非常充足的條件下才出現,且主要為線蟲。污水在流過載體表面時,污水中的有機污染物被生物膜中的微生物吸附,並通過氧向生物膜內部擴散,在膜中發生生物氧化等作用,從而完成對有機物的降解。生物膜表層生長的是好氧和兼氧微生物,而在生物膜的內層微生物則往往處於厭氧狀態,當生物膜逐漸增厚,厭氧層的厚度超過好氧層時,會導致生物膜的脫落,而新的生物膜又會在載體表面重新生成,通過生物膜的周期更新,以維持生物膜反應器的正常運行。
生物膜法通過將微生物細胞固定於反應器內的載體上,實現了微生物停留時間和水力停留時間的分離,載體填料的存在,對水流起到強制紊動的作用,同時可促進水中污染物質與微生物細胞的充分接觸,從實質上強化了傳質過程。生物膜法克服了活性污泥法中易出現的污泥膨脹和污泥上浮等問題,在許多情況下不僅能代替活性污泥法用於城市污水的二級生物處理,而且還具有運行穩定、抗沖擊負荷強、更為經濟節能、具有一定的硝化反硝化功能、可實現封閉運轉防止臭味等優點。
通過人工強化作用將生物膜引入到污水處理反應器中,便形成了生物膜反應器。近年來,物物膜反應器發展迅速,由單一到復合,有好氧也有厭氧,逐步形成了一套較完整的生物處理系統。
填料是生物膜技術的核心之一,它的性能對廢水處理工藝過程的效率、能耗、穩定性以及可靠性均有直接關系。
2、厭氧生物膜法處理工藝在生活污水處理中的應用研究進展
(1)、復雜物料的厭氧降解階段
在廢水的厭氧處理過程中,廢水中的有機物經大量微生物的共同作用,被最終轉化為甲烷、二氧化碳、水、硫化氫和氨。在此過程中,不同的微生物的代謝過程相互影響,相互制約,形成復雜的生態系統。對復雜物料的厭氧過程的敘述,有助於我們了解這一過程的基本內容。所謂復雜物料,即指那些高分子的有機物,這些有機物在廢水中以懸浮物或膠體形式存在。
復雜物料的厭氧降解過程可以被分為四個階段。
水解階段:高分子有機物因相對分子質量巨大,不能透過細胞膜,因此不可能為細菌直接利用。因此它們在第一階段被細菌胞外酶分解為小分子。例如纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。
發酵(或酸化)階段:在這一階段,上述小分子的化合物在發酵細菌(即酸化菌)的細胞內轉化為更為簡單的化合物並分泌到細胞外。這一階段的主要產物有揮發性脂肪酸(簡寫作VFA)、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等。與此同時,酸化菌也利用部分物質合成新的細胞物質,因此未酸化廢水厭氧處理時產生更多的剩餘污泥。
產乙酸階段:在此階段,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
產甲烷階段:這一階段里,乙酸、氫氣、碳酸、甲酸和甲醇等被轉化為甲烷、二氧化碳和新的細胞物質。
在以上階段里,還包含著以下這些過程:a、水解階段里有蛋白質水解、碳水化合物的水解和脂類水解;b、發酵酸化階段包含氨基酸和糖類的厭氧氧化與較高級的脂肪酸與醇類的厭氧氧化;c、產乙酸階段里有從中間產物中形成乙酸和氫氣和由氫氣和 氧化碳形成乙酸;d、甲烷化階段包括由乙酸形成甲烷和從氫氣和二氧化碳形成甲烷。除以上這些過程之外,當廢水含有硫酸鹽時還會有硫酸鹽還原過程。復雜化合物的厭氧降解可以利用圖來表述(見圖1)
(2)厭氧生物膜法處理工藝的應用研究進展
a、厭氧濾器(AF)
厭氧濾器是60年代末由美國McCarty 等在Coulter等研究基礎上發展並確立的第一個高速厭氧反應器。傳統的好氧生物系統一般容積負荷在2KgCOD/(m3?d)以下。而在AF發明之前的厭氧反應器一般容積負荷也在4-5kgCOD/(m3?d)以下。但AF在處理溶解性廢水時負荷可高達10-15 kgCOD/(m3?d)。[4]因此AF的發展大大提高了厭氧反應器的處理速率,使反應器容積大大減少。
AF作為高速厭氧反應器地位的確立,還在於它採用了生物固定化的技術,使污泥在反應器內的停留時間(SRT)極大地延長。McCarty發現在保持同樣處理效果時,SRT的提高可以大大縮短廢水的水力停留時間(HRT),從而減少反應器容積,或在相同反應器容積時增加處理的水量。這種採用生物固定化延長SRT,並把SRT和HRT分別對待的思想推動了新一代高速厭氧反應器的發展。
SRT的延長實質是維持了反應器內污泥的高濃度,在AF內,厭氧污泥的濃度可以達到10-20gVSS/L。AF內厭氧污泥的保留由兩種方式完成:其一是細菌在AF內固定的填料表面(也包括反應器內壁)形成生物膜;其二是在填料之間細菌形成聚集體。高濃度厭氧污泥在反應器內的積累是AF具有高速反應性能的生物學基礎,在一定的污泥比產甲烷活性下,厭氧反應器的負荷與污泥濃度成正比。同時,AF內形成的厭氧污泥較之厭氧接觸工藝的污泥密度大、沉澱性能好,因而其出水中的剩餘污泥不存在分離困難的問題。由於AF內可自行保留高濃度的污泥,也不需要污泥的迴流。
在AF內,由於填料是固定的,廢水進入反應器內,逐漸被細菌水解酸化、轉化為乙酸和甲烷,廢水組成在不同反應器高度逐漸變化。因此微生物種群的分布也呈現規律性。在底部(進水處),發酵菌和產酸菌佔有最大的比重,隨反應器高度上升,產乙酸菌和產甲烷菌逐漸增多並佔主導地位。細菌的種類與廢水的成分有關,在已酸化的廢水中,發酵與產酸菌不會有太大的濃度。
細菌在反應器內分布的另一特徵是反應器進水處(例如上流式AF的內部)細菌由於得到營養最多因而污泥濃度最高,污泥的濃度隨高度迅速減少。
污泥的這種分布特徵賦予AF一些工藝上的特點。首先,AF內廢水中有機物的去除主要在AF底部進行(指上流式AF),據Young和Dahab報道[4], AF反應器在1m以上COD的去除率幾乎不再增加,而大部分COD是在0.3m以內去除的。因此研究者認為在一定的容積負荷下,淺的AF反應器比深的反應器能有更好的處理效率。其次,由於反應器底部污泥濃度特別大,因此容易引起反應器的堵塞。堵塞問題是影響AF應用的最主要問題之一。據報道,上流式AF底部污泥濃度可高達60g/L。厭氧污泥在AF內的有規律分布還使得反應器對有毒物質的適應能力較強,可以生物降解的毒性物質在反應器內的濃度也呈現出規律性的變化,加之厭氧生物膜形成各種菌群的良好共生體系,因此在AF內易於培養出適應有毒物質的厭氧污泥。例如在處理三氯甲烷和甲醛廢水中,發現AF反應器內的污泥產生了良好的適應性,這些有毒物質的去除效果和允許的進液濃度逐漸上升。AF同時也具有較大的抗沖擊負荷能力。一般認為在相同的溫度條件下,AF的負荷可高出厭氧接觸工藝2~3倍,同時會有較高的COD去除率。
AF在應用上的問題除了堵塞和由局部堵塞引起的溝流以外,另一個問題是它需要大量的填料,填料的使用使其成本上升。由於以上問題,國外生產規模的AF系統應用也不是很多。據Le-ttinga在1993年估計,國外生產規模的AF系統大約僅有30~40個。[4]
作為升流式厭氧濾池的革新技術——厭氧膜床(S?pecial Anaerobic Film Bed, SAFB),採用較大顆粒及孔隙率的填料代替傳統的小粒徑填料,有效地解決了反應器的堵塞問題。厭氧膜床具有如下特點:
有效克服了厭氧濾池易堵塞和出水水質差的缺點;
生物固體濃度高,因此可獲得較高的有機負荷;
在厭氧膜床內微生物通過附著在填料表面形成生物膜,以及懸浮於填料孔隙間形成細菌聚集體,因此在厭氧膜床內可以保持較高的生物量。因此可縮短水力停留時間,耐沖擊負荷能力較強;
啟動時間短,停止運行後再啟動也較容易;
不需要迴流污泥,運行管理方便;
在水量和負荷有較大變化的情況下,耐沖擊性較好。
b、厭氧流化床反應器(AFBR)
在流化床系統中依靠在惰性的填料微粒表面形成的生物膜來保留厭氧污泥,液體與污泥的混合、物質的傳遞依靠使這些帶有生物膜的微粒形成流態化來實現。
流化床反應器的主要特點可歸納如下:
流態化能最大程度使厭氧污泥與被處理的廢水接觸;
由於顆粒與流體相對運動速度高,液膜擴散阻力小,且由於形成的生物膜較薄,傳質作用強,因此生物化學過程進行較快,允許廢水在反應器內有較短的水力停留時間;
克服了厭氧濾器堵塞和溝流問題;
高的反應器容積負荷可減少反應器體積,同時由於其高度與直徑的比例大於其它厭氧反應器,因此可以減少佔地面積。
但是,厭氧流化床反應器存在著幾個尚未解決的問題。其一,為了實現良好的流態化並使污泥和填料不致從反應器流失,必須使生物膜顆粒保持均勻的形狀、大小和密度,但這幾乎是難以做到的,因此穩定的流態化也難以保證。[5]其次,一些較新的研究認為流化床反應器需要有單獨的預酸化反應器。同時,為取得高的上流速度以保證流態化,流化床反應器需要大量的迴流水,這樣導致能耗加大,成本上升。由於以上原因,流化床反應器至今沒有生產規模的設施運行。有人認為它在今後應用的前景也不大。[5]
c、厭氧附著膜膨脹床反應器(AAFEB)
厭氧附著膜膨脹床(Anaerobic Attached Film Expanded Bed)是Jewell等人在1974年研究和開發出來的一種污水處理工藝。與生物流化床相比,區別在於載體的膨脹程度。以填料層高度計,膨脹床的膨脹率約為10%~20%,此時顆粒間仍保持互相接觸,而流化床則為20%~70%。Bruce J.Alderman等[6]通過對比厭氧膨脹床、滴濾池和活性污泥法等工藝的經濟性,發現對於小型污水處理廠而言,厭氧膨脹床後續滴濾池的設計是最為經濟的選擇,能耗量少,污泥產率量低。但目前此工藝仍主要停留在小試和中試研究階段。
綜上所述,採用厭氧生物膜反應器為主體的厭氧處理技術,作為生活污水處理的核心方法,在技術上已經成熟,並且較之其它方法有獨到的一些優勢。但是,厭氧方法在濃縮營養物(氮和磷)方面效果不大,同時它僅能除去部分病源微生物。此外,殘存的BOD、懸浮物或還原性物質可能影響到出水的質量。所以厭氧生物膜反應器要成為完整的環境治理技術,合適的後處理手段必不可少。
3、好氧生物膜法處理技術——生物接觸氧化
生物接觸氧化法是由生物濾池和接觸曝氣氧化池演變而來的。早在20世紀30年代,已在美國出現生產型裝置。當時的生物接觸氧化池,填料的材質是砂石、竹木製品和金屬製品,主要用於處理低濃度、低有機負荷的污水,它克服了活性污泥法在處理此類污水時,因污泥流失而不能維持正常運行的缺點,並取得了較好的效果。進入70年代,隨著大孔徑、高比表面積的蜂窩直管填料和立體波紋塑料填料的出現,使生物接觸氧化法的應用范圍得到拓寬,它不僅可用於處理生活污水,而且可用於處理高濃度有機廢水和有毒有害工業廢水,與其他生物處理方法相比,展現出了優越性,我國在70年代開始對生物接觸氧化法進行了研究,第一座生產性試驗裝置用於處理城市污水,在處理效果、動力消耗、經濟效益和管理維護等方面都明顯優於活性污泥法。與活性污泥法比較,生物接觸氧化具有以下主要優點:①生物接觸化法以填料作為載體,供生物群棲息生長,形成穩定的生態體系,有較高的微生物濃度,一般可達10~20g/l;氧的利用率高,可達10%。具有較高的耐沖擊負荷能力和對環境變化的適應能力,剩餘污泥量少。②生物接觸氧化法可以充分利用絲狀菌的強氧化能力且不產生污泥膨脹。並且不需要象活性污泥法那樣採用污泥迴流以調整污泥量和溶解氧濃度,易於管理和操作。隨著十餘年的大量實踐,對氧化池結構形式、填料的品種和安裝方式、供氣裝置的種類和布置形式等方面進行了不斷創新、不斷優化。目前,生物接觸氧化技術已經廣泛應用處理生活污水、生活雜用水和不同有機物濃度的工業廢水。
填料是微生物棲息的場所、生物膜的載體。填料的表面生長生物膜,生物膜的新陳代謝過程使污水得利凈化。填料的性能直接影響著生物接觸氧化技術的效果和經濟上的合理性,因而填料的選擇是生物接觸氧化技術的關鍵。
填料的特性取決於填料的材質和結構形式。填料的材質應具有分子結構穩定、抗老化、耐腐蝕和生物穩定性好等特性。填料的結構形式應具有比表面積大、空隙率高、硬度高、有布水布氣和切割氣泡的功能。填料之間的空隙在外力作用下可發生變化,有利於剝落的生物膜及時排出填料區,以及填料的體積應具有可壓縮性,並在復原後不發生變形,便於運輸和安裝。
固定化載體的發展
(1)固定式填料
固定式填料以蜂窩狀及波紋狀填料為代表,多用玻璃鋼、各種薄形塑料片構成。新近有陶土直接燒結生產的陶瓷蜂窩填料,孔形為六角形,孔徑在20~100mm之間。由於比表面積小,生物膜量小,表面光滑,生物膜易脫落,填料橫向不流通,造成布氣不均勻,易堵塞以至無法正常運轉,且造價較高,近年來,此類填料已逐漸淘汰。
(2)懸掛式填料
懸掛式填料包括軟性、半軟性及組合填料、軟性填料,理論比表面積大,空隙率>90%,掛膜快,空隙的可變性使之不易堵塞,而且造價低,組裝方便,出水穩定,處理效果較好,COD和BOD5去除率達80%以上。但廢水濃度高或水中懸浮物較大時,填料絲會結團,大大減少了實際利用的比表面積,且易發生斷絲、中心繩斷裂等情況,影響使用壽命,其壽命一般為1~2年。半軟性填料,具有較強的氣泡切割性能和再行布水布氣的能力、掛膜脫膜效果較好、不堵塞;COD和BOD去除率在70-80%。使用壽命較軟性填料長。但其理論比表面積較小(87-93m2/m3)生物膜總量不足影響污水處理效果,且造價偏高。
組合式填料,是鑒於軟性、半軟性存在的上述缺點並吸取軟性填料比表面積大、易掛膜和半軟性填料不結團,氣泡切割性能好而設計的新型填料,在填料中央設計半軟性部件支撐著外圍的軟性纖維束,其平面有如盾形,故又稱盾式填料。其比表面積1000~2500 m2/m3,空隙率98%-99%,具有掛膜快,生物總量大,不結團等優點。污水處理能力優於軟性、半軟性填料,在正常水力負荷條件下COD去除率70%-85%,BOD5去除率達80%~90%,與之類似的還有燈籠式(或龍式)和YDT彈性立體填料。
(3)分散式填料
分散式填料包括堆積式、懸浮式填料,種類繁多。特點是無需固定和懸掛,只需將之放置於處理裝置之中,使用方便,更換簡單。北京曉清環保公司的多孔球形懸浮填料和北京桑德公司的SNP無剩餘污泥懸浮填料等,具有充氧性能好,掛膜快,使用壽命長等優點。江西萍鄉佳能環保工程公司新近開發的堆積式填料—球形輕質陶料,填料粒徑2~4 mm,有巨大的比表面積,使反應器中單位體積內可保持較高的生物量,而且填料上的生物膜較薄,其活性相對較高,具有完全符合曝氣生物濾池填料的國際性能標准,在法國承建的我國大連馬欄河污水處理廠使用,這是我國新型填料開發的一項重大突破。
四、水解酸化—好氧活性污泥工藝在生活污水處理中的應用
城市污水經厭氧處理後,在現有的技術條件下,要達到二級出水標准,需要相當長的停留時間,結果使厭氧處理雖然在運行管理費用上佔有優勢,但在基建投資上卻失去了競爭力。因此從微生物和化學角度講,厭氧處理僅僅提供了一種預處理,它一般需要後處理方能滿足新的污水排放標准。印度和南美國家在積極推廣應用厭氧生活污水處理技術的同時,普遍意識到由於厭氧處理後氮和磷基本上沒有去除,因此對厭氧出水進一步處理很有必要。缺乏合適的後處理技術,是導致厭氧生物處理技術在生活污水處理領域應用緩慢的主要原因之一。雖然已有的小試實驗結果表明,兩級厭氧系統組合可以獲得良好的處理效果。但目前,在實際生產中,應用最為廣泛的仍然是厭氧與好氧組合系統。在印度,氧化塘是最常用的後處理方法。經厭氧、氧化塘兩級處理後的出水BOD5、CODcr和TSS去除率分別為87%、81%和90%。在巴西NovaVista市的7000人生活污水處理工程中,以及哥倫比亞Bucarmanga鎮的160000人生活污水處理工程中,後處理均採用的是兼性氧化塘。在墨西哥的厭氧生活污水處理工程中,後處理方法比較多樣化,二沉池+氯消毒、淹沒濾池+二沉池+氯消毒、氧化溝等,最後直接排入城市污水管網或用於農灌。在日本,城鎮生活污水一般採用厭氧消化+好氧活性污泥法聯合處理、厭氧濾池+好氧濾池以及厭氧濾池+接觸氧化法組合處理。並且最新研製的具有脫氮除磷功能的高級型JOHKASO小型家用生活污水凈化器系統,廣泛應用於分散處理生活污水方面。[7]厭氧和好氧生物處理技術的組合能夠有效的去除大部分有機和無機污染物。厭氧生物專家G·Lettinga教授斷言厭氧處理生物技術如果有合適的後處理方法相配合,可以成為分散型生活污水處理模式的核心手段,這一模式較之於傳統的集中處理方法更具有可持續性和生命力,尤其適合發展中國家的情況。[8]
厭氧-好氧組合處理工藝,充分發揮了厭氧技術節能、好氧技術高效的優勢,成為目前污水處理工藝發展的主要趨勢。在國外,由上流式厭氧污泥床反應器(UASB)和好氧生物膜反應器組成的厭氧—好氧組合處理工藝一直是研究的重點,[9,10,11]並針對組合工藝的硝化/反硝化性能和動力學機理展開了較為深入的研究。[12,13]近年來,Ricardo Franci Goncalves等[14,15]進行的小試和中試的研究結果表明,採用UASB和淹沒式曝氣生物濾池(BF)組合工藝處理生活污水,兩段HRT分別為6h和0.17h時系統對CODcr 、BOD5 和SS去除率均在90%以上,並且該組合系統相對單一的UASB污水處理系統而言,有更好的穩定出水水質的作用。當BF段的污泥迴流至UASB段時,厭氧反應器內有機物甲烷化的能力提高,使產氣量增加、剩餘污泥量減少,可以減少甚至省去污泥濃縮池和消化池。
由於以UASB為主體的厭氧-好氧組合處理工藝,受溫度的影響較大,特別是在低溫條件下,系統的性能不能得到充分的發揮。Igor Bodik等[16]通過中試試驗研究了厭氧折流板生物濾池反應器和淹沒式曝氣生物濾池組合工藝低溫下處理生活污水時的脫氮性能。系統經過一年的運行,在厭氧段和好氧段的水力停留時間分別為15 h和4h的條件下,即使環境溫度低於10℃(平均氣溫5.9℃),對CODcr、BOD5和SS的去除率仍達80%左右。低溫使硝化的活性受到一定的影響,溫度在4.5-23℃范圍內,TKN的去除率在46.4-87.3%間變化,並且該系統也具有一定的反硝化功能,為低溫環境下生活污水的脫氮處理提供了參考。

3. 污水處理設備內貿現狀,以及未來發展趨勢是什麼樣的

——原標題:2019年中國污水處理行業市場現狀及發展趨勢分析 智能製造新模式打造競爭新優勢

智能製造新模式將加速推廣應用

隨著我國國民經濟的高速發展和改革開放的不斷深入,城市生產力不斷提升,城市人口數量也不斷增加,未來我國污水排放量也將隨之增大,因此,對於污水處理的需求也必將進一步擴大,而作為一個嚴重缺水的國家,在污水處理率與污水排放量雙增的形勢下,提升污水處理能力成為水處理行業和企業的趨勢。

與此同時,隨著互聯網的快速發展和5G時代的到來,移動互聯網、物聯網、雲計算和大數據等領域應用和開發,將我國製造業向智能轉型全面推進,各行業、企業加快推動新一代信息通信技術、智能製造關鍵技術裝備、核心工業軟體等與企業生產工藝、管理流程的深入融合,推動製造和商業模式持續創新,智能製造新模式將加速推廣應用。

我國水污染防治設備產量年均復合增長率近40%

國內企業在水污染防治設備的開發和研究蘊含著巨大的商機,同時工業廢水處理回用是新的市場機遇。從水污染防治設備狀況來看,近幾年我國水污染設備製造處於一個快速發展階段。據前瞻產業研究院報告統計數據顯示,2010年我國水污染防治設備產量僅僅為2.69萬台,截止至2017年我國水污染防治設備產量增長至27.23萬台,2010-2017年中國水污染防治設備產量的年均復合增長率約為39.2%。前瞻測算,2018年我國水污染防治設備產量在28.50萬台左右。

2010-2018年中國水污染防治設備產量統計情況及預測



數據來源:前瞻產業研究院整理

中國污水處理行業發展趨勢與升級分析

2019年6月3-5日,作為一年一度的行業盛會,將傳統的市政、民用和工業水處理與環境綜合治理及智慧環保相融合的水處理展示平台——上海國際水展在上海隆重召開,煙台金正環保科技有限公司市場部部長李超先生接受慧聰水工網的專訪,並向我們分享了當下污水處理行業在互聯網環境下的趨勢與升級。

1、「智能製造+智能服務」助力污水回用產業升級

上海國際水展是國內一年一度的水處理行業盛會,針對此次水展金正環保推出了主題為「智能製造+智能服務」助力污水回用產業升級的最新污廢水資源化與高品質再生水回用整體解決方案。

李超先生認為,環保水處理行業有很多共性痛點問題,代表性如:水處理核心膜組件價格過高、核心膜材料受制於國外技術企業、粗放式運營等。

為此,金正環保一直致力於解決這些行業共性痛點而努力,「智能製造+智能服務」的主題便是如此。其中,「智能製造」便體現在自主研發的全球首條DTRO膜柱自動化生產線,解決了膜柱生產規模化、標准化和運輸的難題;率先實現了工程設備化、設備模塊化、模塊標准化的簡化工藝鏈,大幅降低投資運營成本。

而「智能服務」則體現在,金正環保通過工業大數據中心,利用雲計算和新一代信息技術賦能,以場景化的方式幫助企業和政府用戶將數據用起來,實現了數據資產化、數據業務化,提供遠程運維、專家分析、故障預警等服務,提升了企業的核心競爭力和政府的治理能力,逐步實現全產業鏈的大數據布局。

通過「智能製造+智能服務」極大解決行業共性痛點問題,真正做到提質增效,推動水處理行業快速發展。

2、智能製造打造競爭新優勢

眾所周知,加快發展智能製造,是培育我國經濟增長新動能的必由之路,是搶占未來經濟和科技發展制高點的戰略選擇,對於推動我國製造業供給側結構性改革,打造製造業競爭新優勢,實現製造強國具有重要戰略意義。

金正環保自主研發的全球首條DTRO膜柱全自動化生產線,擁有強大的生產能力,可實現產能300-500支/天。生產線整體運行平穩高效,產品質量穩定、成品率高,可實現視覺檢測,對產品問題可追溯,解決了膜柱生產規模化、標准化和運輸難的問題,

李超先生表示膜柱的智能化生產將會給水處理行業帶來巨大變化,通過規模化、標准化生產,降低產品生產成本,可以為用戶提供更大讓利空間,讓更多行業和客戶能夠用得到、用得起、用的好金正環保的產品。

3、創新難點不在技術,在於理念

縱觀整個行業,李超先生認為國內環保水處理行業的發展難點不僅僅在於於技術創新,更在於理念和模式的創新。金正環保在戰略布局時,希望能夠打通整個污廢水資源化回用的工藝鏈和產業鏈,進而推動國內整個行業的發展。目前,金正環保已實現膜材料、膜元件、集成設備、雜鹽分離的整個產業鏈的發展,可以為工業園區提供高鹽廢水及資源化回用的整體解決方案。

金正環保在特種膜領域走在了世界前列,是國內為數不多擁有核心技術的環保水處理企業,擁有授權專利33項、參與國家標准制定5項、工信部鼓勵推廣環保裝備2項、山東省重點研發計劃2項。且自主研發了全球首條DTRO特種膜自動化生產線,填補了國內空白。金正環保每年持續加大技術研發投入,目前在研發的耐酸、耐鹼、耐有機溶劑特種膜材料已取得突破性的進展,同時也在擴充產品品類和應用領域,開發針對市政污水高品質回用的特種膜,有效簡化工藝鏈和降低投資運營成本,目前中試階段已經結束,預計很快將推向市場,保持金正環保在水處理行業的長遠競爭力。

互聯網、物聯網、雲計算和大數據等在水處理行業的深入應用,為支持水處理企業應對挑戰提供了有了的支撐。金正環保作為是中國水處理行業特種膜研發生產與應用的高新技術環保企業以「智能製造+智能服務」模式為我國污廢水資源化與高品質再生水回用添磚加瓦。

更多數據來源及分析請參考於前瞻產業研究院發布的《中國污水處理行業市場前瞻與投資戰略規劃分析報告》,同時前瞻產業研究院還提供產業大數據、產業規劃、產業申報、產業園區規劃、產業招商引資等解決方案。

4.  水環境污染治理新進展

一、污水規模化集中處理與系統優化理論的應用

我國對污染企業多年來一直執行的是「誰污染誰治理」和「三同時」的環保政策,雖然取得了顯著成效,但隨著市場經濟的發展,人們對這種分散式點源治理模式又產生了新的看法,特別是對那些中小企業和鄉鎮企業。普遍認為,小而散、散而全的污水廠建設不僅給國家和企業造成了巨大的投資浪費,還由於企業負擔過重,管理水平較低等原因,使預期的環境治理目標大打折扣。為此許多專家學者呼籲,集中建立規模化污水廠,變「誰污染誰治理」為「誰污染誰掏錢」的政策時機已經成熟。

其實國際環境污染治理領域早已從過去的分散式源治理,發展到了利用系統理論觀點進行區域性綜合治理的新水平。以美國Converse A.Q對新英格蘭洲Merrimack河域的污水處理系統規劃為例,該規劃通過建立全流域水環境容量、污水輸送、處理規模、處理程度以及環境效益等多因素的系統優化數學模型,獲得了該流域內設立4座集中污水處理廠最為經濟的投資方案,比原計劃的18座建設方案節省了40%以上的費用。又如日本,自1965年就已由原來單純追求污水處理技術和設備的改進,轉入了在系統理論指導下建立區域綜合污水處理廠的水污染治理方向,到1976年已建成29座綜合性污水處理廠,比分散式處理節省了20%以上的費用。

二、清潔生產概念的引入

清潔生產概念是於1989年由聯合國環境規劃署工業與環境中心提出的,基本含義是採用清潔的能源、原材料、生產工藝和技術,生產清潔的產品。由於清潔生產能對提高生產效率和產品質量,節約能源和原材料等各個環節起到顯著成效,世界各國都在紛紛推行,尤其在美國、日本、歐洲等發達國家和地區。在環保方面,由於清潔生產能夠通過改進生產工藝,降低污染物的產生和排放,對環境起到「標本兼治」的作用,我國也於1993年正式提出了清潔生產的要求,並列入了1994年《中國21世紀議程》和《固體廢棄物環境污染治理法》。與此同時,還在世界銀行、聯合國環境規劃署的幫助下,由國家環保局承擔,在一些城市和行業開展了試點工作。如代號為B-4的清潔生產項目,在1993~1995年間已完成了國內29項試點,並計劃在未來5年內把清潔生產引入全國3000家工業企業。

清潔生產在環境保護方面的效益是十分可觀的,以河北邯鄲叢台酒廠的酒糟廢水治理項目為例,在中國地質科學院環境工程技術設計研究院的幫助下,僅用40萬元的投入,進行了發酵罐蒸汽加熱工藝的改進,就基本實現了生產用水的閉路循環,使污水治理項目投資節約了600萬元以上。因此認為,清潔生產的推廣,在今後我國環保領域必將發揮重要作用。

三、生物基因工程的應用

自70年代P.Berg首次利用內切酶把分屬兩個不同屬的DNA重組到一起,宣告基因工程誕生以來,短短20多年間已給全社會各個方面帶來了重大變革。環保領域也是這樣,生物工程已開始顯示出無窮的威力。

目前常用的污水生物處理技術雖然在世界各國環境治理中發揮了巨大作用,但仍有不盡人意的地方,如承受COD、BOD能力低,反應時間長,污泥量大,難降解物質多,氮磷去除率不高等問題。為了克服這一弊端,人們採用了多種手段,如為提高微生物對污水環境的適應能力所開展的微生物馴化、針對某一特種污染物進行的專性菌體培養等,但在實際應用中不是凈化效果不理想,就是因菌種對環境的不適應而在短期內消亡,達不到預期的效果。基因工程的誕生使人們看到了新的希望。

目前國內外專家通過多年的努力,已經取得了可喜進展,如日本琉球大學的比嘉教授花費18年時間研製成功的一種稱為「Expedient microds」(有益微生物群)的高科技生物製品,在日本千葉縣一個連續20年污染居全國之首的湖沼中應用,投放僅三天,就發揮出神奇功效,湖水很快得到了凈化。我國針對水污染治理中的許多問題也開展了這方面的工作,如針對甲苯類有機污染物生物難降解問題,將具有較高分解能力的微生物基因導人具有較好絮凝能力菌體的研究工作已經獲得了成功。又如針對大多湖泊嚴重富營養化問題,將具有較強脫氮能力的硝化菌(Nitrobater、Nitrosomonas)和較強除磷能力的聚磷菌(Pseudomonas)基因重組,再導入生存范圍較寬的大腸桿菌的研究工作也已完成菌體基因的解譯,後續工作正在進行中。由此看來,傳統污水生物法的諸多弊端,通過基因工程去解決將是十分現實和有效的。生物基因工程的引入,必將給污水生物處理技術帶來新的革命。

5. 工業廢水治理的行業發展背景

經過多年努力,中國正在逐步形成以自然保護區為主體,濕地公園、濕地保護小區等多種保護管理形式並存的保護管理體系。截至2008年,全國共建立各種類型、不同級別的自然保護區2538個,比2000年增加了1311個;自然保護區總面積14894.3萬公頃,比2000年增長了51.7%。與此同時,環境法制建設日臻完善。我國環境立法從無到有,從少到多,目前,我國已制定了包括水污染防治、大氣污染防治、環境影響評價等10部環境保護法律,15部自然資源法律,頒布國家環境標准800多項,批准和簽署多邊國際環境條約50餘項,頒布地方性環境法規和地方政府規章660餘件。
全國工商聯環境服務業商會秘書長駱建華在第七屆環境產業大會上透露,《水污染防治行動計劃》最快將於5、6月份上報,其核心是關注工業廢水處理,提出至2017年前消滅劣V類水目標,比原定目標提前3年。據測算,水污染防治行動計劃將投入2萬億元。
對此,(2014年全國工業廢水治理產業投資發展現狀)分析,工業廢水治理領域投資需求將超過千億,水處理上市公司特別是工業廢水處理相關公司將迎來新一輪投資盛宴。
2萬億投資盛宴開啟
《水污染防治行動計劃》是和大氣污染、土壤污染防治並行的環保部「三大戰役」之一。環保部副部長吳曉青此前表示,計劃將於今年正式出台。2月13日,環保部已經審議並原則通過了《水污染防治行動計劃(送審稿)》。
環保部副部長翟青在介紹2013年環保工作進展情況的發布會上稱,計劃重點是抓兩頭,一頭是污染重的地方堅決進行治理,另一頭是水質較好的河湖堅決保護起來,不能先污染再治理。在具體措施方面,一是要大幅度削減工業污染的排放;二是要管理好城市生活污染的排放;三是治理好農村河溝、河岔。
在去年7月召開的中國環保產業高峰論壇上,環保部污染防治司處長汪濤表示,「水污染防治行動計劃投入資金預計達2萬億元」,規模將高於大氣污染防治的1.7萬億元。
《水污染防治行動計劃》最快將於5、6月份上報,計劃將消滅劣V類水的時間由原定的2020年提前到2017年。
《水污染防治行動計劃》將是2014年影響資本市場環保板塊的重大政策措施,2萬億的投資將開啟新一輪的水處理公司投資熱潮。
工業廢水處理成核心
工業廢水處理將是《水污染防治行動計劃》的核心內容。我國市政污水處理已經覆蓋得差不多了,工業廢水是導致水污染的一大主因。工業廢水處理投資分為新建項目「三同時」投資和存量企業的廢水治理技術改造投資兩部分。
根據2012年度全國環境統計公報,工業廢水排放量221.6億噸,佔全國廢水排放總量的35%。業內估計,工業廢水治理領域投資需求將超過千億元。
未來還將設立國家環保基金,通過提供低利息長周期的貸款來推動工業廢水第三方治理。
A股上市公司中,工業廢水處理膜設備與工程領域公司津膜科技、萬邦達,電力工業污水處理龍頭中電環保等有望受益。 十二五期間全國GDP將達到231.2萬億元。根據中國環境規劃院宏觀戰略研究環保投入專題和十二五規劃前期研究,初步估算十二五期間環保投資需求約為3.1萬億元,與十一五期間環保投資占國內生產總值1.35%的比例基本持平,年均環保投資為6200億元左右。

6. 河岸滲濾系統除污功效的研究進展

邢永強1李金榮2楊振放2

(1.河南省國土資源科學研究院,鄭州 450016;2.鄭州大學環境與水利學院,鄭州 450001)

《安徽農業科學》,文章編號:0517-6611-(2007)-13-03946-03

摘要 目前水資源日益緊缺的情況下,尋求一種既經濟且效果好的污水處理方式很重要。河岸滲濾系統對污水具有凈化功能,可以去除河水中的天然有機污染物、合成有機污染物、無機污染物以及顆粒物、細菌及病原體等污染物,是一種行之有效的處理途徑,通過對它的簡單概述來了解河岸滲濾系統的作用,為我們以後的研究方向提供理論依據。

關鍵詞 污水 河岸滲濾系統 凈化作用

目前地表水體污染嚴重,使緊缺的水資源更加短缺,嚴重製約了社會經濟的發展。於是人們迫切需要尋找一種費用少、效果好的污水資源化技術,改善水環境質量,實現水資源的持續利用,這已成為當今全球水環境研究的熱點。實踐與研究表明,河岸滲濾(Wolfgang Kuehn et al.,2000)(River Bank Filtration,RBF)對污水的凈化是一種經濟、高效的飲用水治理技術,得到了越來越多國家與研究者的重視。由於我國水環境研究起步較晚,目前關於污染河流對其沿岸地下水環境影響的研究較少,因此進行河岸滲濾系統對地表污水凈化的研究,為實現城市污水資源化提供科學依據,其意義十分重大。

1 河岸滲濾的定義

河岸滲濾是指河水在補給地下水的滲濾途中,被河流沉積層過濾且凈化的過程。在該過程中,河水中的污染物經過沉積層的過濾、生物降解、吸附、沉澱,以及與地下水混合稀釋等而使污染物濃度降低,使河水水質得到凈化。其作用機理如圖1所示。

河岸滲濾是一個自然凈化過程。在德國利用河岸滲濾凈化河流污水已有100多年的歷史,在美國也有50多年的歷史。國外許多國家通過河岸滲濾系統獲取部分飲用水,在斯洛伐克共和國通過河岸滲濾獲取的飲用水占總飲用水的50%(Wolfgang Kuehn et al.,2000),在匈牙利佔45%,在德國佔16%,在荷蘭佔5%,在德國的薩克斯佔18%,在德國的柏林市佔75%。在我國的許多地區,尤其是北方許多城市也是通過河岸滲濾作用獲取飲用水。所以說,河岸滲濾這種古老的水處理技術在我們的生活中非常重要。

圖1 河岸滲濾過程示意圖

Fig.1 The sketch map of riverbank filtration

(Chittaranjan Ray et al.,2002)

2 河岸滲濾系統除污功效

2.1 去除天然有機污染物

天然有機物NOM(Natural Organic Matter)是一種包括溶解的、腐殖的微粒和未腐殖的有機物等混合物。一些歐洲國家用河岸滲濾技術提高飲用水中NOM的去除率(Chittaranjan Ray et al.,2002),其去除率在荷蘭達7%,德國達16%,匈牙利達40%,芬蘭達48%,法國達50%,瑞士達80%。

對於天然的地表水體而言,水體中總的有機碳TOC(Total Organic Carbon)和化學需氧量COD(Chemical Oxygen Demand)主要是由NOM引起的。在城市的給水處理中,常採用氯氣消毒方法除去水中的微生物及病原體,但是在消毒過程中,NOM可與氯氣反應生成三氯甲烷、氯代乙酸等消毒副產物,它們是致癌物質。為保證人們的飲用水安全,人們更加關注這些消毒副產物的去除問題。大量研究發現,河岸滲濾對NOM具有一定的去除功效。Miettiner等(1994)通過監測某地表水及其岸邊地下水水質時發現,在地表河水向下入滲的過程中,地表水的TOC和COD等含量不斷降低,通過分光光度法確定,87%的高分子量化合物(1 500 g/mol)被去除。Sontheimer(1980)在萊茵河岸研究發現,河岸滲濾作用對中等分子量的化合物的去除率近70%。Ludwig等(1997)在德國的易北河沿岸開展研究進一步證實,分子量超過1 000 g/mol的NOM在河岸滲濾過程中不斷被去除。Wang等(1998)在俄亥俄河開展為期兩年的研究發現,河岸滲濾作用對NOM的去除機理主要是由生物作用。Ray等(2002)在俄亥俄河的研究亦發現,距河岸9m的觀測井,當從觀測井中以0.087 6m3/h抽取地下水時,井水中的TOC含量比河水中的減少了60%,井水中的NOM濃度比河水中的NOM濃度大大降低,甚至為零。以上均說明了河水中的污染物NOM可以通過河岸滲濾系統得以去除,這樣大大提高了生活飲用水和生產用水的質量。

2.2 去除合成有機污染物

眾所周知,芳香胺屬於河水中常見的合成有機污染物,其毒性很大,並且有致癌性、致突變性以及潛在的生物毒性。Sax(1984),Fishbein(1984),Razo-Flores(1997)等通過室內滲濾實驗說明了易北河水中苯胺在3 h內去除率達100%,而2-硝基苯胺在14 h去除率僅達40%。其原因是芳香胺的生物降解性主要取決於苯環的類型、個數和取代基的位置。Eckhard Worch等(2002)通過實驗研究發現,河岸滲濾過程中多氯苯胺和硝基苯胺很難降解,然而沒有取代基的苯胺在河岸滲濾過程中滯留3 h 後就完全降解了。Jütte(1999)分析並比較了易北河水和兩岸井水中三氯乙烯、四氯乙烯、氯仿的濃度,在井水中它們的濃度顯著下降,有的甚至低於檢測范圍。Widerer等(1985)研究萊茵河岸滲濾系統對固態有機碳(SOC)的去除情況,結果發現,SOC去除效率與其生物降解性及其在河水中的濃度密切相關。河水中芳香胺的濃度為17μg/L時,其去除率達71%,河水中三氯乙烯的濃度為1.5μg/L時,其去除率為33%,河水中氯仿的濃度為15μg/L時,其去除率很低。

針對河水中常見的另外一些合成有機污染物,如除草劑、殺蟲劑、葯劑。Jütter(1999)調查了中德魯爾河河岸滲濾過程中這些成分的去除率,在河流沉積層環境為厭氧條件時,如芳樟醇、異冰片基溴酸等極性污染物去除率達99%。Verstraeten(2002)等報道了普拉特河傍河水井中除草劑濃度比河水中的減少了76%。Dillon(2002)等報道了澳大利亞東南的墨累河中,其傍河水井除草劑的濃度大大低於河水中的濃度,主要因為除草劑在該河沉積層中發生了吸附和生物降解作用。莠去津是地表水中常見的除草劑,在美國北部城市路易斯維爾附近的俄亥俄河中,莠去津的濃度超過1μg/L,然而河岸滲濾水中莠去津的濃度低於檢測限0.1μg/L。

地表水體中還有一些來源於家庭洗滌劑的合成有機污染物,比較典型是薄荷醇、檸檬油精、松油醇、4-叔丁基環己醇、4-叔丁基環己酮。河水中這些有機污染物濃度相對穩定,不隨季節變化。Jütter(1999)研究發現,當河水向下滲濾距離為31m時,這些合成有機污染物的濃度接近或低於檢測限,例如薄荷醇、檸檬油精的濃度低於檢測限,這表明河岸滲濾系統對其具有很好的去除功效。

2.3 去除無機污染物

人類的各種活動增加了河水中無機物的濃度,當這些無機物含量超過國家規定的標准時,就成為污染物,鉻、鎘、砷、氨鹽、硝酸鹽、硫酸鹽等是地表水中常見的無機污染物,其對人類和牲畜危害很大。由於氨氮、亞硝態氮、硝態氮(簡稱「三氮」)是目前水環境中普遍存在的污染組分。水環境中的重金屬污染其危害較大,對動植物和生物具有致癌、致畸、致突變(簡稱「三致」)作用,故這里主要介紹河岸滲濾系統對氮污染物的去除和重金屬污染物的去除。

19世紀70年代初,研究發現萊茵河河水中氨氮濃度較高Jütter(1999),而溶解氧DO(Dissolved Oxygen)濃度較低,這是因為當時萊茵河已經受到嚴重污染,氨氮發生硝化作用消耗了河水中的DO,使河水中DO濃度小於1mg/L,這么低的DO濃度不利於氨氮的去除,故河水中氨氮濃度不斷加大。隨著環境保護措施的相繼出台,河水質量得到改善,19世紀80年代,河水中的DO濃度升高到3mg/L,高的DO濃度也提高了氨氮的去除率。吳耀國等(2000)研究了徐州市奎河河岸滲濾系統對水體中氮的去除情況,發現奎河水中氮污染嚴重,並且以氨氮為主,在距河岸40m處的水井中氨氮的去除率達95%以上。

河岸滲濾系統對氮的去除作用主要是反硝化作用。Grischek(1998)研究發現易北河水中的

濃度為4.97mg/L,由於

在河岸滲濾過程中發生反硝化作用,結果滲濾水中的

濃度遠遠低於河水中的濃度,降低到檢測限之下,尤其是在炎熱的夏季,河岸滲濾系統中微生物活性較高,

在反硝化作用下其濃度降低很快,在水中根本檢測不到

。Schubert(2002)取萊茵河水作了一系列的試驗,用來評價溶解的有機碳、氨氮和亞硝態氮的去除率,結果證明河岸滲濾系統對它們的去除效果都很好。在德國東部的薩克斯,試驗結果得出不僅河水中可氧化的有機碳為反硝化作用提供碳源,而且河流沉積物中的 SOC 也能為其提供碳源,其結果不僅去除了氮,而且也去除了 DOC 和 SOC。Grischek(1998)等研究證明

在易北河的一個砂礫岩沉積層中發生了反硝化作用,碳源就是這個砂礫石沉積層中溶解的有機碳。

Jütter(1999)在Glatl河研究不同重金屬的運移機制,結果表明水環境中有機物的生物降解作用增加了銅和錳的遷移能力;在還原條件下錳遷移能力提高;在氧化條件下,其遷移能力降低,從而限制了其進一步對水環境的污染。例如氧化環境下,河流沉積物可以與鋅和鎘發生物理和化學作用,使水中鋅和鎘的濃度降低,阻止其進一步向下遷移。Son-theimer(1980)在萊茵河流速較低的河段研究發現,河岸滲濾系統可以去除重金屬,且去除率較穩定,像鉻和砷的去除率可達90%,其他重金屬如鎘、鋅、鉛、銅、鎳的去除率也超過50%,主要的去除機理是河岸滲濾系統的吸附作用。

以上主要闡述了河水中不同污染物在河岸滲濾過程中發生不同的物理、化學和生物作用而得以去除。下面通過一個例子說明污染的河水在河岸滲濾系統的入滲過程中,幾種污染組分濃度發生的變化。圖2的上部是河岸滲濾系統的剖面示意圖,下面3個曲線圖是河水中3種污染物隨著河岸滲濾途徑的濃度變化示意圖。由圖2可見,河水中3種污染物在河岸滲濾系統中發生了強烈的生物地球化學作用。河水中DO、硝酸鹽和DOC濃度很高,這時候河流環境為氧化環境,河水中離子態錳的濃度很低。隨著河水向下入滲通過河岸滲濾系統(即如圖2中所示的還原區)時,污染物DOC在微生物的作用下發生生物降解,它的濃度在河岸滲濾系統中顯著下降,同時系統中DO濃度迅速降低,硝酸鹽在這個系統發生反硝化作用,導致硝酸鹽濃度的降低。這時候的河岸滲濾系統為還原環境,使入滲水中錳或鐵離子濃度顯著升高。入滲的河水沿著滲濾系統進一步滲濾,由於大氣通過包氣帶不斷向河流輸送氧氣,河岸滲濾系統重新獲得氧氣,使該系統處於還原和氧化的混合環境,DO濃度有所回升,而硝酸鹽在這個混合環境下不利於發生反硝化作用,其濃度也有所升高,而遷移的錳或鐵離子又被氧化成難溶於水的固態錳或鐵,入滲水中其濃度明顯下降。從圖2可以得到,河岸滲濾位置不同,其環境條件千差萬別,對污染物的凈化效果也存在很大的差異。因此,在實際的傍河水源地布井時,應該根據實際情況來布置開采井的位置,提高生活飲用水和生產用水的質量。

圖2 河岸滲濾過程中DO、硝酸鹽、溶解錳、DOC的變化示意圖

Fig.2 The variances of DO,NO3,Mn4+,DOC

2.4 去除病原體污染物

由於城市生活污水的排放,使地表水體遭受病原體的污染。病原體包括細菌、寄生蟲、原生動物和病毒等,這些病原體隨河水入滲進入地下水中,其對人體和牲畜造成極大的威脅。

在美國路易斯維爾河研究河岸滲濾系統對細菌和病原體的去除情況,通過檢測距河岸0.6m,1.5m,2.7m與15m的井中的水質發現,細菌和病原體的去除率可達2.4個對數單位。Wang等(1998)研究發現,河岸滲濾系統對俄亥俄河水中細菌及病原體的去除是隨滲濾距離的增加而增加的,在河岸沉積層頂部的1~2m范圍內其去除率最為顯著,細菌和病原體濃度大於100個單位的河水經過河岸滲濾系統時,其濃度可降到1個單位以下。

多年來,荷蘭的地表水體不斷遭受病原體污染,但在地下水中很少發現這些污染物的存在,表1是在荷蘭3條不同河流兩岸的觀測井中測到的病原體的去除情況(Havelaar et al.,1995),由表1可見,河岸滲濾系統可以有效地去除病原體。同時說明盡管河水在系統中滯留時間有很大差異,但在距河25~30m處,不同河岸滲濾系統對病原體的去除效果差別很小。在澳大利亞的5條河流的河水中都發現了原生生物,但在兩岸的水井中卻沒有監測到它們。Havelaar等(19995)研究河岸滲濾系統對腸道類與呼吸道病毒的去除作用,與其他處理方法相比,河岸滲濾系統對病毒的去除率達4個對數單位,對大腸桿菌去除率達5~6個對數單位,其去除效果明顯優於其他處理方法。當然,河岸滲濾系統中有機質含量越高,其對污染物的去除率越高。Miller與fallowfield利用土柱試驗研究河岸滲濾系統對藍藻的去除功效,結果表明,有機碳含量和粘土含量高的河岸沉積層對它們的去除率為100%。

表1 在荷蘭的3個不同河岸滲濾地點微生物的對數去除情況Table1 The log-removal of microorganisms in three different riverbank

註:「—」代表低於檢測范圍。

3 結語

河岸滲濾過程作為一種自然的地表污水凈化過程具有很多優點,它可以去除很多污染物,與傳統的處理方法相比,設備簡單,處理成本低。河岸滲濾過程作為可以飲用水處理的預處理步驟,具有很好的應用前景。由於不同河流的物理化學環境復雜,目前有關這方面的數據資料很有限,我們還需要系統分析污染物在這個獨特的水文地球化學環境中所發生的各種變化。

今後對河岸滲濾系統的主要研究方向如下:

(1)河岸滲濾系統可以通過物理、生物及化學作用去除污染物,但對河岸的滲透性是否有影響;

(2)河岸滲濾系統可以顯著去除病原體,但需要了解其去除機理;

(3)各種污染物單獨通過河岸滲濾系統時發生了哪些作用;多種污染物混合通過河岸滲濾系統時又會發生哪些作用。

隨著人們對河岸滲濾系統的進一步認識,相信會有更多的科學工作者投身於對河岸滲濾系統的研究,這對人們更好地維護和運行河岸滲濾系統具有深遠的意義。

參考文獻

吳耀國,王超,王惠民.2000.徐州市奎河——地下水滲濾系統處理水體中的氮.上海環境科學,19(1):23~25.

Chittaranjan Ray,Thomas Grischek,Jurgen Schubert,et al.2002.A perspective of riverbank filtration.Journal of AWWA,94(4):149~162.

Dillon P J,Miller M,Fallowfield H,Hutson J.2002.The potential of riverbank filtration for drinking water supplies in relation to microsystin removal in brackish aquifers.Journal of Hydrology,266:209~221.

Eckhard Worch,Yavuz Corapcioglu,Jack Z Wang,et al.2002.Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration.Journal of Hydrology,266:259~268

Grischek T,Hiscock K M,Felicita Briski,et al.1998.Factors affecting denitrification ring infiltration of river water into a sand and gravel aquifer in Saxony,Germany.Water resource,32(2):450~460.

Havelaar A H,Van Olphen M,Schijven J F.1995.Removal and inactivation of virus by drinking water treatment processes under full-scale conditions.Wat.Sci.Tech.,31(5):55.

Jütter F.1999.Efficacy of bank filtration for the removal of fragrance compounds and aromatic hydrocarbons.Wat.Sci.Tech.,40(6):123~128.

Ludwig U Grischek,Nestler T,Neumann W.1997.Behavior of different molecular-weight fractions of DOC of Elbe River water ring riverbank infiltration.Acta Hydrochim.Hydrobiol.,25:145~150.

Miettinen I T,Martikainen P J,Vartiainen T.1994.Humus transformation at the bank filtration water plant.Wat.Sci.Tech.,30(10):179~187.

Ray C,Soong T W,Lian Y Q,et al.2002.Effect of flood-inced chemical load on filtrate quality at bank filtration sites.Journal of Hydrology,266:235~258.

Sontheimer H.1980.Experience with riverbank filtration along the Rhine Rive.Journal of AWWA,72:386~390.

Verstraeten I M.2002.Changes in concentrations of triazine and acetamide herbicides by bank filtration,ozonation,and chlorination in a public water supply.Journal of Hydrology,266:190~208.

Wang Yu-Sheng,Morton A Barlaz.1998.Anaerobic biodegradability of alkylbenzenes and phenol by landfill derived microorganisms.FEMS Miciobiology Ecology,25:405~418.

Widerer P A,Foerstner U,Kuntschik O R.1985.The role of riverbank filtration along the Rhine River for municipal and Instrial water supply.Artificial Recharge of Groundwater.Boston:Butterworth publishers,23(6):509~528.

Wolfgang Kuehn,Uwe Mueller.2000.Riverbank filtration—an overview.Journal of AWWA,92(12):60~69.

Progress of Pollutants Removal Efficiency in Riverbank Filtration System

Xing Yong-qiang1Li Jin-rong2Yang Zhen-fang2

(1.Sciencial Research institute of land and resource of Henan Province,Zhengzhou 450016;2.College of Environment and Water Conservancy,Zhengzhou Univ.,Zhengzhou 450001)

Abstract:In conditions of Shortage of water-resource,the importent is looking for method ofremoval wastewater,which is both low-cost and efficacy.Wastewater can be purified by a river-bank filtration system.Riverbank filtration system can remove a variety of contaminants present in the river water,such as natural organic pollutants,synthetic organic pollutants,inorganic pollu-tants,bacteria,pathogens etc.On the basis of simply outline of purification,further research directions of a riverbank filtration system are also presented.

Key words:wastewater;riverbank filtration system;purification function

7. 請問:污水處理或污水處理廠重要性(概括總結性在100-200字左右)

我僅從污水的危害來說明污水處理的重要性。也許這種方式可以直接說明
(1)危害人的健康
水污染後,通過飲水或食物鏈,污染物進入人體,使人急性或慢性中毒。砷、鉻、銨類、笨並(a)芘等,還可誘發癌症。被寄生蟲、病毒或其它致病菌污染的水,會引起多種傳染病和寄生蟲病。重金屬污染的水,對人的健康均有危害。被鎘污染的水、食物,人飲食後,會造成腎、骨骼病變,攝入硫酸鎘20毫克,就會造成死亡。鉛造成的中毒,引起貧血,神經錯亂。六價鉻有很大毒性,引起皮膚潰瘍,還有致癌作用。飲用含砷的水,會發生急性或慢性中毒。砷使許多酶受到抑制或失去活性,造成機體代謝障礙,皮膚角質化,引發皮膚癌。有機磷農葯會造成神經中毒,有機氯農葯會在脂肪中蓄積,對人和動物的內分泌、免疫功能、生殖機能均造成危害。稠環芳烴多數具有致癌作用。氰化物也是劇毒物質,進入血液後,與細胞的色素氧化酶結合,使呼吸中斷,造成呼吸衰竭窒息死亡。我們知道,世界上80%的疾病與水有關。傷寒、霍亂、胃腸炎、痢疾、傳染性肝類是人類五大疾病,均由水的不潔引起。

(2)對工農業生產的危害
水質污染後,工業用水必須投入更多的處理費用,造成資源、能源的浪費,食品工業用水要求更為嚴格,水質不合格,會使生產停頓。這也是工業企業效益不高,質量不好的因素。農業使用污水,使作物減產,品質降低,甚至使人畜受害,大片農田遭受污染,降低土壤質量。海洋污染的後果也十分嚴重,如石油污染,造成海鳥和海洋生物死亡。

(3)水的富營養化的危害
在正常情況下,氧在水中有一定溶解度。溶解氧不僅是水生生物得以生存的條件,而且氧參加水中的各種氧化-還原反應,促進污染物轉化降解,是天然水體具有自凈能力的重要原因。含有大量氮、磷、鉀的生活污水的排放,大量有機物在水中降解放出營養元素,促進水中藻類叢生,植物瘋長,使水體通氣不良,溶解氧下降,甚至出現無氧層。以致使水生植物大量死亡,水面發黑,水體發臭形成「死湖」、「死河」、「死海」,進而變成沼澤。這種現象稱為水的富營養化。富營養化的水臭味大、顏色深、細菌多,這種水的水質差,不能直接利用,水中斷魚大量死亡。

8. 中國最新的水資源現狀 污水處理現狀

根據前瞻產業研究院發布的《中國污水處理行業市場前瞻與投資戰略規劃分析報告》數據顯示,截至年底,我國污水處理及其再生行業企業個數達到了213個,資產總計844.13億元,較2011年增長了11.43%,銷售收入為236.64億元,較2011年增長了16.16%,擴張速度較快。

但是我國當前污水處理費還處於較低的水平,在我國36個大中城市中還有14個城市的污水處理費低於0.8元/噸,未能達到國家規定的上漲幅度,雖然當前我國污水處理及其再生行業的毛利率較高,2012年華東地區和西北地區的毛利率超過了100%,但是由於污水處理費的工業事業特徵,其市場調節能力較差,2012年我國污水處理及其再生行業七個地區有四個毛利率在下降,而且華東、華中地區連續兩年處於下降趨勢,在一定程度上會打擊企業投資這個行業的積極性。

前瞻產業研究院污水處理及其再生行業小組認為,從我國污水日處理能力和污水排放總量對比來看,我國污水處理能力尚不能滿足需處理的污水量,加上污水處理行業存在產能利用率低的問題,每年都有大量的沒有得到處理的污水流入水體中污染水環境,行業需求大於供應。

受到經濟回暖,國家政策推動以及環保行業熱度增長等有利因素作用,污水處理行業整體生產經營狀況較好,基於多項政策的利好作用具有持續性,加之隨著工業的持續增長,污水處理的行業需求將穩定增加,預計2013年污水處理行業的財務運行仍將保持較好水平。

國家環境保護「十二五」規劃指出,「十二五」期間中國環保投資將達3.1萬億,較「十一五」期間1.54萬億的投資額上升121%。「十二五」期間,隨著環境稅費改革,市場化和特許經營制度完善,稅費優惠政策落實和處理費用徵用水平提高,污水處理、垃圾處理運行服務市場將迅速發展,環境咨詢、環境設計、環境貿易等服務領域也將進一步擴大,行業發展前景廣闊。

總體來說,我國污水處理行業前景比較良好,行業增長空間很大。

9. 怎樣寫污水處理廠的調查報告

1、文獻綜述是對某一方面的專題搜集大量情報資料後經綜合分析而寫成的一種學術論文, 它是科學文獻的一種。
2、格式與寫法
文獻綜述的格式與一般研究性論文的格式有所不同。這是因為研究性的論文注重研究的方法和結果,特別是陽性結果,而文獻綜述要求向讀者介紹與主題有關的詳細資料、動態、進展、展望以及對以上方面的評述。因此文獻綜述的格式相對多樣,但總的來說,一般都包含以下四部分:即前言、主題、總結和參考文獻。撰寫文獻綜述時可按這四部分擬寫提綱,在根據提綱進行撰寫工。
前言部分,主要是說明寫作的目的,介紹有關的概念及定義以及綜述的范圍,扼要說明有關主題的現狀或爭論焦點,使讀者對全文要敘述的問題有一個初步的輪廓。
主題部分,是綜述的主體,其寫法多樣,沒有固定的格式。可按年代順序綜述,也可按不同的問題進行綜述,還可按不同的觀點進行比較綜述,不管用那一種格式綜述,都要將所搜集到的文獻資料歸納、整理及分析比較,闡明有關主題的歷史背景、現狀和發展方向,以及對這些問題的評述,主題部分應特別注意代表性強、具有科學性和創造性的文獻引用和評述。
總結部分,與研究性論文的小結有些類似,將全文主題進行扼要總結,對所綜述的主題有研究的作者,最好能提出自己的見解。 參考文獻雖然放在文末,但卻是文獻綜述的重要組成部分。因為它不僅表示對被引用文獻作者的尊重及引用文獻的依據,而且為讀者深入探討有關問題提供了文獻查找線索。因此,應認真對待。參考文獻的編排應條目清楚,查找方便,內容准確無誤。關於參考文獻的使用方法,錄著項目及格式與研究論文相同,不再重復。

閱讀全文

與工業園區污水處理研究進展相關的資料

熱點內容
油煙凈化器不能用怎麼辦 瀏覽:151
實驗室廢水處理設備怎麼用 瀏覽:636
發動機空氣濾芯從哪裡取氣 瀏覽:41
雙層膜過濾器 瀏覽:405
小米凈水器H600質量怎麼樣 瀏覽:674
含硫廢水混凝調節pH 瀏覽:289
快速清理水垢用什麼辦法 瀏覽:478
去離子反滲透膜的原理 瀏覽:857
污水池體防水 瀏覽:235
飲水機下水道流水怎麼辦 瀏覽:351
污水管網建設運營 瀏覽:902
732陽離子交換樹脂洗脫 瀏覽:370
壓縮空氣過濾器材質 瀏覽:611
融安哪裡有污水處理廠 瀏覽:726
紳寶suv空調濾芯在哪裡 瀏覽:742
k2空氣濾芯在哪裡 瀏覽:864
常用水垢除垢劑 瀏覽:137
污水管網連接申請書 瀏覽:631
污水管距離雨水管多遠 瀏覽:710
中空纖維超濾膜微孔劑 瀏覽:239