『壹』 化工原理課程設計
化工原理課程設計
題 目 乙醇-水溶液連續精餾塔優化設計
目 錄
設計任務書………………………………………………………………3
英文摘要前言……………………………………………………………4
前言………………………………………………………………………4
精餾塔優化設計…………………………………………………………5
精餾塔優化設計計算……………………………………………………5
設計計算結果總表………………………………………………………22
參考文獻…………………………………………………………………23
課程設計心得……………………………………………………………23
精餾塔優化設計任務書
一、設計題目
乙醇—水溶液連續精餾塔優化設計
二、設計條件
1.處理量: 15000 (噸/年)
2.料液濃度: 35 (wt%)
3.產品濃度: 93 (wt%)
4.易揮發組分回收率: 99%
5.每年實際生產時間:7200小時/年
6. 操作條件:①間接蒸汽加熱;
②塔頂壓強:1.03 atm(絕對壓強)③進料熱狀況:泡點進料;
三、設計任務
a) 流程的確定與說明;
b) 塔板和塔徑計算;
c) 塔盤結構設計
i. 浮閥塔盤工藝尺寸及布置簡圖;
ii. 流體力學驗算;
iii. 塔板負荷性能圖。 d) 其它
i. 加熱蒸汽消耗量;
ii. 冷凝器的傳熱面積及冷卻水的消耗量e) 有關附屬設備的設計和選型,繪制精餾塔系統工藝流程圖和精餾塔裝配 圖,編寫設計說明書。
乙醇——水溶液連續精餾塔優化設計
(南華大學化學化工學院,湖南衡陽 421001)
摘要:設計一座連續浮閥塔,通過對原料,產品的要求和物性參數的確定及對主要尺寸的計算,工藝設計和附屬設備結果選型設計,完成對乙醇-水精餾工藝流程和主題設備設計。
關鍵詞:精餾塔,浮閥塔,精餾塔的附屬設備。
(Department of Chemistry,University of South China,Hengyang 421001)
Abstract: The design of a continuous distillation valve column, in the material, proct requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme.
Keywords: rectification column, valve tower, accessory equipment of the rectification column.
前 言
乙醇在工業、醫葯、民用等方面,都有很廣泛的應用,是很重要的一種原料。在很多方面,要求乙醇有不同的純度,有時要求純度很高,甚至是無水乙醇,這是很有困難的,因為乙醇極具揮發性,也極具溶解性,所以,想要得到高純度的乙醇很困難。
要想把低純度的乙醇水溶液提升到高純度,要用連續精餾的方法,因為乙醇和水的揮發度相差不大。精餾是多數分離過程,即同時進行多次部分汽化和部分冷凝的過程,因此可使混合液得到幾乎完全的分離。化工廠中精餾操作是在直立圓形的精餾塔內進行的,塔內裝有若干層塔板或充填一定高度的填料。為實現精餾分離操作,除精餾塔外,還必須從塔底引入上升蒸汽流和從塔頂引入下降液。可知,單有精餾塔還不能完成精餾操作,還必須有塔底再沸器和塔頂冷凝器,有時還要配原料液預熱器、迴流液泵等附屬設備,才能實現整個操作。
浮閥塔與20世紀50年代初期在工業上開始推廣使用,由於它兼有泡罩塔和篩板塔的優點,已成為國內應用最廣泛的塔型,特別是在石油、化學工業中使用最普遍。浮閥有很多種形式,但最常用的形式是F1型和V-4型。F1型浮閥的結果簡單、製造方便、節省材料、性能良好,廣泛應用在化工及煉油生產中,現已列入部頒標准(JB168-68)內,F1型浮閥又分輕閥和重閥兩種,但一般情況下都採用重閥,只有處理量大且要求壓強降很低的系統中,才用輕閥。浮閥塔具有下列優點:1、生產能力大。2、操作彈性大。3、塔板效率高。4、氣體壓強降及液面落差較小。5、塔的造價低。浮閥塔不宜處理易結焦或黏度大的系統,但對於黏度稍大及有一般聚合現象的系統,浮閥塔也能正常操作。
精餾塔優化設計計算
在常壓連續浮閥精餾塔中精餾乙醇——水溶液,要求料液濃度為35%,產品濃度為93%,易揮發組分回收率99%。年生產能力15000噸/年
操作條件:①間接蒸汽加熱
②塔頂壓強:1.03atm(絕對壓強)
③進料熱狀況:泡點進料
一 精餾流程的確定
乙醇——水溶液經預熱至泡點後,用泵送入精餾塔。塔頂上升蒸氣採用全冷凝後,部分迴流,其餘作為塔頂產品經冷卻器冷卻後送至貯槽。塔釜採用間接蒸汽再沸器供熱,塔底產品經冷卻後送入貯槽。工藝流程圖見圖
二 塔的物料衡算
查閱文獻,整理有關物性數據
⑴水和乙醇的物理性質
名稱
分子式
相對分子質量
密度
20℃
沸 點
101.33kPa
℃
比熱容
(20℃)
Kg/(kg.℃)
黏度
(20℃)
mPa.s
導熱系數
(20℃)
/(m.℃) 表面
張力
(20℃)
N/m
水 18.02 998 100 4.183 1.005 0.599 72.8
乙醇 46.07 789 78.3 2.39 1.15 0.172 22.8
⑵常壓下乙醇和水的氣液平衡數據,見表
常壓下乙醇—水系統t—x—y數據如表1—6所示。
表1—6 乙醇—水系統t—x—y數據
沸點t/℃ 乙醇摩爾數/% 沸點t/℃ 乙醇摩爾數/%
氣相 液相 氣相 液相
99.9 0.004 0.053 82 27.3 56.44
99.8 0.04 0.51 81.3 33.24 58.78
99.7 0.05 0.77 80.6 42.09 62.22
99.5 0.12 1.57 80.1 48.92 64.70
99.2 0.23 2.90 79.85 52.68 66.28
99.0 0.31 3.725 79.5 61.02 70.29
98.75 0.39 4.51 79.2 65.64 72.71
97.65 0.79 8.76 78.95 68.92 74.69
95.8 1.61 16.34 78.75 72.36 76.93
91.3 4.16 29.92 78.6 75.99 79.26
87.9 7.41 39.16 78.4 79.82 81.83
85.2 12.64 47.49 78.27 83.87 84.91
83.75 17.41 51.67 78.2 85.97 86.40
82.3 25.75 55.74 78.15 89.41 89.41
乙醇相對分子質量:46;水相對分子質量:18
25℃時的乙醇和水的混合液的表面張力與乙醇濃度之間的關系為:
式中 σ——25℃時的乙醇和水的混合液的表面張力,N/m;
x——乙醇質量分數,%。
其他溫度下的表面張力可利用下式求得
式中 σ1——溫度為T1時的表面張力;N/m;
σ2——溫度為T2時的表面張力;N/m;
TC——混合物的臨界溫度,TC=∑xiTci ,K;
xi——組分i的摩爾分數;
TCi——組分i的臨界溫度, K。
料液及塔頂、塔底產品的摩爾分數
X==0.174
X==0.838
X==0.0039
平均摩爾質量
M=0.17446.07+(1-0.174)18.02=22.9 kg/kmol
M= 0.83846.07+ (1-0.838) 18.02=41.52kg/kmol
M=0.003946.07+(1-0.0039)18.02=18.12kg/kmol
物料衡算
已知:F==74.83
總物料衡算 F=D+W=74.83
易揮發組分物料衡算 0.838D+0.0039W=74.830.174
聯立以上二式得:
D=15.25kg/kmol
W=59.57kg/kmol
三 塔板數的確定
理論塔板數的求取
⑴根據乙醇——水氣液平衡表1-6,作圖
⑵求最小迴流比Rmin和操作迴流比
因為乙醇-水物系的曲線是不正常的平衡曲線,當操作線與q線的交點尚未落到平衡線上之前,操作線已經與平衡線相切,如圖g點所示. 此時恆濃區出現在g點附近, 對應的迴流比為最小的迴流比. 最小迴流比的求法是由點a(,)向平衡線作切線,再由切線的斜率或截距求
作圖可知 b=0.342 b==0.342 Rmin =1.45
由工藝條件決定 R=1.6R
故取操作迴流比 R=2.32
⑶求理論板數
塔頂,進料,塔底條件下純組分的飽和蒸氣壓
組分 飽和蒸氣壓/kpa
塔頂 進料 塔底
水 44.2 86.1 101.33
乙醇 101.3 188.5 220.0
①求平均相對揮發度
塔頂 ===2.29
進料 ==2.189
塔底 ==2.17
全塔平均相對揮發度為
===2.23
===2.17
②理論板數
由芬斯克方程式可知
N===7.96
且
由吉利蘭圖查的 即
解得 =14.2 (不包括再沸器)
③進料板
前已經查出 即
解得 N=6.42
故進料板為從塔頂往下的第7層理論板 即=7
總理論板層數 =14.2 (不包括再沸器)
進料板位置 =7
2、全塔效率
因為=0.17-0.616lg
根據塔頂、塔釜液組成,求塔的平均溫度為,在該溫度下進料液相平均粘計劃經濟為
=0.1740.41+(1-0.174)0.3206=0.336
=0.17-0.616lg0.336=0.462
3、實際塔板數
精餾段塔板數:
提餾段塔板數:
四、塔的工藝條件及物性數據計算
以精餾段為例:
操作壓力為
塔頂壓力: =1.04+103.3=104.34
若取每層塔板壓強 =0.7
則進料板壓力: =104.34+130.7=113.4kpa
精餾段平均操作壓力 =kpa
2、溫度
根據操作壓力,通過泡點方程及安托因方程可得
塔頂 =78.36
進料板=95.5
=
3、平均摩爾質量
⑴ 塔頂==0.838 =0.825
= 0.83846.07+(1-0.838)18.02=41.52 kg/kmol
=0.82546.07+(1-0.825)18.02=41.15 kg/kmol
⑵ 進料板: = 0.445 =0.102
= 0.44546.07+(1-0.445)18.02=30.50 kg/kmol
=0.10246.07+(1-0.102)18.02=20.88 kg/kmol
精餾段的平均摩爾質量
= kg/kmol
= kg/kmol
4、平均密度
⑴液相密度
=
塔頂: = =796.7
進料板上 由進料板液相組成 =0.102
=
=
=924.2
故精餾段平均液相密度=
⑵氣相密度
=
5、液體表面張力
=
=0.83817.8+(1-0.838)0.63=15.0
=0.10216.0+(1-0.102)0.62=2.20
=
6、液體粘度
=
=0.8380.55+(1-0.838)0.37=0.521
=0.1020.34+(1-0.102)0.29=0.295
=
以提餾段為例
平均摩爾質量
塔釜 = 0.050 =0.0039
=0.05046.07+(1-0.050)18.02=19.42 kg/kmol
=0.003946.07+(1-0.0039)18.02=18.12 kg/kmol
提餾段的平均摩爾質量
= kg/kmol
= kg/kmol
平均密度
塔釜,由塔釜液相組成 =0.0039
=0.01
=
∴ =961.5
故提餾段平均液相密度
=
⑵氣相密度
==
五 精餾段氣液負荷計算
V=(R+1)D=(2.32+1)15.25=50.63
== m
L=RD=2.3215.25=35.38
= m
六 提餾段氣液負荷計算
V』=V=50.63
=0.382 m
L』=L+F=35.38+74.83=110.2
=0.0006 m
七 塔和塔板主要工藝尺寸計算
1塔徑
首先考慮精餾段:
參考有關資料,初選板音距=0.45m
取板上液層高度=0.07m
故 -=0.45-0.07=0.38m
==0.0239
查圖可得 =0.075
校核至物系表面張力為9.0mN/m時的C,即
C==0.075=0.064
=C=0.064=1.64 m/s
可取安全系數0.70,則
u=0.70=0.71.64=1.148 m/s
故 D==0.645 m
按標准,塔徑圓整為0.7m,則空塔氣速為0.975 m/s
2 精餾塔有效高度的計算
精餾段有效高度為
=(13-1)0.45=5.4m
提餾段有效高度為
=(20-1)0.45=8.55m
在進料孔上方在設一人孔,高為0.6m
故精餾塔有效高度為:5.4+8.55+0.6=14.55m
3 溢流裝置
採用單溢流、弓形降液管
⑴ 堰長
取堰長 =0.75D
=0.750.7=0.525m
⑵ 出口堰高
=
選用平直堰,堰上液層高度由下式計算
=
近似取E=1.03,則
=0.017
故 =0.07-0.017=0.053m
⑶ 降液管的寬度與降液管的面積
由查《化工設計手冊》
得 =0.17,=0.08
故 =0.17D=0.12 =0.08=0.031
停留時間 =39.9s (>5s符合要求)
⑷ 降液管底隙高度
=-0.006=0.053-0.006=0.047m
塔板布置及浮閥數目擊者及排列
取閥孔動能因子 =9
孔速 ===8.07m
浮閥數 n===39(個)
取無效區寬度 =0.06m
安定區寬度 =0.07m
開孔區面積
R==0.29m
x==0.16m
故 ==0.175m
浮閥排列方式採用等腰三角形叉排
取同一磺排的孔心距 a=75mm=0.075m
估算排間距h
h===0.06m
八 塔板流體力學校核
1、氣相通過浮塔板的壓力降,由下式
⑴ 干板阻力 ==0.027
⑵ 液層阻力 取充氣系數數 =0.5,有
==0.50.07=0.035
⑶ 液體表面張力所造成阻力此項可以忽略不計。
故氣體流經一層浮閥塔塔板的壓力降的液柱高度為:
=0.027+0.035=0.062m
常板壓降
=0.062860.59.81=523.4(<0.7K,符合設計要求)。
淹塔
為了防止淹塔現象了生,要求控制降液管中清液層高度符合,其中
由前計算知 =0.061m,按下式計算
=0.153=0.153=0.00002m
板上液層高度 =0.07m,得:
=0.062+0.07+0.00002=0.132m
取=0.5,板間距今為0.45m,=0.053m,有
=0.5(0.45+0.053)=0.252m
由此可見:<,符合要求。
霧沫夾帶
由下式可知 <0.1kg液/kg氣
===0.069
浮閥塔也可以考慮泛點率,參考化學工程手冊。
泛點率=100%
=D-2=0.7-20.12=0.46
=-2=0.3875-20.031=0.325
式中——板上液體流經長度,m;
——板上液流面積,;
——泛點負荷系數,取0.126;
K——特性系數,取1.0.
泛點率=
=36.2% (<80%,符合要求)
九 塔板負荷性能圖
1、霧沫夾帶線
按泛點率=80%計
100%=80%
將上式整理得
0.039+0.626=0.0328
與分別取值獲得一條直線,數據如下表。
0.00035 0.00085
0.835 0.827
2、泛液線
通過式以及式得
=
由此確定液泛線方程。
=
簡化上式得關系如下
計算數據如下表。
0.00035 0.00055 0.00065 0.00085
0.8215 0.8139 0.8105 0.8040
3、液相負荷上限線
求出上限液體流量值(常數)
以降液管內停留時間=5s
則
4、漏夜線
對於型重閥,由,計算得
則
5、液相負荷下限線
去堰上液層高度=0.006m
根據計算式求的下限值
取E=1.03
經過以上流體力學性能的校核可以將精餾段塔板負荷性能圖劃出。如圖
由塔板負荷性能圖可以看出:
① 在任務規定的氣液負荷下的操作點
P(0.00083,0.630)(設計點),處在適宜的操作區內。
② 塔板的氣相負荷上限完全有霧沫夾帶控制,操作下限由漏液控制。
③ 按固定的液氣比,即氣相上限=0.630 ,氣相下限=0.209 ,求出操作彈性K,即
K==3.01
十 精餾塔的主要附屬設備
1 冷凝器
(1)冷凝器的選擇:強制循環式冷凝器
冷凝器置於塔下部適當位置,用泵向塔頂送迴流冷凝水,在冷凝器和泵之間需設迴流罐,這樣可以減少台架,且便於維修、安裝,造價不高。
(2)冷凝器的傳熱面積和冷卻水的消耗量
熱流體為78.36℃的93%的乙醇蒸汽,冷流體為20℃的水
Q=qm1r1 Q=qm2r2
Q—單位時間內的傳熱量,J/s或W;
qm1, qm2—熱、冷流體的質量流量,kg/s;
r1 ,r2—熱,冷流體的汽化潛熱,J/kg
r1=600 kJ/㎏ r2=775 kJ/㎏ qm1=0.153kg/s
Q=qm1r1=0.153×600000=91800J/s
Q=qm2r2=775000 qm2=91800
∴ qm2=0.12 kg/s
傳熱面積:
A=
==21.2
K取700W·m-2/℃
∴ A=
2 再沸器
(1)再沸器的選擇:釜式再沸器
對直徑較大的塔,一般將再沸器置於踏外。其管束可抽出,為保證管束浸於沸騰器液中,管束末端設溢流堰,堰外空間為出料液的緩沖區。其液面以上空間為氣液分離空間。釜式再沸器的優點是氣化率高,可大80%以上。
(2)加熱蒸汽消耗量
Q=qm1r1 Q=qm2r2
Q—單位時間內的傳熱量,J/s或W;
qm1, qm2—熱、冷流體的質量流量,kg/s;
r1 ,r2—熱,冷流體的汽化潛熱,J/kg
∵ r1=2257 kJ/㎏ r2=1333 kJ/㎏ qm2=0.43kg/s
∴ Q=qm2r1=0.43×1333=573.2 kJ/s=2257 qm1
∴ 蒸汽消耗量qm1為0.254 kg/s
表 浮閥塔板工藝設計計算結果
序號 項目 數值
1 平均溫度tm,℃ 86.93
2 平均壓力Pm,kPa 108.89
3 液相流量LS,m3/s 0.00035
4 氣相流量VS,m3/s 0.375
5 實際塔板數 33
6 塔徑,m 0.70
7 板間距,m 0.45
8 溢流形式 單溢流
9 堰長,m 0.525
10 堰高,m 0.053
11 板上液層高度,m 0.07
12 堰上液層高度,m 0.047
13 安定區寬度,m 0.07
14 無效區寬度,m 0.06
15 開孔區面積,m2 0.175
16 閥孔直徑,m 0.039
17 浮閥數 39
18 孔中心距,m 0.075
19 開孔率 0.147
20 空塔氣速,m/s 0.8
21 閥孔氣速,m/s 8.07
22 每層塔板壓降,Pa 700
23 液沫夾帶,(kg液/kg氣) 0.069
24 氣相負荷上限,m3/s 0.00356
25 液相負荷上限,m3/s 0.00028
26 操作彈性 3.01
參考文獻
[1]陳英男、劉玉蘭.常用華工單元設備的設計[M].上海:華東理工大學出版社,2005、4
[2]劉雪暖、湯景凝.化工原理課程設計[M].山東:石油大學出版社,2001、5
[3]賈紹義、柴誠敬.化工原理課程設計[M].天津:天津大學出版社,2002、8
[4]路秀林、王者相.塔設備[M].北京:化學工業出版社,2004、1
[5]王明輝.化工單元過程課程設計[M].北京:化學工業出版社,2002、6
[6]夏清、陳常貴.化工原理(上冊)[M].天津:天津大學出版社,2005、1
[7]夏清、陳常貴.化工原理(下冊)[M].天津:天津大學出版社,2005、1
[8]《化學工程手冊》編輯委員會.化學工程手冊—氣液傳質設備[M]。北京:化學工業出版社,1989、7
[9]劉光啟、馬連湘.化學化工物性參數手冊[M].北京:化學工業出版社,2002
[10]賀匡國.化工容器及設備簡明設計手冊[M].北京:化學工業出版社,2002
課程設計心得
通過這次課程設計使我充分理解到化工原理課程的重要性和實用性,更特別是對精餾原理及其操作各方面的了解和設計,對實際單元操作設計中所涉及的個方面要注意問題都有所了解。通過這次對精餾塔的設計,不僅讓我將所學的知識應用到實際中,而且對知識也是一種鞏固和提升充實。在老師和同學的幫助下,及時的按要求完成了設計任務,通過這次課程設計,使我獲得了很多重要的知識,同時也提高了自己的實際動手和知識的靈活運用能力。
『貳』 精餾模擬塔底再沸器的加熱量如何調節
在手動調節的時候,要控制
迴流比
,不然一不小心液泛,迴流罐里就滿罐或者就沒液位了。
『叄』 精餾塔,塔頂,再沸器,進料,壓強溫度怎麼確定
根據情況,如果冷凝器使用冷凝水,塔頂溫度可以在40-50℃,從而估算出壓力,再根據填料或者塔板壓降估算塔底壓力溫度,進料板溫度比對應板上面的壓力高就可以了,進料狀態自己確定吧,有的說和塔頂還是塔釜采出為主相關
『肆』 塔釜再沸器蒸汽量上不去,塔釜溫度略低,為負壓塔,壓力正常
根據你敘述的現象,初步判斷是由於再沸器結垢,導致傳熱系數低,所以加熱蒸汽流量上不去,熱源不夠導致塔釜溫度偏低。
『伍』 精餾塔溫度,液位等怎麼看,怎麼去調節我是初學操作精餾的工作,以前未接觸過,現在上班又不懂,想知識
精餾操作穩定的因素主要有迴流比;塔頂溫度、壓力;進料溫度,組分組成;塔底再沸器迴流溫度,組分組成;整體塔的塔板數;中間循環迴流及抽出物料等等,但最主要因素有下面幾點: 1.物料平衡的影響和制約 根據精餾塔的總物料衡算可知,對於一定的原料液流量F和組成xF,只要確定了分離程度xD和xW,餾出液流量D和釜殘液流量W也就被確定了。 采出率D/F: D/F=(xF-xW)/(xD-xW) 不能任意增減,否則進、出塔的兩個組分的量不平衡,必然導致塔內組成變化,操作波動,使操作不能達到預期的分離要求。 在精餾塔的操作中,需維持塔頂和塔底產品的穩定,保持精餾裝置的物料平衡是精餾塔穩態操作的必要條件。通常由塔底液位來控制精餾塔的物料平衡。 2、塔頂迴流的影響 迴流比是影響精餾塔分離效果的主要因素,生產中經常用迴流比來調節、控制產品的質量。 當迴流比增大時,精餾產品質量提高; 當迴流比減小時,xD減小而xW增大,使分離效果變差。 迴流比增加,使塔內上升蒸汽量及下降液體量均增加,若塔內汽液負荷超過允許值,則可能引起塔板效率下降,此時應減小原料液流量。 調節迴流比的方法可有如下幾種。 (1)減少塔頂采出量以增大迴流比。 (2)塔頂冷凝器為分凝器時,可增加塔頂冷劑的用量,以提高凝液量,增大迴流比。 (3)有迴流液中間貯槽的強制迴流,可暫時加大迴流量,以提高迴流比,但不得將迴流貯槽抽空。 必須注意,在餾出液采出率D/F規定的條件下,籍增加迴流比R以提高xD的的方法並非總是有效。 加大操作迴流比意味著加大蒸發量與冷凝量,這些數值還將受到塔釜及冷凝器的傳熱面的限制。 3.進料熱狀況的影響 當進料狀況(xF和q)發生變化時,應適當改變進料位置,並及時調節迴流比R。一般精餾塔常設幾個進料位置,以適應生產中進料狀況,保證在精餾塔的適宜位置進料。如進料狀況改變而進料位置不變,必然引起餾出液和釜殘液組成的變化。 進料情況對精餾操作有著重要意義。常見的進料狀況有五種,不同的進料狀況,都顯著地直接影響提餾段的迴流量和塔內的汽液平衡。 精餾塔較為理想的進料狀況是泡點進料,它較為經濟和最為常用。 對特定的精餾塔,若xF減小,則將使xD和xW均減小,欲保持xD不變,則應增大迴流比。 4.塔釜溫度的影響 釜溫是由釜壓和物料組成決定的。精餾過程中,只有保持規定的釜溫,才能確保產品質量。因此釜溫是精餾操作中重要的控制指標之一。 提高塔釜溫度時,則使塔內液相中易揮發組分減少,同時,並使上升蒸汽的速度增大,有利於提高傳質效率。 如果由塔頂得到產品,則塔釜排出難揮發物中,易揮發組分減少,損失減少; 如果塔釜排出物為產品,則可提高產品質量,但塔頂排出的易揮發組分中夾帶的難揮發組分增多,從而增大損失。 在提高溫度的時候,既要考慮到產品的質量,又要考慮到工藝損失。一般情況下,操作習慣於用溫度來提高產品質量,降低工藝損失。 當釜溫變化時,通常是用改變蒸發釜的加熱蒸汽量,將釜溫調節至正常。 當釜溫低於規定值時,應加大蒸汽用量,以提高釜液的汽化量,使釜液中重組分的含量相對增加,泡點提高,釜溫提高。 當釜溫高於規定值時,應減少蒸汽用量,以減少釜液的汽化量,使釜液中輕組分的含量相對增加,泡點降低,釜溫降低。 此外還有與液位串級調節的方法等。 5.操作壓力的影響 塔的壓力是精餾塔主要的控制指標之一。在精餾操作中,常常規定了操作壓力的調節范圍。塔壓波動過大,就會破壞全塔的氣液平衡和物料平衡,使產品達不到所要求的質量。 提高操作壓力,可以相應地提高塔的生產能力,操作穩定。但在塔釜難揮發產品中,易揮發組分含量增加。如果從塔頂得到產品,則可提高產品的質量和易揮發組分的濃度。 影響塔壓變化的因素:塔頂溫度,塔釜溫度、進料組成、進料流量、迴流量、冷劑量、冷劑壓力等的變化以及儀表故障、設備和管道的凍堵等 對於常壓塔的壓力控制,主要有以下三種方法。 (1)對塔頂壓力在穩定性要求不高的情況下,無需安裝壓力控制系統,應當在精餾設備(冷凝器或迴流罐)上設置一個通大氣的管道,以保證塔內壓力接近於大氣壓。 (2)對塔頂壓力的穩定性要求較高或被分離的物料不能和空氣接觸時,若塔頂冷凝器為全凝器時,塔壓多是靠冷劑量的大小來調節。 (3)用調節塔釜加熱蒸汽量的方法來調節塔釜的氣相壓力。 在生產中,當塔壓變化時,控制塔壓的調節機構就會自動動作,使塔壓恢復正常。 當塔壓發生變化時,首先要判斷引起變化的原因,而不要簡單地只從調節上使塔壓恢復正常,要從根本上消除變化的原因,才能不破壞塔的正常操作。
『陸』 精餾塔內溫度的分布
加工空氣由下塔底部進入,已達到了所處壓力下的飽和溫度。進入下塔的空氣溫度約為100K。空氣在下塔進行預精餾,隨蒸氣逐漸上升,其含氮量逐板增加,在下塔頂為純氣氮(含氮99.99%~99.999%),在冷凝蒸發器中全部冷凝成液氮,所對應的飽和溫度為94~95K。因為冷凝蒸發器的溫差為1~2K。因而上塔底(主冷液氧側)的飽和溫度為92~93K。精餾塔的上塔仍然是自下而上含氮量逐板增加,塔板的溫度逐漸下降。在液空進料口處,下塔富氧液空(含氧38%)節流後的溫度約為87~88K。在污氮出口處,污氮的純度為94%~96%,其相應的飽和溫度為80~80.5K。在上塔的輔塔頂純氮取出口處,相對應壓力約為0.12MPa,對應的純氮氣(含氮99.99%~99.999%)的飽和溫度為77.5~78K。精餾塔各處的溫度是隨著塔板上的氣、液組成而變化的。由於氮是低沸點組分,它的含量增加,溫度就下降。反之,含氧量增多,溫度就會升高。
總之,雙級精餾塔的各截面溫度是自下而上降低的。下塔底的壓力為0.6MPa溫度約為100K;下塔頂為94~95K;上塔的溫度也是自下而上降低,下部溫度范圍為92~94K,頂部溫度為77.5~78K。
『柒』 酒精生產中蒸餾塔底再沸器殼程水蒸氣進出溫度大概是多少
0.5MP左右,溫度大約150度。
『捌』 精餾塔中何處溫度最高
sucurse(站內聯系TA)看你的物料是什麼了,塔頂的溫度較低,塔底的溫度較高,有個氣液交換能量傳遞的過程雄8888(站內聯系TA)塔底是最高的,往上越來越低,具體還要看你的物料,還有側線采出,塔保溫情況等doctorkiller(站內聯系TA)塔底溫度最高,隨塔增高溫度逐漸降低。通過塔頂迴流量可以調整塔溫度分布。迴流量增大塔頂溫度降低。塔底再沸器溫度升高塔溫升高。marineman(站內聯系TA)看進料溫度和進料板位置。一般來說,不是一個單調曲線,降低,升高,再降低。eagletsky(站內聯系TA)精餾塔內的溫度和物料有關,具體說和塔內該段的物料組成有關~tray(站內聯系TA)塔頂是餾出物的露點溫度,塔底是釜殘液的泡點溫度gaoshihu(站內聯系TA)塔頂的餾出物是相對易揮發性的物質,溫度較低,塔底是難揮發性的物質,溫度較高,從下往上是溫度越來越低的,具體溫度看物料的組成!:)zhaojuns(站內聯系TA)塔底溫度最高,隨塔增高溫度逐漸降低。通過塔頂迴流量可以調整塔溫度分布。具體還要看你的物料,還有側線采出,塔保溫情況等chinaseraphic(站內聯系TA)普通精餾,塔釜溫度高於塔頂,分別是對應組分和壓力下的泡點溫度,但是如果是萃取精餾,在工業生產中塔中溫有可能高於釜溫。
可以根據靈敏板的溫度變化調節塔的操作,工業上一般就是塔中溫力量1935(站內聯系TA)普通精餾,塔釜最高,因為有再沸器,塔頂流出物的溫度較低。從下往上逐漸減小。側線才出可能會損害部分熱量,另外就是保溫材料以及物料性質。
『玖』 塔底液位高是否造成重沸器蒸汽量提不起來
重沸器有好多種類型,主要分為釜式的、虹吸式的,它們還細分好多種類型,還有立式和卧式之分,不同類型的重沸器有不同的工作機理。一般來說,塔底液位不能高過反回口的高度,並保有一定的距離。對釜式來說,塔底液位高度應剛剛淹過重沸器管束,不能太高也不能太低,這樣才能保證最佳氣化效果。對虹吸式來說,關鍵在於保證循環量(自然循環)或者說減小循環壓降,從設計和優化上來說比釜式更有難度。簡單的說,塔底液位太低會導致推動力不夠;塔底液位太高會導致汽化形式變差,極端情況是整個再沸器被液體淹沒,沒有發汽空間,發汽阻力增大,塔釜壓力高,需要的蒸汽溫度更高才能氣化介質,效率下降。
『拾』 請問氣提塔為什麼塔頂溫度高塔底溫度低
這個抄是不確定的,這個要襲從氣提的機理來考慮:
如果氣提的主要目的是改變產品質量,並且氣提塔的作用是除去大量雜質,這樣就可能會用到塔底再沸器,這種情況肯定是塔底溫度比塔頂溫度高一些,此時氣提塔也相當於是精餾塔;
如果氣提的主要作用是除去少量的雜質,就可以單純的氣提,這樣塔底也就不需要再沸器,塔底和塔頂的溫度基本上是一樣的。這是我們公司所接觸到的兩種氣提塔,
希望對你有所幫助!