㈠ 工廠的污水怎麼處理
化工廠污水處理方法主要有:
物理法(包括過濾法、重力沉澱法和氣浮法等。)
化學法(化學混凝法、化學氧化法、電化學氧化法、)
生化法(活性污泥法、SBR法、接觸氧化工藝、升流厭氧污泥床法等)
物理化學法(吸附法、萃取法、膜吸法等)
化工廠污水處理方法:1.化學方法處理
化學方法是利用化學反應的作用以去除水中的有機物、無機物雜質。主要有化學混凝法、化學氧化法、電化學氧化法等。化學混凝法作用對象主要是水中微小懸浮物和膠體物質,通過投加化學葯劑產生的凝聚和絮凝作用,使膠體脫穩形成沉澱而去除。混凝法不但可以去除廢水中的粒徑為1O~10mm的細小懸浮顆粒,而且還能去除色度,微生物以及有機物等。該方法受pH值、水溫、水質、水量等變化影響大,對某些可溶性好的有機、無機物質去除率低;化學氧化法通常是以氧化劑對化工污水中的有機污染物進行氧化去除的方法。廢水經過化學氧化還原,可使廢水中所含的有機和無機的有毒物質轉變成無毒或毒性較小的物質,從而達到廢水凈化的目的。常用的有空氣氧化,氯氧化和臭氧化法。空氣氧化因其氧化能力弱,主要用於含還原性較強物質的廢水處理,Cl是普通使用的氧化劑,主要用在含酚、含氰等有機廢水的處理上,用臭氧處理廢水,氧化能力強,無二次污染。臭氧氧化法、氯氧化法,其水處理效果好,但是能耗大,成本高,不適合處理水量大和濃度相對低的化工污水;電化學氧化法是在電解槽中,廢水中的有機污染物在電極上由於發生氧化還原反應而去除,廢水中污染物在電解槽的陽極失去電子被氧化外,水中的Cl-,OH-等也可在陽極放電而生成Cl2和氧而間接地氧化破壞污染物。實際上,為了強化陽極的氧化作用,減少電解槽的內阻,往往在廢水電解槽中加一些氯化鈉,進行所謂的電氯化,NaCl投加後在陽極可生成氯和次氯酸根,對水中的無機物和有機物也有較強的氧化作用。近年來在電氧化和電還原方面發現了一些新型電極材料,取得了一定成效,但仍存在能耗大、成本高,及存在副反應等問題。
化工廠污水處理方法2.物理處理法
化工污水常用的物理法包括過濾法、重力沉澱法和氣浮法等。過濾法是以具有孔粒狀粒料層截留水中雜質,主要是降低水中的懸浮物,在化工污水的過濾處理中,常用扳框過濾機和微孔過濾機,微孔管由聚乙烯製成,孔徑大小可以進行調節,調換較方便;重力沉澱法是利用水中懸浮顆粒的可沉澱性能,在重力場的作用下自然沉降作用,以達到固液分離的一種過程;氣浮法是通過生成吸附微小氣泡附裹攜帶懸浮顆粒而帶出水面的方法。這三種物理方法工藝簡單,管理方便,但不能適用於可溶性廢水成分的去除,具有很大的局限性。
化工廠污水處理方法3.光催化氧化技術
光催化氧化技術利用光激發氧化將O2、H2O2等氧化劑與光輻射相結合。所用光主要為紫外光,包括uv-H2O2、uv-O2等工藝,可以用於處理污水中CHCl3、CCl4、多氯聯苯等難降解物質。另外,在有紫外光的Feton體系中,紫外光與鐵離子之間存在著協同效應,使H2O2分解產生羥基自由基的速率大大加快,促進有機物的氧化去除。
所謂光化學反應,就是只有在光的作用下才能進行的化學反應。該反應中分子吸收光能被激發到高能態,然後電子激發態分子進行化學反應。光化學反應的活化能來源於光子的能量。在太陽能利用中,光電轉換以及光化學轉換一直是光化學研究十分活躍的領域。 80年代初,開始研究光化學應用於環境保護,其中光化學降解治理污染尤受重視,包括無催化劑和有催化劑的光化學降解。前者多採用臭氧和過氧化氫等作為氧化劑,在紫外光的照射下使污染物氧化分解;後者又稱光催化降解,一般可分為均相、多相兩種類型。均相光催化降解主要以Fe2+或Fe3+及H2O2為介質,通過光助-芬頓(photo-Fenton)反應使污染物得到降解,此類反應能直接利用可見光;多相光催化降解就是在污染體系中投加一定量的光敏半導體材料,同時結合一定能量的光輻射,使光敏半導體在光的照射下激發產生電子空穴對,吸附在半導體上的溶解氧、水分子等與電子空穴作用,產生•OH等氧化性極強的自由基,再通過與污染物之間的羥基加合、取代、電子轉移等使污染物全部或接近全部礦質化,最終生成CO2、H2O及其它離子如NO3-、PO43-、S042-、Cl-等。與無催化劑的光化學降解相比,光催化降解在環境污染治理中的應用研究更為活躍。具體參見相關技術文檔。
化工廠污水處理方法4.超聲波技術
超聲波技術,是通過控制超聲波的頻率和飽和氣體,降解分離有機物質。
功率超聲的空化效應為降解水中有害有機物提供了獨特的物理化學環境從而導致超聲波污水處理目的的實現。超聲空化泡的崩潰所產生的高能量足以斷裂化學鍵。在水溶液中,空化泡崩潰產生氫氧基和氫基,同有機物發生氧化反應。空化獨特的物理化學環境開辟了新的化學反應途徑,驟增化學反應速度,對有機物有很強的降解能力,經過持續超聲可以將有害有機物降解為無機離子、水、二氧化碳或有機酸等無毒或低毒的物質。
化工廠污水處理方法5.磁分離法
磁分離法,是通過向化工污水中投加磁種和混凝劑,利用磁種的剩磁,在混凝劑同時作用下,使顆粒相互吸引而聚結長大,加速懸浮物的分離,然後用磁分離器除去有機污染物,國外高梯度磁分離技術已從實驗室走向應用。
磁分離技術應用於廢水處理有三種方法:直接磁分離法、間接磁分離法和微生物—磁分離法。利用磁技術處理廢水主要利用污染物的凝聚性和對污染物的加種性。凝聚性是指具有鐵磁性或順磁性的污染物,在磁場作用下由於磁力作用凝聚成表面直徑增大的粒子而後除去。加種性是指藉助於外加磁性種子以增強弱順磁性或非磁性污染物的磁性而便於用磁分離法除去;或藉助外加微生物來吸附廢水中順磁性離子,再用磁分離法除去離子態順磁性污染物。
廢水高梯度磁分離處理法是廢水物理處理法之一種。利用磁場中磁化基質的感應磁場和高梯度磁場所產生的磁力從廢水中分離出顆粒狀污染物或提取有用物質的方法。磁分離器可分為永磁分離器和電磁分離器兩類,每類又有間歇式和連續式之分。高梯度磁分離技術用於處理廢水中磁性物質,具有工藝簡便、設備緊湊、效率高、速度快、成本低等優點。
㈡ 磁化效應的結論
磁處理廣泛應用於農業、醫學、養殖、工業等諸多領域,尤其生命科學。基於這些經驗,我們提出將磁處理技術與人工生態系統相結合應用於有機廢水的凈化處理,並著重對磁處理問題開展了一系列的實驗分析和實際應用,從中獲得一些有益的認識。
(a)有機廢水磁處理,在水體有氧條件下,污水瞬間通過合適的磁場 (0.315~0.368T)後,視水質成分的差異,可直接去除COD8%~25%,且不受水溫影響,但連續反復磁化,每次的去除率會隨磁化次數急劇下降。實際應用初步表明,磁處理器相隔的水力滯留時間以2~3d為宜。磁處理直接去除COD的原因,是污水被磁化中產生的h2O2等強氧化劑所致,並非生物酶作用或有機物分子結合鍵直接斷裂的結果。
(b)厭氧條件下,污水磁化對COD降解也很顯著,實驗表明,水溫40℃在上述適宜磁場下,可使COD的去除率比不磁化的提高21 %~28% ,但其機理尚需進一步研究。
(c)污水磁化,直接滅菌率可達 70%~80%(可能是形體很小的病毒、細菌等),但不能使所有的微生物死亡,尤其功能微生物,生存下來的還會被激活,以更大的活力提高污水凈化能力 (初步實驗約17%)。
(d)磁處理的污水,有利於菌藻系統生長和光合作用,可使水體產氧率和藻類 (綠藻 )生產力增加一倍之多,從而促進生物鏈對污水的凈化作用。
(e)磁處理宜與人工生態系統聯合使用,上述污水處理站就是這一結合的成功範例,處理效率高,運行費用低,污水資源化和變廢為寶,為可持續發展和推廣展示了廣闊的應用前景。
磁化效應在含酚廢水處理中的應用
由於各工廠含酚廢水的具體生成過程千差萬別,其組成和性質各不相同,並非任一處理方法都適用,需相應地根據實際情況尋求和採取有效的治理方法和技術。由於磁化效應能夠改善混凝效果和促進化學反應(8),所以採取先將含酚廢水經過微弱磁場的磁化後,再運用絮凝氧化法進行處理會提高其處理的效果。含酚廢水在經過微弱磁場的磁化作用後,再運用絮凝氧化法處理,處理效果與未經磁化的廢水相比略有差別,而且隨著磁化條件的改變存在不同的變化規律。
主要結論就是廢水經磁化後,與未經磁化相比絮凝效果和氧化處理大都有不同程度的提高。相對而言,較小的磁化流量對提高絮凝沉澱處理效果有利,而較大的磁化流速有利於獲得較高的氧化去酚率。增加廢水的磁化次數能夠使絮凝去酚率略有提高,對氧化去酚率的增加不很明顯。一般地可使廢水經過3~ 4個磁化器即可。無論磁化與否,氧化去酚率均隨著氧化劑ClO2使用量的增加而提高。但廢水比較高的流速經磁化後,在相同的氧化量條件下,其氧化去酚率均比未磁化的要高。這有利於減少氧化劑消耗量和處理費用,而不影響總處理效果。磁化效應能夠改變水的微觀狀態和結構從而影響其物理、化學性質。在適當的條件下可以明顯改善污水的處理效果。因此將磁化技術和工業廢水處理過程相結合的新處理手段值得進行研究和推廣應用。
磁化在的Fe3O4吸附溶液中的鉻的應用
關於Fe3O4吸附陰離子的機理已有研究,Fe3O4在水中由於水解呈正電性,對陰離子的的吸附平衡可以用形式與Langmuir等溫式相類似的的函數關系式描述,但吸附很難得到最大值。將Fe3O4粉末和磁性介質置於磁場中,磁化Fe3O4粉末聚集在具有磁力線密度不等的磁束的磁性介質附近,導致磁化的Fe3O4對Cr6+產生了磁力,通過提高磁場強度,增大Fe3O4的磁力,從而增加對Cr6+吸附量。但另一方面,在磁化Fe3O4的表面吸附量的增加,因為被吸附的粒子電性相同,斥力增大,抵消了一部分磁力,造成了在較小的磁場強度下,吸附質增大到一定程度後,吸附量反而下降。由此可見,在磁場作用下,磁化的Fe3O4表面的吸附量是磁力和電性斥力作用的結果,並形成多分子吸附。
㈢ 污水處理油的處理方法
本發明涉及污水處理領域,尤其是涉及一種含油污水處理方法。本發明提供的含油污水處理方法是將含油污水注入集水罐並曝氣;曝氣後的含油污水進行磁化處理;磁化後的含油污水中添加破乳劑進行破乳;對經過加葯的水進行混合反應;釋放混合後產生的絮凝產物;將釋放過絮凝產物的水進行過濾得到最終處理好的凈水。本發明提供的含油污水處理方法,通過在經過磁化後再進行破乳處理,之後才進行過濾,進而能夠徹底解決了濾料板結的問題,同時提高了過濾精度和除油效果,節省了能耗和水耗,使污水中的油可以不被分解而排出系統,使污水中的油能夠進行再次利用,提高了資源利用率。
摘要附圖
權利要求書
1.一種含油污水處理方法,其特徵在於,將含油污水注入集水罐並曝氣;曝氣後的含油污水進行磁化處理;磁化後的含油污水中添加破乳劑進行破乳;對經過加葯的水進行混合反應;釋放混合後產生的絮凝產物;將釋放過絮凝產物的水進行過濾得到最終處理好的凈水。
2.根據權利要求1所述的含油污水處理方法,其特徵在於,對釋放過絮凝產物的水進行過濾時,使用微濾罐進行過濾。
3.根據權利要求1所述的含油污水處理方法,其特徵在於,對釋放過絮凝產物的水進行的過濾為至少兩次。
4.根據權利要求3所述的含油污水處理方法,其特徵在於,在釋放混合後產生的絮凝產物後,通過提升泵將水位提高,以便於進行多次過濾操作。
5.根據權利要求1所述的含油污水處理方法,其特徵在於,對經過加葯的水進行混合反應的容器為超聲波混合罐。
6.根據權利要求1所述的含油污水處理方法,其特徵在於,在破乳後,先使用PAC將水中的膠體進行絮凝後,再使用PAM將反應後的細小繁花進行團聚,之後再進行混合。
7.根據權利要求1所述的含油污水處理方法,其特徵在於,在經過加葯的水進行混合反應後,先使用PAC將水中的膠體進行絮凝後,再使用PAM將反應後的細小繁花進行團聚,之後再進行釋放混合後產生的絮凝產物。
8.根據權利要求1所述的含油污水處理方法,其特徵在於,在含油污水進入到集氣罐之前先進行強氧化處理。
9.根據權利要求1所述的含油污水處理方法,其特徵在於,在釋放混合後產生的絮凝產物的同時,在水中進行曝氣。
10.根據權利要求1所述的含油污水處理方法,其特徵在於,對含油污水進行磁化處理在管道型磁化器中進行。
說明書
一種含油污水處理方法
技術領域
本發明涉及污水處理領域,尤其是涉及一種含油污水處理方法。
背景技術
含油污水的范圍包括了油田污水處理,也包括了油田用於回灌到地下保持地層壓力的回注水處理。相比之下,回注水處理技術要求最高,而且處理的目的是將原油與水進行有效分離,同時對懸浮物的去除要求也最高。
傳統的油田回注水處理一般採用的工藝為:
1、來水-聚合氯化鋁-沉降-核桃殼-一級石英砂-出水
2、來水-聚合氯化鋁-沉降-核桃殼-一級石英砂-二級石英砂-出水
3、來水-生化-超濾膜
4、來水-預處理-陶瓷膜
聚合氯化鋁的作用在於凝聚溶解性膠體和細小懸浮物,核桃殼的作用在於吸附油,石英砂過濾的作用在於濾出懸浮物,一般過濾精度大於10μm。
傳統的油田回注水處理一般採用的工藝存在的問題是:
1、僅僅添加聚合氯化鋁或相類似的通用性葯劑,對於去除水中溶解性膠體類物質作用有限,其原因在於很多含油污水裡面含有不同離子型膠體,通用葯劑對此沒有作用或作用有限。
2、採用核桃殼吸附油工藝具有普遍性,也確實可以起到很大作用。但是對於油田污水,因為所含油為原油,非常粘,類似鋪設馬路的瀝青。因此很容易將核桃殼粘連在一起,用水很難清洗,後來人們採用添加各種除油劑進行脫附,以期希望恢復吸附原油的能力,而事實上很難做到這一點,也就是沒有長期穩定吸附油的能力,反沖洗效果有限,原油粘連核桃殼是老大難問題。
3、石英砂過濾是水處理行業普遍應用的設備,已經有近百年的歷史,因其結構簡單價格便宜而延續至今,但是石英砂過濾也不是萬能的,在油田使用中已經普遍表現為不適應,具體為:
反沖洗水量大,一般為產水量的20%左右;反沖洗耗電大,例如直徑3米的石英砂過濾罐,反洗水泵一般為55KW;反洗效果有限,流量逐漸衰減;濾料板結粘連,使得過濾功能逐漸失效;過濾精度低,一般高於10微米,過濾出水懸浮物指標大於10mg/L,難以達到油田中後期普遍希望的高指標,既出水懸浮物5mg/L,粒徑中值2微米的要求,更難以達到出水懸浮物1mg/L,粒徑中值1微米的要求。
來水-生化-超濾膜工藝可以達到回注水最高標准,存在的問題是生化耗能較高,實際上是用耗電催生微生物,然後用微生物分解油,這樣得不償失,因為電和油都是能源,因此而造成很大浪費,特別是超濾膜的壽命有限,一般為2-3年,這樣就需要不斷的重復投資。
來水-預處理-陶瓷膜工藝也可以達到回注水最高標准,但是致命的缺陷是流量衰減太快,一般在6個月左右流量會衰減50%左右,投資和運行費用昂貴。
發明內容
本發明的目的在於提供一種含油污水處理方法,以解決現有技術中存在的技術問題。
本發明提供的含油污水處理方法,將含油污水注入集水罐並曝氣;曝氣後的含油污水進行磁化處理;磁化後的含油污水中添加破乳劑進行破乳;對經過加葯的水進行混合反應;釋放混合後產生的絮凝產物;將釋放過絮凝產物的水進行過濾得到最終處理好的凈水。
進一步的,對釋放過絮凝產物的水進行過濾時,使用微濾罐進行過濾。
進一步的,對釋放過絮凝產物的水進行的過濾為至少兩次。
進一步的,在釋放混合後產生的絮凝產物後,通過提升泵將水位提高,以便於進行多次過濾操作。
進一步的,對經過加葯的水進行混合反應的容器為超聲波混合罐。
進一步的,在破乳後,先使用PAC將水中的膠體進行絮凝後,再使用PAM將反應後的細小繁花進行團聚,之後再進行混合。
進一步的,在經過加葯的水進行混合反應後,先使用PAC將水中的膠體進行絮凝後,再使用PAM將反應後的細小繁花進行團聚,之後再進行釋放混合後產生的絮凝產物。
進一步的,在含油污水進入到集氣罐之前先進行強氧化處理。
進一步的,在釋放混合後產生的絮凝產物的同時,在水中進行曝氣。
進一步的,對含油污水進行磁化處理在管道型磁化器中進行。
本發明提供的含油污水處理方法,通過在經過磁化後再進行破乳處理,之後才進行過濾,進而能夠徹底解決了濾料板結的問題,同時提高了過濾精度和除油效果,節省了能耗和水耗,使污水中的油可以不被分解而排出系統,使污水中的油能夠進行再次利用,提高了資源利用率。
㈣ 處理污水實驗需要磁化水~用什麼儀器磁化比較好呢~最好能調節磁場的~誰懂一點嗎
建議你去CNKI下幾篇論文好好看看,現在磁化水一般都用的用永磁裝置,還有加入磁種的。不知道你是本科生還是碩士,你們用磁化水干什麼?,磁化在水處理方面有很多應用,如在緩蝕阻垢方面、在處理一些含油廢水、還有磁化混凝、磁分離技術等。我們現在在研究電磁混凝技術,如果你們也就將研究磁場和污水處理方面的問題,希望我們能互相幫助。
能制備磁化水裝置稱為磁水器。按磁場形式方式可將磁水器分為永磁式和電磁式兩種;按磁場位置又可將磁水器分為內磁式和外磁式兩種。永磁式和電磁式磁水器間隙磁場強度相同情況下效果相同,但各有特點。永磁式磁水器最大優點是不需能源,同時結構簡單,操作維護方便,但其磁場強度受到磁性材料和充磁技術限制,且存隨時間延長或水溫提高而退磁現象。電磁式磁水器優點是磁場強度容易調節,可以達到很高磁場強度,同時磁場強度不受時間和溫度影響,穩定性好,但其需要外界提供激磁電源。與內磁式磁水器相比,外磁式磁水器可能具有更大優越性,其主要優點是檢修時不必停水及拆卸管道,易引起磁短路現象。
根據法拉第的電磁理論,導體在外力作用下通過磁場,作切割磁力線運動時,會產生電荷和使電荷
運動的電動勢,於是導體內就產生了電流、電位差等物理變化,於是產生了電能。當切割磁力線的導體是一束有一定速度流動著的、有一定導電性的水時,在水流中也一定會發生上述的變化,這時可以說水被磁化了,或稱這種水是磁化水、磁性水,能使水磁化的裝置通常被稱為磁化水處理器、磁水器等,其工作過程見圖
㈤ 污水處理問題
平常心;要求有氣候變化、林業、水利、農業、邏輯、宏觀經濟等知識加上本身環境工程學。
我自己沒什麼素質,呵呵。本身是林業管護(民間出來的),現在兼職干水處理(磁分離工藝--美國劍橋的技術),賣生物肥(微生物菌劑--解磷、氮、鉀;改良土壤),喜歡錢,但不貪財--沒說嗎:人活著,錢沒了--人生最最痛苦的事,哈哈!
我也不是水處理專家(我們有理工學院的技術支持),不知道A/O工藝優缺點,只知道生物磁化工藝包含吧?在解決高COD等達標的前提下,相對於其他傳統工藝,成本低;投資低;濃縮-簡單到一個小集裝箱里,佔地成本也大大降低;磁粉的特性加快了沉澱(尤其是重金屬水),提高污水處理速度;能耗低;一個人都能看,也沒什麼清洗、維修的,電機燒了,呵呵廠家也不是專業生產的。國內現在也有做磁分離設備的,但核心技術不過關,COD降不下來及成本比較高,當然現在我們也算國內的,畢竟專利也放在了中國。
願意了解可以看一下原理
污水處理工藝原理分析對比
1、活性污泥法
長期以來,城市生活污水多採用活性污泥法,它是世界各國應用最廣的一種生物處理流程,具有處理能力高,出水水質好的優點。該方法主要由曝氣池、沉澱池、污泥迴流和剩餘污泥排放系統組成。廢水和迴流的活性污泥一起進入曝氣池形成混合液。曝氣池是一個生物反應器,通過曝氣設備充入空氣,空氣中的氧溶入混合液,產生好氧代謝反應,且使混合液得到足夠的攪拌而呈懸浮狀態,這樣,廢水中的有機物、氧氣同微生物能充分接觸反應。隨後混合液進入沉澱池,混合液中的懸浮固體在沉澱池中沉下來和水分離,流出沉澱池的就是凈化水。沉澱池中的污泥大部分迴流,稱為迴流污泥,迴流污泥的目的是使曝氣池內保持一定的懸浮固體濃度,也就是保持一定的微生物濃度。曝氣池中的生化反應引起微生物的增殖,增殖的微生物量通常從沉澱池中排除,以維持活性污泥系統的穩定運行,這部分污泥叫剩餘污泥。活性污泥除了有氧化和分解有機物的能力外,還要有良好的凝聚和沉降性能,以使活性污泥能從混合液中分離出來,得到澄清的出水。採用傳統的活性污泥法,往往基建費、運行費高,能耗大,管理復雜,易出現污泥膨脹現象;設備不能滿足高效低耗的要求。
2、生物膜法
在污水生物處理的發展和應用中,活性污泥和生物膜法一直占據主導地位。生物膜法主要用於從廢水中去除溶解性有機污染物,主要特點是微生物附著在介質「濾料」表面,形成生物膜,污水同生物膜接觸後,溶解的有機污染物被微生物吸附轉化為H2O、CO2、NH3和微生物細胞物質,污水得到凈化,所需氧化一般直接來自大氣。生物膜法處理系統適用於處理中小規模的城市廢水,採用的處理構築物有高負荷生物濾池和生物轉盤,生物濾池在我國南方更為適用。隨著新型填料的開發和配套技術的不斷完善,與活性污泥法平行發展起來的生物膜法處理工藝在近年來得以快速發展。由於生物膜法具有處理效率高、耐沖擊負荷性能好、產泥量低、佔地面積少、便於運行管理等優點,在處理中極具競爭力,但先期投資同樣巨大,後期運營成本較高。
3、氧化法
氧化法是目前廣泛採用並極具發展潛力的城市生活污水預處理方法之一。根據氧化劑的種類及反應器的類型,氧化法可分為化學氧化法、催化氧化法、(催化)濕式氧化法,光催化氧化法、超臨界氧化法等。化學氧化法雖然操作簡單,但由於其處理效果並非十分理想,而且由於其運行成本較高,因此,在城市生活污水處理應用中使用並不很多。為了達到提高處理效果,同時降低運行成本的目的,人們開發了一些其他的氧化技術。光催化氧化法設備簡單、運行條件溫和、氧化能力強、殺菌作用強、處理徹底,因此,在水的深度處理及對難生物降解的有機廢水的處理具有極好的應用前景,目前已成為國內外非常活躍的研究課題。
4、載入絮凝磁分離:工藝的變革
BFMS技術是在傳統的絮凝工藝中,加入磁粉,以增強絮凝的效果,形成高密度的絮體和加大絮體的比重,達到高效除污和快速沉降的目的。磁粉的離子極性和金屬特性,作為絮體的核體,大大地強化了對水中懸浮污染物的絮凝結合能力,減少絮凝劑用量,在去除懸浮物,特別是在去除磷、細菌、病毒、油、重金屬等方面的效果比傳統工藝要好。由於磁粉的比重高達5.0×10³kg/m³,大約是砂子的兩倍,混有磁粉的絮體比重增大,絮體快速沉降,速度可達20米/時以上,整個水處理從進水到出水可在10分鍾左右完成。污泥中的磁粉,利用磁粉本身的特性使用磁鼓進行分離後回收並在系統中循環使用。高梯度磁過濾器捕集流過水中的殘余微小顆粒,磁過濾器依照設定的要求被自動清洗,以達到高度凈化出水的目的。根據在美國採用BFMS作深度水處理的報告,磁過濾器可達到去除26納米病菌。磁粉的回收大大降低了處理成本,加上其本身設備的價格、靈活、廣泛性等優勢,雖然獲得專利不到一年,已經受到了污水行業的極大關注。
在當前水污染的嚴竣形勢和國家利好政策的共同作用下,如何使污水處理更加低能耗、高效率、低成本、簡單的操作、靈活的運行管理以及處理中水回用等則顯得尤為重要及迫切。就目前來說,磁分離技術是最經濟、效率最高、成本最低的工藝。如果結合其他工藝使其性能得到突破性發展,必將成為未來真正的主流。
㈥ 超磁分離技術可以取代污水處理哪個工藝段
磁分離利用廢水中雜質顆粒的磁性進行分離,對於水中非磁性或弱磁性的顆粒,利用磁內性接種技容術可使它們具有磁性。藉助外力磁場的作用,將廢水中有磁性的懸浮固體分離出來,從而達到凈化水的目的。
與沉降、過濾等常規方法相比較,磁力分離法具有處理能力大、效率高、能量消耗少、設備
簡單緊湊等一系列優點。山東博斯達環保 為您解答,謝謝
㈦ 磁化效應的應用
磁化技術在水處理中的應用
水經過一定強度的磁場,就成為「磁化水」。目前研究表明水磁化後會產生物理化學性質的變化,其中的機理尚不能肯定。一些學者認為磁場會破壞水原來的結構,使原來較大的締合水分子集團變成較小的締合水分子集團,甚至是單個分子。而且分子中的氫鍵也會有部分因為洛侖茲力的作用下正負離子反方向旋轉而斷裂(1)。所以磁化後的水會表現出一些性質的變化,如:pH值、密度、揮發性、溶解性、表面張力、電導率、沸點、冰點都有不同的改變,這種改變和所加的磁場大小有密切的關系(2)。磁化水因為其特殊的性質已經被廣泛的應用到工程。
早在十三世紀,人們已經注意到磁化水的醫療作用。1945年比利時韋梅朗應用磁化水減少鍋垢獲得成功並申請了專利。該技術由於裝置簡單,不需要任何化學試劑而被美國、日本和前蘇聯廣泛應用並得到發展。我國的磁化水研究開始於六十年代初,以前由於化學法水質穩定劑技術的迅速發展,使得磁水器應用推廣較慢。現在這一技術又重新獲得重視。應用對象已經涉及到建材、化工、冶金、農業、醫學等各個領域。在工業鍋爐的除垢防垢、油田的防蠟降粘等方面、醫學上的磁療等領域中的應用取得了一定的成果。近年來,如何將磁化效應與環境污染治理技術結合起來,提高污水的處理效果已逐漸引起人們的興趣。
磁化對水性質的影響機理的幾個假設和推論
磁化只是單純的物理過程,不是軟化過程。一般認為水系統進行磁處理主要是加快了溶液內部的結晶作用,從而使鹽類在受熱面上的直接結晶和堅硬沉積大大減少,起到防垢的作用。研究表明,磁場的阻垢效果同磁場強度、溶液過飽和度、流速及溶液中各種離子等均有密切的關系(4)。另外,還有一種說法認為磁處理改變了水本身的結構,從而改變了一些性狀。從這兩方面同時考慮,主要有以下的幾個假設和推斷(5)。
(1)洛侖茲力作用
水與磁流的相互移動,能夠產生感應電流,在洛侖茲力的作用下,弱極性的水分子和其他雜質的帶電離子作反向運動。該過程中,正負離子或顆粒相互碰撞形成一定數量的「離子締合體」,這種締合體具有足夠的穩定性,在水中形成了大量的結晶核心,以這些晶體為核心的懸浮顆粒可以穩定的存在於水中。
(2)極化作用
磁場的極化作用使使鹽類的結晶成分發生了變化。微粒子極性增強,凝聚力減弱,使水中原有的較長的締合分子鏈被截斷為較短的締合分子鏈和帶電離子的變形,破壞了離子間的靜電吸引力,改變了結晶條件。形成分散的穩定小晶體。
(3)磁滯效應
磁場引起水中鹽類分子或離子的磁性力偶的磁滯效應,因而改變了鹽類在水中的溶解性,同時使鹽類分子相互間的親和性(結晶性)消失,防止大晶體的結晶。
(4)磁力矩重新取向
在一定基團反應中,磁場影響在基團中成對的磁力矩重新取向,通過這樣的中間機理而影響其他化學反應。反應動力學發生了變化,反應結果中新得到的產品間的比例關系也發生了變化。
磁化水的裝置結構和特點
能制備磁化水的裝置稱為磁水器。按磁場形式的方式可將磁水器分為永磁式和電磁式兩種;按磁場位置又可將磁水器分為內磁式和外磁式兩種。永磁式和電磁式磁水器在間隙磁場強度相同的情況下效果相同,但各有特點。永磁式磁水器的最大優點是不需能源,同時結構簡單,操作維護方便,但其磁場強度受到磁性材料和充磁技術的限制,且存在隨時間的延長或水溫的提高而退磁的現象。電磁式磁水器的優點是磁場強度容易調節,而且可以達到很高的磁場強度,同時磁場強度不受時間和溫度影響,穩定性好,但其需要外界提供激磁電源。與內磁式磁水器相比,外磁式磁水器可能具有更大的優越性,其主要優點是檢修時不必停水及拆卸管道,也不易引起磁短路現象。
目前國內已有四項關於磁水器的專利,這些專利通過選用不同的磁性材料和水流的通路形式來達到使水磁化的目的(3)。如圖1所示的磁化水裝置外型為管狀,採用不銹鋼管製作,兩端帶法蘭盤可與管道直接相連。磁化水裝置內部採用兩組N,S極相對的特殊合金永磁材料製成的磁棒,按照N-S,N-S排列,磁場能量很高,可高達6000高斯,使用期限為25年,磁場強度衰減率為3%,由於磁化裝置使用的是永久磁性材料,無須外加電源,不耗電能。結構簡單,不需要做任何調整,也不需要特殊的保養與維護,而且裝置安裝十分方便,並且不佔地。
(5)氫鍵變形
磁場對水的偶極分子發生定向極化作用後,電子雲會發生改變,造成氫鍵的彎曲和局部短裂,使單個水分子的數量增多。這些水分子占據了溶液的各個空隙,能抑制晶體形成。並使水的整體性能發生變化。
(6)活化能改變
磁場的的影響與系統的轉化有聯系。雖然水在磁化時獲得的能量很少,但在系統中開始和終結之間存在一個「能障」為克服這種能障必須向系統輸送相應的能量以觸發活化能。磁場短時間的作用起著「催化」水系活化能改變的作用,最終導致整個系統性質的變化。
磁化處理對水體生物效應的影響
3.1 磁化處理對藻類初級生產能力的影響及機理。
實驗表明(6),經過磁化的水體中藻類的生產能力明顯高於沒有處理的水體中的藻類。
藻類屬於光合自養型微生物,磁化處理引起其光合作用的生物效應,可以從以下幾個方面進行解釋。第一,光合自養微生物在無機環境中吸收無機鹽,利用光能同化CO2和H2O合成自身物質。而水體磁化可以使BOD,COD降低,使部分有機物礦化,礦化程度高,有利於藻類的生長。第二,磁化處理導致水體的光學性質發生變化,經過磁化處理的水比未處理的水對光的吸收率高30%,水體透光性的改善,保證了光合自養生物的能源。這是磁化處理引起藻類迅速生長的原因之一。第三,磁化水的硬度、pH值、電導率都明顯的高於非磁化水,無機鹽在磁化水中可以較好的溶解,這有利於藻類對營養鹽類的吸收。第四,磁化處理後的污水,能引起生物膜滲透性的增加,從而改善了藻類對營養物質的吸收,促進藻類的生長和生產能力的增加。
3.2 磁化處理對水中異養細菌總數的影響
異養型細菌是以有機物作為能源和碳源的一大類微生物,它的總數隨水中有機物濃度的升高而升高,所以水中異養菌總數可間接反映水中有機物的污染的程度及水的凈化程度。污水經過不同強度磁場的處理後,水中的細菌總數均明顯下降。其原因機理還沒有完全清楚,初步認為:第一,在磁場的直接作用下,引起水體BOD,COD的降低,使異養生物的能源和C素營養物質減少,導致水體異養菌的死亡速度大於增殖速度,於是出現負增長現象。第二,磁場力直接作用於細菌細胞內的水和酶,使酶鈍化或失活。
所以污水磁化處理以後,不僅直接改善其耗養特性的作用,而且磁化後的水體具有新的生物特性。
磁化用於有機廢水的處理
有機廢水處理是當前污染治理的一個普遍問題,傳統方法有活性污泥法、生物膜法、厭氧反應器法、氧化塘法等。前兩種方法是目前二級處理廠應用最廣泛的方法,其優點是技術比較成熟,運行穩定,出水可達允許排放標准,但缺點也很突出,基建投資大、運行費用高昂,尤其運行費之高,使許多單位望而生畏,無力負擔如此之高的運行費用,因此,常常對污水不加處理而直接排入江河湖海。淮河流域1994年發生的流域性污染災害,就是傳統污水處理模式費用太高所帶來的直接後果。為實現可持續性發展戰略,我國的國情要求我們必須開發一種投資少、效率高、運行費用低的污水處理技術。針對這一實際,我們在90年代初,根據磁化水能改變水的一些物理特性,改善生物機能、促進生物生長、提高農業、水產產量和治療保健等經驗,開展磁化—人工生態系統方法處理和利用有機廢水的研究(7),近10年的大量實驗研究和初步應用證明,這一方法是行之有效的,實際應用是成功的,有必要廣泛推廣,並在實用中進一步完善,以保持社會經濟可持續發展的良性循環。
(1) 去除COD的效應與分析
在水中有氧的情況下,通過改變磁感應強度、水溫、磁化流速等對各種污水進行了一系列實驗,結果表明:水溫對污水瞬間通過磁化器直接去除COD沒有影響。磁化流速2.5m/s時最好,這時對形成核磁共振比較有利,磁化去除COD的能力較強。常溫下磁化流速2.5m/s左右,磁感應強度0.262~0.315T下,上述各類污水的COD直接去除率平均醫院污水為25.4%,印染廢水為21.2%,城鎮污水為16.4% (磁化流速為2.5m/s時為20.0% )、橡膠業廢水為11.3%,造紙廢水為8.1%,葡萄糖水為17.8%,澱粉水為11.1%,氨水為 8.1%。另外,為查明瞬間磁化直接使COD減少的原因,還對去離子水、自來水和城鎮污水磁化前後的溶解氧進行測試。常溫下磁化流速2.0m/s,最佳磁感應強度0.315T,4組去離子水磁化前後的溶解氧濃度不變,磁處理對溶解氧無影響;5組自來水磁化後溶解氧略有降低,平均減少4.1%;12組城鎮污水,磁化後溶解氧平均減少24.7%。這種瞬間磁化使污水有機物降解和溶解氧減少的現象,稱磁處理污水的直接效應。這一作用並非水中微生物酶引起的有機物分解,也非磁化使水中有機物分子的化學鍵斷裂,而是磁處理引起核磁共振激活了水中的溶解氧,促使部分有機物氧化分解。這可從三個方面來分析:一是上述實驗中,葡萄糖、水、澱粉水、氨水均為蒸餾水配製,其中沒有微生物,顯然瞬間磁化使污水COD降低並非微生物酶的作用;二是水和有機物分子的化學鍵斷裂,需要消耗相當大的能量,如水分子的氫鍵斷裂需4~6千卡 /克分子的能量,如此之低的磁感應強度所提供的能量很小,無法使化學鍵斷裂;最後,B?帕特羅夫的實驗一定程度上證實了上述論斷,他使有溶解氧的水連續從感應磁場中通過,水中則產生5×10-5%的h2O2 ,這是一種很強的氧化劑,可使水中的有機物直接氧化分解。另外,我們還做了對污水多次連續反復磁化的實驗,可見隨著磁化次數的增加,每次去除COD的比率急劇變小,並趨於水平。因此,將磁處理技術應用於實際時,應使磁處理器間水流有一段時間的恢復過程。經驗表明,水力滯留時間約2~3d以上為佳。
厭氧條件下磁化對提高水中有機物分解也有很好的效果,且更為顯著。我們取4組城鎮生活污水做實驗,溫度保持在0℃,最佳磁感應強度仍為0.315~0.368T,厭氧培養10d測試COD,表明磁化使COD的去除率提高21%~28%,平均為24.5%。其效果即使肉眼也能清楚看出,但機理尚需進一步研究。
(2)水磁處理生態效應及間接凈化影響
外加磁場對生物影響稱生物磁效應,可分為生物分子效應、細胞效應、組織器官效應及整體效應,例如病毒為單純的大分子微生物、細菌、真菌基本上為單細胞微生物、原生動物、高等生物為不同功能器官所構成,其組織器官又為細胞組成。污水中生物種類繁多,構造與功能各異,它們通過某一強度的磁場時,受到的影響也很不相同。從整體上說,有些被抑制,甚至死亡;有些被激活,加快新陳代謝和生長,間接上提高了凈化污水的作用。對此,做了以下幾個方面的系列實驗和分析(8):
(a).污水磁化具有很強的滅菌作用。磁感應強度0.315~0.420T下,磁化流速2.0~2.5m/s,3組水樣的情況基本一致,滅菌率為74%~81%。但連續反復磁化,滅菌率則提高不大,說明有些種類的菌群能夠抵禦磁場的作用,甚至激活其代謝能力,會更快地生長和降解有機物。磁化處理滅菌原因,可歸納為(7):一是在磁場的直接作用下,引起BOD、COD降低,使異養微生物的能源和C素營養物質減少,導致水體異養菌死亡速度大於增殖速度,於是出現負增長現象,二是磁場力直接作用於細菌細胞內的水和酶,使酶鈍化或失活。而BOD數值的降低是細菌總數減少的反映,一方面在外加磁場直接作用下,BOD隨COD指標的降低而降低,另一方面,在外加磁場作用下,水體中功能微生物(以細菌為主 )受到影響,一部分細菌適應能力強,生命代謝活動不受到干擾,或者雖受到干擾但經過一定時間後可以恢復到正常狀態,這部分細菌以更強的適應能力生存下去,大部分細菌受到外界磁場作用下,由於體內外水的理化性質的變化(如電導率、表面張力等 )以及酶的鈍化、失活,不能適應而發生死亡現象,功能細菌數目的急劇減少,造成了BOD指標的降低,因此認為磁處理後BOD降低是水中細菌總數減少的反映。綜上所述,可以得出這樣一種認識,外界磁場作用於微生物,對微生物的影響存在有害的一面,也存在有利的一面。磁處理具有殺菌效果,當磁場強度加大到2100GS(4A)以上,可以使70%以上的細菌死亡。施加磁場可以看作微生物生存環境的突發改變,能夠經得起周圍環境及體內離子、電子傳遞速度變化的細菌繼續生存下來並且維持正常的生命代謝活動,這部分細菌具有更強的適應能力,或者說具有更強的生物活性。
(b).活性污泥磁化會明顯提高其活性,從而增強污水的處理效率。我們取7組活性污泥,在37℃恆溫下觀測不同磁強處理後的甲基蘭脫色時間,表明0.367T下脫色時間由無磁化的29h減少至24h,污泥活性增強17%,原因就在於磁化後生存下來的微生物有更大的增殖和代謝能力。為證明這一論斷,又取3組造紙中段廢水稀釋水樣,分別在不磁化和磁化處理後標准溫度下培養,測得它們的BOD5,後者均比前者高,平均高13%,可見磁處理既有滅菌作用,也有激活某些功能微生物的作用,並加速有機物的降解。
(c).磁化使藻類光合作用大大增強,顯著地提高了水中的溶解氧。常溫下取2組同樣的污水實驗,3天後磁化水中綠藻生長旺盛,非磁化水幾乎看不到藻類。另外,又取3組生活污水用明暗瓶對比實驗磁處理對藻類產氧能力的影響,都表明磁感應強度0.367T時污水的藻類產氧能力最高,比非磁化的平均高出1.1倍,按藻類固炭生產力與產氧能力的關系推算,藻類的生產力也將提高1.1倍,這與農業上磁化水使作物顯著增產和大大提高種子的發芽率的結論一致。其原因主要是:①磁化污水使有機物分解加快,為藻類生長提供了充足的C,N,p等營養物;②磁化使生物膜滲透性增加,給藻類吸收營養元素創造了有利條件;③磁化使水的透光性增強,為藻類光合作用提供了更好的光能。水中溶解氧的增加,又促進了水中微生物的生長和有機物分解,二者相互促進,導致有機廢水加速分解。
(d).污水磁化可促進高等水生生物生長,有利於污染物的去除。我們以泥鰍做實驗,在 3個水桶(10L)中,1個未磁化,2個被磁化,磁強分別為0.03T和0.25T,分別放養1.5kg的泥鰍,其他條件相同,3個月後所有磁化的水中泥鰍產量均高於未磁化的,平均產量提高15%~20%。另外,還對泥鰍的耐污能力和同化COD進行實驗,表明未磁化水桶中放養的50條泥鰍到第5天時全部死去,磁化的水桶中的50條在第7天時還有23條存活下來。由於高等水生動物通過食物鏈使有機物分解轉化,間接上提高了污水的凈化能力3組水樣測定7天後的COD,表明被磁化且養有泥鰍的2、3號水桶的COD去除率比無磁化、無泥鰍的提高20%),並使之以更高的速度轉化為對人類有用的產物,變廢為寶,防止了二次污染。
磁化-人工生態系統方法凈化污水應用實例
如圖2,1980年在原污水站基礎上,建成了一個磁化—人工生態處理系統工程,主要由二級磁化和3個生態池組成。該處理系統有效佔地面積770m2,平均日處理醫院生活污水和病房污水700t。污水直接排入預沉調節生態池,水力滯留時間約4.0h,經水泵提升和一級磁化,進入放養大量魚類的生態轉化池,水力滯留2.0~2.5d,再次磁化並自流到設有許多垂直生態濾管的金魚池,滯留時間2.5~3.0d,通過生態濾管集中後排出,出水達三級地面水標准,供醫院綠化和清洗之用。該站運用多年來,僅1994年在預沉池排過一次池污,且數量不多,足見污染物降解轉化率之高。該系統中:①預沉調節生態池面積180m2,平均水深 1.1~ 2.5m,為兼氧池,池面風眼蓮覆蓋,吸收污水分解的N,p等營養鹽 ;②生態轉化池,直徑25m,由中心園池、環形復氧溝、環形外池組成,接納來自預沉池並進行一級磁化的污水,池中放養數萬尾羅非魚,吞食大量生長的菌、藻及原生動物,使水體快速凈化,並流入中心園池;③生態濾池100m2,平均水深2.3m,其中放養約6萬條金魚和布設許多生態濾管,接納中心園池流來並經二級磁化的水流,繼續生態轉化後經生態濾管過濾後排放,完成整個凈化過程。該系統對BOD(Biological Oxygendemand),COD,N,p去除率全年平均分別為 89.9%,87.6%,69.6%和73.6%。該系統工程基建總投資27萬元,摺合日處理污水1t/d的基建投資單價為386元;年運行費用7500元,摺合處理污水1t/d的年運行單價10.7元,遠低於表 1所列的常規二級處理的投資單價和運行單價。不僅如此,由於污水處理過程中的牛蛙、金魚、羅非魚、中葯材、葡萄等收入,每年還可收益1.8萬元,比年運行費還多出1.0萬元,形成污水處理過程的負投入。該法由於生態處理中的磁化效應,大大加速和提高了污染物轉化速度和效率,且變廢為寶,使之成為投資少、佔地小、效率高、運行費用低、無二次污染,並有一定產出收益的污水處理新途徑。
㈧ 求高手幫忙設計一個污水處理工藝
如果是工業廢水最好採用BFMS工藝(載入絮凝磁分離技術),流量越大設備價格優勢越明顯,國際先進技術
優勢一:工藝穩定 可靠性高
工藝穩定,操作簡單,快速啟動;耐負荷沖擊能力強,抗干擾能力強。
優勢二:工藝高效 生產效率高
沉澱速度快:是傳統工藝的20-60倍;過濾速度快:為常規過濾器的50-100倍;
水停留時間短:小於10分鍾,是傳統裝置的5-50倍;無堵塞或反沖洗損失。
以較小的工藝完成較大的水處理量
優勢三:系統簡單,投資少,見效快
產品標准化、模塊化大批量生產,非標設備少;可根據不同的生產規模和要求組合使用;
安裝調試簡單,工程量小,施工周期短;如採用定型模塊化產品,即買即用方便快捷;
綜合造價小於傳統工藝流程
優勢四:工藝簡單 運營成本低
管理簡單,運行人員少,人工成本低;工藝簡單,能耗低,電費省;
同等處理效果,葯劑的投放量少;設備標准化程度高,配件更換和維修費用低;
運營成本低於傳統工藝流程
優勢五:系統集成 佔地很少
載入磁化和生物磁化水處理系統遠比傳統工藝所要求的用地少.
一個20000m3/d規模載入磁化設備系統佔地約為240㎡-400㎡左右。(不包括辦公房等輔助設施)
㈨ 水處理技術哪家好
目前水處理設備與污水處理技術大致可歸為三類:物理方法(沉澱、上浮、浮選、離心分離、過濾、蒸發、結晶、冰凍、磁化、電解、反滲透等),化學方法(凝聚、中和、氧化、還原、置換、離子交換、電滲析等),生物方法(好氣生物處理和厭氣生物處理)。
幾種常用的水處理技術:
(1)臭氧處理法。將氧氣或空氣通過放電處理或暴露於一定波長的紫外線中,使氧氣聚合成臭氧。以3萬伏的高電壓將氧氣轉變成臭氧混入水中,可製成具有強力殺菌效果的臭氧水。
(2)磁化技術。磁化技術是將要處理的水以一定的流速通過有一定強度的磁場,水迅速切割磁感線,使水中鈣離子、鎂離子等結晶形態發生形變。成為鬆散的渣,隨水流去,以起到防垢作用。
(3)離子交換法。讓要處理的水先後通過陽離子和陰離子交換樹脂得到凈化的一種方法。
(4)電滲析技術。滲析就是讓溶液中選定的質點通過膜,而不讓其他質點通過。電滲析是離子在電場影響下通過膜的特例。電滲析是在外加電場的作用下,利用陰、陽離子交換膜對水中離子的選擇性透過(即陰膜只有陰離子透過,而陽膜只有陽離子透過),使一部分溶液中的離子遷移到另一部分溶液中去,以達到濃縮、純化、合成、分離的目的。它可用於苦鹹水、海水的淡化及廢酸、廢液的處理。
(5)反滲透技術。滲透是水通過半透膜,從比較純的區域移動到濃溶液區域的過程。如果將足夠大的機械壓力作用於膜內的溶液上,水就被迫從膜裡面的濃溶液流到外面區域來,這稱為反滲透。
㈩ 簡述污水天然處理的機理並給出幾種主要的處理工藝
四、生物膜法。在污抄水生物處襲理的發展和應用中,生物膜法主要用於從廢水中去除溶解性有機污染物,主要特點是微生物附著在介質「填料」表面,形成生物膜,污水同生物膜接觸後,溶解的有機污染物被微生物吸附轉化為H2O、CO2、NH3和微生物細胞物質,污水得到凈化,所需氧化一般直接來自大氣。生物膜法處理系統適用於處理各種有機廢水,採用的處理反應器有流化床、生物濾池、生物轉盤、氧化溝工藝等。而生物膜法的技術核心在於生物膜「填料」的選擇,隨著新型高效「填料」的開發和配套技術的不斷完善,污水處理工藝在近年來得以快速發展。高效生物膜「填料」具有處理效率高、耐沖擊負荷性能好、產泥量低、佔地面積小、便於運行管理等優點,在處理中極具競爭力。
五、碧藍青公司研製的生態粒子\生態膜產品,是一種高效的微生物載體;多功能水處理填料。它在污水中最大化地培養微生物的種類、數量與活性,並且具有離子吸附和磁化功能,通過微生物的代謝作用與填料的離子吸附功能,從而高效去除水體中的有機污染物,降解有毒有害物質,同時碧藍青\水魔方生態技術在水中建立起完整的生態系統更有利於治理富營養化水體,脫氮除磷。