導航:首頁 > 廢水知識 > 污水處理廠碳平衡

污水處理廠碳平衡

發布時間:2022-06-05 22:02:14

⑴ 關於污水處理廠污泥平衡的一些問題想問一下

一、厭氧排泥
由於厭氧菌繁殖世代周期較長,繁殖速率低。但進水SS大部分沉積在厭氧池內,建議根據進容水SS適量排泥,不建議過量。目前尚未找到明確的排泥量估算方法。
二、好氧沉澱池(二沉池、三沉池)
好氧系統對有機物的利用主要分成三部分。1、降解成二氧化碳排出的約佔1/3;2、自身內源呼吸、繁殖約佔53%;3、細菌殘留吸附(難降解物質)約佔14%。因此好氧排泥建議以以下方式核算
1、排泥後控制初次好氧污泥負荷0.3~0.6KgBOD5/(KgMLVSS*d),二次好氧0.07~0.2KgBOD5/(KgMLVSS*d)。
2、如遇氨氮超標(排除進水鹼度及曝氣原因),適當延長污泥齡,較1述降低污泥符合。
3、如系統總磷超標(要看進出水差值)需縮短污泥齡,通過排泥脫磷。脫氮除磷存在矛盾,需合理調控排泥量。
三、氧化沉澱池
不知道貴單位使用什麼氧化方式,一般來說末端氧化(化學)其機理均是物理吸附,應盡可能多排泥。如果利用臭氧的話基本上是不產泥的不需要考慮排泥。
以上僅是經驗之談,部分情況仍需根據實際運行情況分析調整,不可死搬硬套。

⑵ 污水處理指標中碳氮磷比各是用什麼表示的

污水處理指標中來碳氮磷比的源表示:

碳—以BOD5表示;

N一般指總凱氏氮(TKN)

磷—一般為磷酸鹽

碳氮磷比首先要明確,生化處理中的營養比是根據污泥/生物膜中微生物需求來確定的。自然界中,各類微生物需求的碳氮比是不同的,但是對於活性污泥這個微生物群體而言有一個經驗的值,好氧條件下是100:5:1,厭氧條件下是200:5:1。

碳氮磷都要以可生物吸收的量計算,因此,碳以BOD5表示;N一般指總凱氏氮(TKN),包括有機氮和氨氮,但不包括亞硝氮和硝態氮,因為除了反硝化細菌以外,大部分微生物都不能直接以亞硝氮和硝態氮作為氮源,而有機氮和氨氮則可被絕大多數微生物用做氮源;磷一般為磷酸鹽。

(2)污水處理廠碳平衡擴展閱讀:

污水處理站出水應符合現行國家標准《城鎮污水處理廠污染物排放標准》的相關規定;

污水處理站出水用於農田灌溉時,應符合現行國家標准《農田灌溉水質標准》(GB5084-2005)的有關規定。污水處理與利用的方法很多,選擇方案應考慮以下因素:

①環境保護對污水的處理程度要求;

②污水的水量和水質;

③投資能力。污水處理技術,就是採用各種方法將污水中所含有的污染物分離出來,或將污染物轉化成無害物質,從而使污水得到凈化。

⑶ 污水處理廠出水總氮超標怎麼回事

污水處理廠出水總氮超標原因:

1.內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小。

2.反硝化系統污泥沉速較快。

3.缺氧區溶解氧DO過高。

4.溫度調控不當,當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。

5.BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。

6.污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。

(3)污水處理廠碳平衡擴展閱讀:

污水處理廠出水總氮超標解決辦法:

一、污泥負荷與污泥:由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因此,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。

二、內、外迴流:生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。相對來說,二沉池由於反硝化導致污泥上浮的危險性已很小。

另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。

三、反硝化速率:反硝化速率系指單位活性污泥每天反硝化的硝酸鹽量。反硝化速率與溫度等因素有關,典型值為0.06~0.07gNO3--N/gMLVSSd。

四、缺氧區溶解氧:對反硝化來說,希望DO盡量低,zui好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。

五、BOD5/TKN 因為反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。

由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。

六、pH:反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的有效pH范圍為6.5~8.0。

七、溫度:反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至zui大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。

因此,在冬季要保證脫氮效果,就必須增大SRT,提高污泥濃度或增加投運池數。

參考資料來源:人民網—生態環境部部署固定污染源氮磷污染防治攻堅工作

⑷ 大家搞污水處理的,計算過污水運行中氮平衡,COD平衡,磷平衡的么

這是肯定要算的啊,尤其是環保公司他們都會算,因為要和你算經濟效益啊版,現在雖然大權家都說要有環保投入,可是沒點經濟效益還是沒什麼市場的。計算這個最簡單的方法就是原污染物濃度減去處理後污染物濃度乘上處理量,得到的就是處理量,當然這是理論計算值,實際在處理時不會這么精確,因為各種人為因素和雜質的不穩定性會有影響的。

⑸ 污水處理為什麼要加碳源

絕大多數市政的污水廠基本都是以活性污泥法中的微生物為處理污水的核心的處理方式,在這種處理方式下,微生物本身的生長需求也就成了採用活性污泥法的污水廠首要解決的問題。微生物本身也是有機生命體,不過是體態及其微小,肉眼無法直接看到而已。但是從這些微生物的生命的延續的本質上,和地球上的人類等大型生命體是沒有區別的。它們也是需要食物來維持自身的生長,它們的食物和我們大型生物體的食物成分是一樣的,都是來組成自身生命生長需要的有機物。但是它們的食物和我們的大型生物體的食物也有不同,它們需要更直接,更細微的食物來滿足自身微小的個體的特殊需求。而溶於水中的有機物就是它們的食物,特別是我們人類生活中排放的污水中的有機污染物是它們最佳的食物。而污水廠里活性污泥中的微生物正是大量吞食污水中的有機污染物才得以生存,生長,繁殖。而所謂的有機物其實就是地球上含碳的化合物,正是這些含有各種各樣復雜的碳鏈的化合物,才組成了地球上豐富多彩的有機體世界。而微生物所需要的有機物,在污水廠里,我們也可以簡單的稱為碳源。

但是對於微生物來說,並不是所有的污水中的有機污染物都是適合它們生存所需的,特別是它們的生命體的組成是對有機物和氮磷等營養物質要有一個比例關系的。從污水去除有機污染物的微生物需要氮和磷來生長和繁殖。微生物需要氮來形成蛋白質,細胞壁成分和核酸;需要磷來維持生長所需的能量。科學家對這些微生物所需要的這些碳源和營養物質的比例用一個分子式來表示,那就是C5H7NO2P0.074。在採用好氧活性污泥法處理污水時,通常要求水中BOD:N:P的比例對於應該約為100:5:1,這樣的比例才能滿足活性污泥中的微生物的正常生長。

污水廠的管理的核心在於對污水廠內的微生物的管理,為這些微生物提供充足的營養和環境是每個污水廠運行管理人員需要認真進行的工作。但是由於飲食習慣的地區差異,工業企業的生產廢水排放,處理水量的大小等等因素,實際進入污水廠的污水水質中的C:N:P的營養比例並不是按照微生物生長所需的100:5:1的,正是由於進水水質中的比例失衡,才造成了污水廠運行人員對碳源甚至營養物質的探討。在一些工藝調整人員看來,人工投加的碳源以甲醇,乙酸,葡萄糖,麵粉等簡單的有機化合物,便於微生物吸收利用,有利於微生物的生長繁殖。因此污水廠內碳源的補充是萬能的解葯,對於任何工藝問題都要進行碳源的補充,那麼碳源真的是萬能的么?今天就來探討下污水廠需要碳源的補充的一些情況。

一、污水廠的活性污泥培養馴化階段。

作為一個污水廠在初期投產階段,由於建設的生物池內沒有微生物,需要進行微生物的培養聚集和馴化,在這個階段微生物的生長過程屬於對數增殖期,這個階段的微生物需要大量的碳源來維持自身快速生長。這個階段正常的城市生活污水中的有機污染物作為碳源就不能滿足微生物的生長需求。同時由於生活污水中的碳源是復雜的有機物,往往不能被初期生長的微生物吸收利用。這個階段為了快速的培養活性污泥,一般會採用投加外界碳源的方式來加快微生物的生長繁殖。

這是由於外加碳源一般是甲醇,乙酸,葡萄糖等易被利用的有機物,便於微生物吸收,從而加快微生物的生長繁殖。在這個階段的碳源投加主要是為了加快微生物的培養。對於一些營養比例穩定的城市生活污水來說,在沒有外加碳源的情況下,微生物也可以培養出來的,不過是時間的快慢問題。因此在培養階段,要注意分析進水水質的情況,再根據廠內自身的經濟條件進行選擇碳源的投加,這種碳源的投加一般隨著微生物的培養成熟,污水穩定進入廠內就會逐步減少乃至停止。

二、污水廠的進水營養不均衡。

在很多污水廠,特別是收納范圍小,收集人口少,或者是工業廢水廠內,污水的碳源營養組成比例和我們通常認為的100:5:1是不吻合的。有些是進水水質受雨污合流,地下水滲流等原因,導致水中的有機污染物質極少,碳源極少,但是氮和磷的含量較高,這樣的水質為了處理氮磷達標,需要在生物池內保持一定的活性污泥中的微生物數量,對氮和磷進行降解,這就產生了較低的有機負荷-食微比F/M非常低,極低的食微比F/M會造成活性污泥老化解體,如下圖所示,造成出水水質超標。因此在這樣的進水環境下,需要對微生物進行碳源的補充,來維持微生物的較高的活性,這時就需要進行碳源的補充。

⑹ 生活污水處理廠碳氮比控制在多少合理

就是原子個數比。由於污水中各種有機物成分比較復雜,因此將它們簡化為碳原子與氮原子的比例,只有比例合適時,活性污泥才能有效發揮作用。

⑺ 污水處理中炭氮磷失調應該怎麼處理

根據100:5:1的比例,缺啥補啥就行,缺COD加碳源,缺氮加氮肥,缺磷加磷肥

⑻ 污水處理廠MBR一體化設備出水氨氮不高,總氮超標是什麼原因如何解決

城市污水處理廠出水氮磷超標因素分析及對策

摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。

關鍵詞:城市污水處理廠,脫氮除磷,對策分析

1概述

近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。

2污水氮含量超標原因及控制方法

2.1氨氮超標

2.1.1污泥負荷與污泥齡

生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。

2.1.2迴流比與水力停留時間

生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。

2.1.3BOD5/TKN

BOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。

2.1.4溶解氧

硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。

2.1.5溫度與pH

硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。

2.2 總氮超標

2.2.1污泥負荷與污泥齡

由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。

2.2.2內、外迴流比

生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。

2.2.3缺氧區溶解氧

對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。

2.2.4BOD5/TKN

反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。

2.2.5溫度與pH

反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。

3 污水生物除磷總磷超標原因及對策

3.1 污泥負荷與污泥齡

厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。

⑼ 污水處理廠處理污水的方法和原理是什麼

廢水處理方法可分為物理處理法、化學處理法和生物處理法三大類

廢水中污染物多種多樣,從污染物形態分,有溶解性的、膠體狀的和懸浮狀的污染物。從化學性質分,有有機污染物和無機污染物。有機污染物從生物降解的難易程度又可分為可生物降解的有機物和不可生物降解的有機物。廢水處理即是利用各種技術措施將各種形態的污染物從廢水中分離出來,或將其分解、轉化為無害和穩定的物質,從而使廢水得以凈化的過程。根據所採用的技術措施的作用原理和去除對象,廢水處理方法可分為物理處理法、化學處理法和生物處理法三大類。

廢水處理工藝流程

由於廢水中污染物成分復雜,單一處理單元不可能去除廢水中全部污染物,常需要多個處理單元有機組合成適宜的處理工藝流程。確定廢水處理工藝的主要依據是所要達到的處理程度。而處理程度又主要取決於原廢水的性質、處理後廢水的出路以及接納處理後廢水水體的環境標准和自凈能力。

1.城市廢水的一般處理工藝流程

其主要任務是去除城市廢水中含有的懸浮物和溶解性有機物。一般處理工藝流程,根據不同的處理程度,可分為預處理、一級處理、二級處理和三級處理。

(1)預處理:主要工藝包括格柵、沉砂池,用於去除城市污水中的粗大懸浮物和比重大的無機砂粒,以保護後續處理設施正常運行並減輕負荷。

(2)一級處理:一級處理一般為物理處理,主要去除污水中的懸浮狀固體物質。懸浮物去除率為50%~70%,有機物去除率為25%左右,一般達不到排放標准。因此一級處理屬於二級處理的前處理。主要工藝為沉澱池。

(3)二級處理:二級處理為生物處理,用於大幅度去除污水中呈膠體或溶解性的有機物,有機物去除率可達90%以上,處理後出水BOD可降至20~30毫克/升,達到國家規定的污水排放標准。主要工藝有活性污泥法、生物膜法等。

(4)三級處理:在二級處理之後,用於進一步去除殘存在廢水中的有機物和氮磷,以滿足更嚴格的廢水排放要求或回用要求。採用的工藝有生物除氮脫磷法,或混凝沉澱、過濾、吸附等一些物化方法。

2.工業廢水的處理工藝流程

由於工業廢水水質成分復雜,且隨行業、生產工藝流程、原料的變化而變化,故沒有通用的工藝流程

⑽ 污水處理廠中污水處理指標有哪些

化學需氧量(COD),生化需氧量(),總需氧量(TOD),總有機碳(TOC),總氮(TN),總磷(TP),pH值,重金屬。

物理性指標

溫度、色度、嗅和味、固體物質的三種存在形態:懸浮的、膠體的、溶解的。固體物質用總固體量(TS)作為指標,污水處理中常用懸浮固體(SS)表示固體物質的含量(TDS指標高於1000以上)。

化學性指標

一、化學需氧量(COD):指用強化學氧化劑(中國法定用重鉻酸鉀)在酸性條件下,將有機物氧化成CO2與H2O所消耗的氧量(mg/L),用CODcr表示,簡寫為COD。化學需氧量越高,表示水中有機污染物越多,污染越嚴重。

二、生化需氧量(BOD):水中有機污染物被好氧微生物分解時所需的氧量稱為生化需氧量(mg/L)。

如果污水成分相對穩定,則一般來說,COD> BOD。一般BOD/COD大於0.3,認為適宜採用生化處理。

三、總需氧量(TOD):有機物主要元素是C、H、O、N、S等,當有機物被全部氧化時,將分別產生CO₂、H₂O、NO、SO₂等,此時需氧量稱為總需氧量(TOD)。

四、總有機碳(TOC):包括水樣中所有有機污染物質的含碳量,也是評價水樣中有機物質質的一個綜合參數。

五、總氮(TN):污水中含氮化合物分為有機氮、氨氮、亞硝酸鹽氮、硝酸鹽氮,四種含氮化合物總量稱為總氮(TN)。凱氏氮(TKN)是有機氮與氨氮之和。

六、總磷(TP):包括有機磷與無機磷兩類。

七、pH值。

八、重金屬。

生物性指標

一、大腸菌群數:每升水樣中所含有的大腸菌群的數目,以個/L計。

二、細菌總數:是大腸菌群數、病原菌、病毒及其他細菌數的總和,以每毫升水樣中的細菌菌落總數表示。

(10)污水處理廠碳平衡擴展閱讀:

生活污水、畜禽飼養場污水以及製革、洗毛、屠宰業和醫院等排出的廢水,常含有各種病原體,如病毒、病菌、寄生蟲。水體受到病原體的污染會傳播疾病,如血吸蟲病、霍亂、傷寒、痢疾、病毒性肝炎等。歷史上流行的瘟疫,有的就是水媒型傳染病。

如1848年和1854年英國兩次霍亂流行,死亡萬餘人;1892年德國漢堡霍亂流行,死亡750餘人,均是水污染引起的。受病原體污染後的水體,微生物激增,其中許多是致病菌、病蟲卵和病毒,它們往往與其他細菌和大腸桿菌共存,所以通常規定用細菌總數和大腸桿菌指數及菌值數為病原體污染的直接指標。

病原體污染的特點是:

⑴數量大;

⑵分布廣;

⑶存活時間較長;

⑷繁殖速度快;

⑸易產生抗葯性,很難絕滅;

⑹傳統的二級生化污水處理及加氯消毒後,某些病原微生物、病毒仍能大量存活。

常見的混凝、沉澱、過濾、消毒處理能夠去除水中99%以上病毒,如出水濁度大於0.5度時,仍會伴隨病毒的穿透。病原體污染物可通過多種途徑進入水體,一旦條件適合,就會引起人體疾病。

閱讀全文

與污水處理廠碳平衡相關的資料

熱點內容
慈溪反滲透膜質量怎麼樣 瀏覽:94
純凈水怎麼賣最好 瀏覽:971
工業污水處理廠單位怎麼樣 瀏覽:49
平放機油濾芯怎麼換 瀏覽:167
反滲透膜能否國產替代 瀏覽:220
純凈水桶蓋如何撬下來 瀏覽:192
除垢濾料 瀏覽:695
洗辣椒廢水 瀏覽:842
反滲透膜組件的四個基本形式 瀏覽:125
淮南污水廠管道修復怎麼聯系 瀏覽:191
凈水器怎麼樣分辨好壞 瀏覽:525
陽極有芯鎂棒除水垢的原理 瀏覽:516
大切的空調濾芯如何清洗 瀏覽:611
樹脂抽真空太快 瀏覽:577
加工熱帶棕櫚污水主要成分 瀏覽:482
做diy飲水機為什麼出不了水 瀏覽:491
皮革廢水有什麼污染物 瀏覽:662
山西廢渣廢水亂排調查 瀏覽:655
創星過濾桶cP1400安裝 瀏覽:810
怎樣除史密斯燃氣熱水器水垢 瀏覽:498