A. 污水處理廠處理水中的懸浮物和溶解性總固體,總固體之間有什麼關系
懸浮物是懸浮在水中的固體物質,例如:不溶於水中的無機物、有機物及泥砂、黏內土、微容生物等污水中懸浮物可以用氣浮設備去除。溶解性總固體指水中溶解組分的總量,包括溶解於水中的各種離子、分子、化合物的總量。總固體包括懸浮物。
首先你理解錯誤了,燃煤電廠產生的廢水主要是循環冷卻水和離子專交換產生的中屬水,現在的燃煤電廠已經不用水膜除塵工藝,基本都是乾式的靜電或者布袋除塵,不會產生那麼多含有煤渣的污水,所有的冷卻水也不是直接接觸都是作為介質間接接觸,不會有那麼多的煤渣和難降解的化學有機物了,一般冷卻水直接經過過濾和冷卻可以直接回用,中水基本都可以直接進入市政管網。而且現在的燃煤電廠的的物料堆放都放在室內,很少有含有煤渣的滲濾水產生,如果有也只是經過加葯絮凝沉澱過濾就可以排放
C. 電廠中含有煤粉的廢水怎麼處理效果最快最好
含煤廢水處理,找深圳長隆
D. 廢水重力分離處理法的概念
廢水重力分離處理法是廢水物理處理法之一種,利用重力作用原理使廢水中的內懸浮物與水分離容,去除懸浮物質而使廢水凈化的方法。可分為沉降法和上浮法。懸浮物比重大於廢水者沉降,小於廢水者上浮。影響沉澱或上浮速度的主要因素有:顆粒密度、粒徑大小、液體溫度、液體密度和絕對粘滯度等。此種物理處理法是最常用、最基本的廢水處理法,應用歷史較久。
E. 聚丙烯醯胺絮凝劑在洗煤廢水處理中起到什麼作用
聚丙烯醯胺(pam)為水溶性高分子聚合物,不溶於大多數有機溶劑,按離子特性分可分為非離子、陰離子、陽離子和兩性型四種類型。具有良好的絮凝性,可以降低液體之間的磨擦阻力,
聚丙烯醯胺和它的衍生物可以用作有效的絮凝劑、增稠劑、紙張增強劑以及液體的減阻劑等,廣泛應用於水處理、造紙、石油、煤炭、礦冶、地質、輕紡、建築等工業部門。
聚丙烯醯胺作為污水處理絮凝劑的應用
一、產品特點
1、絮團緊密、投加量少。
2、處理後的水澄清度高。
3、ph值適用范圍廣。
4、優秀的過濾和脫水性提高了污泥的脫水效果。
5、與無機混凝劑配合性好。
二、
產品功效
1、澄清凈化作用;
2、沉降促進作用;
3、過濾促進作用;
4、增稠作用及其它作用。
可以用於但不限於以下一些領域,
-用於無機污泥的脫水,可以顯著提高生產效率,泥餅的固含量及降低濾出水的固形物含量;
-用於過濾,提高濾水的質量及提高濾機的生產效率;
-用於濃縮或沉降,可以提高濃縮效率,加快沉降速度等;
-水的澄清,有效降低處理水的ss值,濁度,提高出水品質;
-被當做一些工業過程的助劑。
F. 如何聚沉水中懸浮物的方法
第1節 吸附法
一、 吸附原理
二、 影響吸附的因素
三、 吸附劑
四、 吸附工藝和設備
五、 吸附法在污水處理中的應用
一、吸附原理
固體表面有吸附水中溶解及膠體物質的能力,比表面積很大的活性炭等具有很高的吸附能力,可用作吸附劑。吸附可分為物理吸附和化學吸附。如果吸附劑與被吸附物質之間是通過分子間引力(即范德華力)而產生吸附,稱為物理吸附;如果吸附劑與被吸附物質之間產生化學作用,生成化學鍵引起吸附,稱為化學吸附。離子交換實際上也是一種吸附,將在第二節中討論。
物理吸附和化學吸附並非不相容的,而且隨著條件的變化可以相伴發生,但在一個系統中,可能某一種吸附是主要的。在污水處理中,多數情況下,往往是幾種吸附的綜合結果。
一定的吸附劑所吸附物質的數量與此物質的性質及其濃度和溫度有關。表明被吸附物的量與濃度之間的關系式稱為吸附等溫式。目前常用的公式有二:弗勞德利希(Freundlich)吸附等溫式,朗格繆爾(Langrnuir)吸附等溫式。
二、影響吸附的因素
吸附能力和吸附速度是衡量吸附過程的主要指標。固體吸附劑吸附能力的大小可用吸附量來衡量。吸附速度是指單位重量吸附劑在單位時間內所吸附的物質量。在水處理中,吸附速度決定了污水需要與吸附劑接觸的時間。吸附速度快,則所需的接觸時間就短,吸附設備的容積就小。
多孔性吸附劑的吸附過程基本上可分為三個階段:顆粒外部擴散階段,即吸附質從溶液中擴散到吸附劑表面;孔隙擴散階段,即吸附質在吸附劑孔隙中繼續向吸附點擴散;吸附反應階段,吸附質被吸附在吸附劑孔隙內的吸附點表面。一般,吸附速度主要取決於外部擴散速度和孔隙擴散速度。
顆粒外部擴散速度與溶液濃度成正比,也與吸附劑的比表面積的大小成正比。因此吸附劑顆粒直徑越小,外部擴散速度越快。同時,增加溶液與顆粒間的相對運動速度,也可以提高外部擴散速度。
孔隙擴散速度與吸附劑孔隙的大小和結構,吸附質顆粒的大小和結構等因素有關。一般,吸附劑顆粒越小,孔隙擴散速度越快。
吸附劑的物理化學性質和吸附質的物理化學性質對吸附有很大影響。一般,極性分子(或離子)型的吸附劑容易吸附極性分子(或離子)型的吸附質;非極性分子型的吸附劑容易吸附非極性的吸附質。同時,吸附質的溶解度越低,越容易被吸附。吸附質的濃度增加,吸附量也隨之增加。
污水的pH值對吸附也有影響,活性炭一般在酸性條件下比在鹼性條件下有較高的吸附量。吸附反應通常是放熱反應,因此溫度低對吸附反應有利。
三、吸附劑
吸附劑的種類很多。常用是活性炭和腐植酸類吸附劑。
1.活性炭
在生產中應用的活性炭的種類很多。一般都製成粉末狀或顆粒狀。粉末狀的活性炭吸附能力強,制備容易,價格較低,但再生困難,一般不能重復使用。顆粒狀的活性炭價格較貴,但可再生後重復使用,並且使用時的勞動條件較好,操作管理方便。因此在水處理中較多採用顆粒狀活性炭。
活性炭的比表面積可達800—2000m2/g,有很高的吸附能力。
顆粒狀活性炭在使用一段時間後,吸附了大量吸附質,逐步趨向飽和並喪失工作能力,此時應進行更換或再生。再生是在吸附劑本身的結構基本不發生變化的情況下,用某種方法將吸附質從吸附劑微孔中除去,恢復它的吸附能力。活性炭的再生方法主要有:
(1)加熱再生法 在高溫條件下,提高了吸附質分子的能量,使其易於從活性炭的活性點脫離;而吸附的有機物則在高溫下氧化和分解,成為氣態逸出或斷裂成低分子。活性炭的再生一般用多段式再生爐。爐內供應微量氧氣,使進行氧化反應而又不致使炭燃燒損失。
(2)化學再生法 通過化學反應,使吸附質轉化為易溶於水的物質而解吸下來。例如,吸附了苯酚的活性炭,可用氫氧化鈉溶液浸泡,使形成酚鈉鹽而解吸。
濕式氧化法也是化學再生法,主要用於再生粉末狀活性炭。
在我國,目前活性炭的供應較緊張,再生的設備較少,再生費用較貴,限制了活性炭的廣泛使用。
2.腐植酸類吸附劑
用作吸附劑的腐植酸類物質主要有:天然的富含腐植酸的風化煤、泥煤、褐煤等,它們可以直接使用或經簡單處理後使用;將富含腐植酸的物質用適當的粘合劑制備成的腐植酸系樹脂。
腐植酸類物質能吸附工業廢水中的許多金屬離子,如汞、鉻、鋅、鎘、鉛、銅等。腐植酸類物質在吸附重金屬離子後,可以用H2SO4、HCI、NaCl等進行解吸。目前,這方面的應用還處於試驗、研究階段,還存在吸附(交換)容量不高,適用的pH值范圍較窄,機械強度低等問題,需要進一步研究和解決。
四、吸附工藝和設備
吸附的操作方式分為間歇式和連續式。間歇式是將廢水和吸附劑放在吸附池內進行攪拌30min左右,然後靜置沉澱,排除澄清液。間歇式吸附主要用於小量廢水的處理和實驗研究,在生產上一般要用兩個吸附池、交換工作。在一般情況下,都採用連續的方式。
連續吸附可以採用固定床、移動床和流化床。固定床連續吸附方式是廢水處理中最常用的。吸附劑固定填放在吸附柱(或塔)中,所以叫固定床。移動床連續吸附是指在操作過程中定期地將接近飽和的一部分吸附劑從吸附柱排出,並同時將等量的新鮮吸附劑加入柱中。所謂流化床是指吸附劑在吸附柱內處於膨脹狀態,懸浮於由下而上的水流中。由於移動床和流化床的操作較復雜,在廢水處理中較少使用。
在一般的連續式固定床吸附柱中,吸附劑的總厚度為3~5m,分成幾個柱串聯工作,每個柱的吸附劑厚度為1~2m。廢水從上向下過濾,過濾速度在4~15m/h之間,接觸時間一般不大於30~60min。為防止吸附劑層的堵塞,含懸浮物的廢水一般先應經過砂濾,再進行吸附處理。吸附柱在工作過程中,上部吸附劑層的吸附質濃度逐漸增高,達到飽和而失去繼續吸附的能力。隨著運行時間的推移,上部飽和區高度增加而下部新鮮吸附層的高度則不斷減小,直至全部吸附劑都達到飽和,出水濃度與進水濃度相等,吸附柱全部喪失工作能力。
在實際操作中,吸附柱達到完全飽和及出水濃度與進水濃度相等是不可能的,也是不允許的。通常是根據對出水水質的要求,規定一個出水含污染物質的允許濃度值。當運行中出水達到這一規定值時,即認為吸附層已達到「穿透」,這一吸附柱便停止工作,進行吸附劑的更換。
五、吸附法在污水處理中的應用
由於吸附法對進水的預處理要求高,吸附劑的價格昂貴,因此在廢水處理中,吸附法主要用來去除廢水中的微量污染物,達到深度凈化的目的。如:廢水中少量重金屬離子的去除、少量有害的生物難降解有機物的去除、脫色除臭等。
第2節 離子交換法
離子交換法是水處理中軟化和除鹽的主要方法之一。在廢水處理中,主要用於去除廢水中的金屬離子。離子交換的實質是不溶性離子化合物(離子交換劑)上的可交換離子與溶液中的其它同性離子的交換反應,是一種特殊的吸附過程,通常是可逆性化學吸附。
離子交換劑
水處理中用的離子交換劑有磺化煤和離子交換樹脂。磺化煤利用天然煤為原料,經濃硫酸磺化處理後製成,但交換容量低,機械強度差,化學穩定性較差,已逐漸為離子交換樹脂所取代。
離子交換樹脂是人工合成的高分子聚合物,由樹脂本體(又稱母體或骨架)和活性基團兩個部分組成。生產離子交換劑的樹脂母體最常見的是苯乙烯的聚合物,是線性結構的高分子有機化合物。在原料中,常加上一定數量的二乙烯苯做交聯劑,使線狀聚合物之間相互交聯,成立體網狀結構。樹脂的外形呈球狀顆粒,粒徑為:0.6~1.2mm(大粒徑樹脂),0.3~0.6mm(中粒徑樹脂),或0.02~0.1mm(小粒徑樹脂)。樹脂本身不是離子化合物,並無離子交換能力,需經適當處理加上活性基團後,才具有離子交換能力。活性基團由固定離子和活動離子組成。固定離子固定在樹脂的網狀骨架上,活動離子(或稱交換離子)則依靠靜電引力與固定離子結合在一起,二者電性相反電荷相等。
離子交換樹脂按樹脂的類型和孔結構的不同可分為:凝膠型樹脂、大孔型樹脂、多孔凝膠型樹脂、巨孔型(MR型)樹脂和高巨孔型(超MR型)樹脂等。
第3節 萃取法
在化工上,用適當的溶劑分離混合物的過程叫萃取。當混合物為溶液時叫液—液萃取,當混合物為固體時叫固—液萃取;使用的溶劑叫萃取劑,提出的物質叫萃取物,在廢水處理上,利用廢水中的雜質在水中和有機萃取劑中溶解度的不同,可以採用萃取的方法,將雜質提取出來。例如含酚濃度較高的廢水。由於酚在有機溶劑中的溶解度遠遠高於在水中的溶解度,我們可以利用酚的這種性質以及有機溶劑(如:油)與水不相溶的性質,選用適當的有機溶劑從廢水中把有害物質酚提取出來。
用萃取法處理廢水時,有三個步驟:①把萃取劑加入廢水,並使它們充分接觸,有害物質作為萃取物從廢水中轉移到萃取劑中;②把萃取劑和廢水分離開來,廢水就得到了處理。也可以再進一步接受其他的處理;③把萃取物從萃取劑中分離出來,使有害物質成為有用的副產品,而萃取劑則可回用於萃取過程才算,在技術上已經成立;其次,是經濟上的考慮。技術上可靠,經濟上合理,生產才能採用。
在化工上常使用「相」這個名詞。「相」是一個均勻物質,具有組成相同和性質相同的特徵。如在一個物質體系裡同時存在界面明確的兩部分物質,這兩部分物質就抽象地叫做兩個相。例如,油和水混在一起,即使劇烈攪拌,油滴分散在水中,油水之間仍然存在明確的界面,我們就說這是存在水相和油相。一個物質體系裡的兩個相,常常一個呈連續狀態而另一個呈分散狀態,呈連續狀態的叫連續相,呈分散狀態的叫分散相。一個物質體系的相數並無限制。
第4節 膜析法
一、 滲析法
二、 反滲透法
三、 超過濾法
膜析法是利用薄膜以分離水溶液中某些物質的方法的統稱。目前有擴散滲析法(滲析法)、電滲析法、反滲透法和超過濾法等。
一、滲析法
人們早就發現,一些動物膜,如膀胱膜、羊皮紙(一種把羊皮刮薄做成的紙),有分隔水溶液中某些溶解物質(溶質)的作用。例如,食鹽能透過羊皮紙,而糖、澱粉、樹膠等則不能。如果用羊皮紙或其他半透膜包裹一個穿孔杯,杯中滿盛鹽水,放在一個盛放清水的燒杯中,隔上一段時間,我們會發現燒杯內的清水帶有鹹味,表明鹽的分子已經透過羊皮紙或半透膜進入清水。如果把穿孔杯中的鹽水換成糖水,則會發現燒杯中的清水不會帶甜味。顯然,如果把鹽和糖的混合液放在穿孔杯內,並不斷地更換燒杯里的清水,就能把穿孔杯中混合液內的食鹽基本上都分離出來,使混合液中的糖和鹽得到分離。這種方法叫滲析法。起滲析作用的薄膜,因對溶質的滲透性有選擇作用,故叫半透膜。近年來半透膜有很大的發展,出現很多由高分子化合物製造的人造薄膜,不同的薄膜有不同的選擇滲析性。半透膜的滲析作用有三種類型:①依靠薄膜中「孔道」的大,小分離大小不同的分子或粒子;②依靠薄膜的離子結構分離性質不同的離子,例如用陽離子交換樹脂做成的薄膜可以透過陽離子,叫陽離子交換膜,用陰離子樹脂做成的薄膜可以透過陰離子,叫陰離子交換膜;③依靠薄膜:的有選擇的溶解性分離某些物質,例如醋酸纖維膜有溶解某些液體和氣體的性能,而使這些物質透過薄膜。一種薄膜只要具備上述三種作用之一,就能有選擇地讓某些物質透過而成為半透膜。在廢水處理中最常用的半透膜是離子交換膜。
二、反滲透法
反滲透法是一種藉助壓力促使水分子反向滲透,以濃縮溶液或廢水的方法。
如果將純水和鹽水用半透膜隔開,此半透膜只有水分子能夠透過而其他溶質不能透過,則水分子將透過半透膜進人溶液(鹽水),溶液逐漸從濃變稀,液面則不斷上升,直到某一定值為止。這個現象叫滲透,高出於水面的水柱高度(決定於鹽水的濃度)是由於溶液的滲透壓所致。可以理解,如果我們向溶液的一側施加壓力,並且超過它的滲透壓,則溶液中的水就會透過半透膜,流向純水一側,而溶質被截留在溶液一側,這種方法就是反滲透法(或稱逆滲透法)。
近年來,由於反滲透膜材料和製造技術的發展以及新型裝置的不斷開發和運行經驗的積累,反滲透技術的發展非常迅速,已廣泛用於水的淡化、除鹽和製取純水等,還能用以去除水中的細菌和病毒。但反滲透法所需的壓力較高,工作壓力要比滲透壓力大幾十倍。即使是改進的復合膜,正常工作壓力也需1.5MPa左右。同時,為了保證反滲透裝置的正常運行和延長膜的壽命,在反滲透裝置前必須有充分的預處理裝置。
反滲透裝置一般都由專門的廠家製成成套設備後出售。在生產中,根據需要予以選用。
三、超過濾法
超過濾法與反滲透法相似。但超濾膜的微孔孔徑比反滲透膜大,在0.005—1um之間。超濾的過程並不是單純的機械截留,物理篩分,而是存在著以下三種作用:①溶質在膜表面和微孔孔壁上發生吸附;②溶質的粒徑大小與膜孔徑相仿,溶質嵌在孔中,引起阻塞;③溶質的粒徑大於膜孔徑,溶質在膜表面被機械截留,實現篩分。毫無疑問,我們應力求避免在孔壁上的吸附和膜孔的阻塞,應選用與被分離溶質之間相互作用弱和膜孔結構是外密內疏的不對稱構造的超濾膜。
超濾的過程是動態過濾,即在超濾膜的表面既受到垂直於膜面的壓力,使水分子得以透過膜面並與被截留物質分離,同時又產生一個與膜表面平行的切向力,以將截留在膜表面的物質沖開。所以,超濾運行的周期可以較長。在運行方面,還可短時間地停止透水而增加切面流速,即可達到沖洗膜面的效果,使透水率得到恢復。這樣的運行方式,使超濾(膜)—活性污泥法這種新型的處理工藝得以實施和發展。
在廢水處理中,超過濾法目前主要用於分離有機的溶解物,如澱粉、蛋白質、樹膠、油漆等。超過濾法所需的壓力比反滲透法要低,一般為0.1—0.7MPa。
G. 含煤廢水處理的主要處理流程是什麼
輸煤系統廢水->煤泥廢水池(曝氣/攪拌和加葯)->送水泵è膜式過濾器->清水池->清水水泵->廠區內工業用水。該系統流程中的主要關鍵設備有:膜式過濾器(包括濾元、濾袋)、管夾閥、控制裝置等。
膜式過濾器產品介紹:
膜式過濾器是將聚四氟乙烯薄膜經過膨化處理,使構成的薄膜具有極好的化學穩定性能,能耐各種化學葯品的腐蝕(除熔融鹼金屬、活性氟素氣體外)。而且有較高的耐溫性能,溫度適用范圍廣(-240℃~+260℃)。由於經過高科技特殊加工使製成的薄膜極其強韌、柔軟。它所構成的空孔率很高而且非常均勻,同時具備高釋放性能,因此再小微粒都能捕集得到,又可以將它釋放出來。
聚四氟乙烯薄膜製成後粘貼在基材表面。通常基材可根據需要,選擇各種不同的織布或非織布,然後採用特殊的加工將它們粘在一起,使製成的膜與基材中纖維牢固結合,不會在使用中發生脫離現象。
自動反洗連續過濾、膜式過濾器可在數秒之內自動反洗清理過濾膜,反洗壓力僅需0.035MPa(即3.5mAq),反洗時不需要排空過濾器,反洗一結束,過濾器又進入過濾狀態,出水無初濾水,無需正洗,整個系統做到「零」排放。整個過程由PLC控制,自動循環進行,無需人工操作。壽命長、使用成本低、膜式過濾器中過濾膜的材料具有壽命長特點,因此維修、管理費用相當低。由於是低壓過濾,能耗也低。使用成本也大為降低。體積小、佔地省、膜式過濾器僅需其它相同處理量的傳統過濾裝置十分之一的佔地面積,因此建設費用相應低。尤其適用廠房面積小、老設備改造或配合環保改善設施的場合。設置化學清洗系統、隨時可以啟動設備整體化學清洗。維持膜式過濾器正常出力,延長使用壽命。
H. 煤礦為什麼會有地下水處理
一、 概述
煤炭在我國能源結構中佔70%以上,煤炭開采過程中排放大量廢水,若不經處理直接排放,勢必對環境造成嚴重污染,同時造成水資源的大量浪費,無法實現循環經濟的目標。據統計我國40%的礦區嚴重缺水,已制約了煤炭生產的發展。西北礦區多處於山區,水資源更為缺乏,地表水又多為間歇性河流,枯洪水季節流量相當懸殊,常年流量稀釋能力差,排入河流的污水造成嚴重污染。因此,開發、管理、利用好煤礦水資源,對煤炭工業可持續發展具有重要意義。
1、煤廢水污染嚴重
據包括10多位院士在內的專家學者鑒定通過的一項課題研究表明,山西每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃河水入晉工程的總引水量。專家呼籲,應當從技術、人才、資金投入和經營機制等多方面解決這一世紀難題,幫助山西省等煤炭主產區擺脫「產煤致旱、因煤致渴」的困擾。
這項關於山西省煤炭產業可持續發展的研究表明,山西省採煤造成嚴重的水資源破壞,加劇了水資源短缺問題。這項課題研究表明,山西每挖1噸煤損耗2.48噸的水資源。每年挖5億噸煤,使12億立方米的水資源受到破壞。這相當於山西省整個引黃工程的總引水量。因此,這對於山西這個人均水資源量僅佔全國平均水平不到五分之一的地區來說是個非常嚴重的問題。
目前,由於煤炭開采對地下水系破壞非常嚴重。據統計,山西採煤對水資源的破壞面積已達20352平方公里,佔全省總面積的13%。山西省大部分農村人畜吃水靠煤系裂隙水,而煤礦開采恰好破壞了該層段的含水層。據統計,全省由於採煤排水引起礦區水位下降,導致泉水流量下降或斷流,使近600萬人及幾十萬頭大牲畜飲水嚴重困難。
2、煤炭採掘業廢水治理技術問題
99%的採煤項目廢水沒有進行治理,從主觀上應該說是環保監管不力。從客觀上說是我們環保部門對採煤項目廢水治理技術持謹慎態度。採煤廢水治理技術多如牛毛,那種技術最適用、工藝最成熟、操作管理最方便、投資最省、運行費用最低,一直是我們環保部門在尋求的。由於採煤廢水復雜多變,在同一礦井廢水中,同時含有鐵、錳等重金屬,硫、氟、氯等非金屬及有機污染物和懸浮物,有的礦井廢水呈弱酸性(如織金縣珠藏、鳳凰山等),再就是即使是同一礦井,所采層不同,廢水性質也不同,甚至是差別很大。這就給煤礦廢水治理技術的選用帶來很大的困難。通常情況是某一技術只能有效處理某一污染物,不可能把所有超標的污染物都處理好。一個煤礦不可能投入很多資金對污染物進行單項處理,這就是採煤廢水治理在技術上的難點。有的業主自行修了一兩個池子,把礦井廢水往池子一放,就是對廢水進行處理了。事實上不是這樣簡單,可能連懸浮物也處理不了,金屬和非金屬就更不可能處理了。
3、煤礦廢水處理要求
1.1煤礦廢水包括礦井涌水、煤場和矸石場淋溶廢水等。在進行處理前,應先委託地區環境監測站進行監測,以監測資料作為廢水處理工程設計的依據。DFMC煤礦廢水治理技術和成套設備是目前經實踐證明的實用技術,50萬噸以下、小時涌水量50m3以下的煤礦可採用此技術和設備。對於酸性煤礦廢水還需新增設備和葯劑。煤礦廢水經處理達標後盡可能循環使用,循環使用率不低於50%,經處理後排放的廢水列為總量控制指標進行考核。
1.2新建煤礦必須執行「三同時」規定,試產三個月必須申請地區環保局驗收,驗收達標的發給排污許可證,不達標的停產治理。
1.3原有煤礦分期分批進行治理,2005年50%左右的原有煤礦治理完工並通過達標驗收。列入家2005年治理計劃的煤礦不治理的,依法予以處罰;治理不達標的,停產治理。治理計劃由各縣市環保局商煤炭局提出,報地區環保局綜合平衡後以治理計劃下達執行。
表1 某A煤礦廢水處理監測結果 單位:mg/l
指標 排放
標准 處理前
濃度 超標倍數(倍) 處理後
濃度 比排放標准低(%) 懸浮物 70 258 2.7 11.5 83.6 鐵 1 2.58 1.6 0.68 32 硫化物 1 2.8 1.8 0.5 50 COD 100 281.9 1.8 7 93 錳 2 0.13 未超標 0.1 —
表2某B煤礦廢水處理監測結果單位:mg/ l
指標 排放
標准 處理前
濃度 超標 倍數 (倍) 處理後
濃度 比排放標准低(%) 懸浮物 70 318 3.5 4.5 93.6 鐵 1 2.28 1.3 0.74 26 硫化物 1 3.21 2.2 0.5 50 COD 100 228.4 1.3 18.8 81.2 錳 2 0.37 未超標 0.18 — 1.4、煤礦廢水中鐵含量高,如濃度大於100mg/l,其處理設備投資和運行費用將要增加。因為鐵含量過高,要達到1mg/l的排放標准,一級除鐵是不行的,必須三至四級除鐵。
1.5、酸度高的煤礦廢水應使達標(6~9)。
1.6、煤礦要對煤場、矸石場進行硬化處理,建導流溝,把因大氣降水產生的這一部分淋溶水引入廢水處理系統進行處理。
1.7、 預防事故和自然因素引起的非正常排放
為預防因降暴雨致使廢水次理池溢流,工程設計必須考慮廢水處理池有足夠的容積。為防止事故性排放,必須建事故調節池。四、煤礦生活廢水處理要求洗煤廠和煤礦生活廢水處理採用深圳開發研製的微型生活廢水處理裝置進行處理。生活廢水經處理達標後可排放。五、煤礦廢水治理技術選用
實踐證明是可行的 DFMC煤礦廢水治理技術和成套設備可選用。未經試點的技術只能試點,不能推廣。經試點並由A地區環境監測站監測、提出監測報告,從治理效果、投資、運行費用等全面評價後由地區環保局決定是否推廣。
二、廢水主要處理技術
我國煤礦礦井水處理技術起始於上世紀70年代末,大多污水治理工作都只停留在為排放而治理。然而回用才是當今污水治理發展的必然趨勢,將防治污染和回用結合起來,既可緩解水源供需矛盾,又可減輕地表水體受到污染。現國內使用的處理技術主要有:沉澱、混凝沉澱、混凝沉澱過濾等。處理後直接排放的礦井水,通常採用沉澱或混凝沉澱處理技術;處理後作為生產用水或其它用水的,通常採用混凝沉澱過濾處理技術;處理後作為生活用水,過濾後必須再經過除酚等對人體有害物質及消毒處理;有些含懸浮物的礦井水含鹽量較高 ,處理後作為生活飲用水還必須在凈化後再經過淡化處理。三、礦井水處理回用的條件
1、礦井廢水的產生及特點
煤礦礦井廢水包括:煤炭開采過程中地下地質性涌滲水到巷道為安全生產而排出的自然地下水,井下採煤生產過程中灑水、降塵、滅火灌漿、消防及液壓設備產生的含煤塵廢水。因此,它既具有地下水特徵,但又受到人為污染。礦井廢水的特性取決於成煤的地質環境和煤系低層的礦物化學成分,其中井田水文地質條件及充水因素對於礦井開采過程礦井廢水的水質、水量有決定性的影響。因此,對礦井廢水處理要考慮開采過程中水質、水量的變化。某礦區M煤礦礦井廢水水質取礦井正常排水時井口水樣,結果見表1。
M煤礦礦井廢水污染物監測表
表1 單位:mg/L
序號 監測項目 日均值濃度范圍 序號 監測項目 日均值濃度范圍 1 肉眼可見物 微粒懸浮物 9 總氮 5.600~5.854 2 PH值 8.41~8.55 10 砷(ng/L) 3.4~5.2 3 CODcr 66.4~131.7 11 總磷 0.085~0.104 4 硫化物 1.09~1.67 12 糞大腸菌 260~393 5 懸浮物 360~500 13 銅 0.0207~0.0294 6 酚 0.006~0.051 14 鉛 -- 7 BOD5 14.10~24.73 15 鎘 -- 8 LAS 0.198~0.220 16 鋅 0.0381~0.0407
通過網路調查和資料查找,收集了多年來某礦區有關礦井水和地下水的化驗數據資料,以及環境監測站監測數據(表1)綜合分析,該煤礦礦井廢水含煤泥為主要懸浮物,有機物略有超標,糞大腸菌群超標,揮發酚超標。
2、礦井廢水回用途徑
煤礦礦井水處理後可作生產用水或生活用水,礦井生產用水主要是井下採掘設備液壓用水、消防降塵灑水,生活用水主要是沖廁、洗浴水以及深度處理後用於飲用水。水質標准分別為:
a、防塵灑水《煤礦工業礦井設計規范》(GB50215-94)
SS≤150mg/L,粒徑d<0.3mm;PH值為6~9;大腸菌群≤3個/L。
b、空壓機、液壓支柱用水水質SS≤10~200mg/L,粒徑d <0.15mm;硬度(碳酸鹽)2~7mg/L;pH值為6.5~9;濁度<20。
c、礦井洗浴水水質達到《地表水環境質量標准》(GB3838-2002)的Ⅲ類水體標准。
d、中水水質達到《生活雜用水水質標准》(CJ/T 48-1999)。
5、生活飲用水達到《生活飲用水衛生標准》(GB5749-85)。
四、處理工藝
從上表可知,M煤礦礦井廢水處理工程的設計處理能力為800~1000m3/d,處理後作為生產和生活用水,採用混凝反應、過濾、活性炭吸附及消毒工藝,流程見圖1。
圖1礦井廢水處理工藝流程
礦井廢水由井下排水泵提升至灌漿水池,部分用於黃泥灌漿,其餘廢水自流進入曝氣池,氣浮除油後進入斜板沉澱池進行初步沉澱,由提升泵提升進入混凝沉澱設備,同時加入混凝劑,經過斜管沉澱後,將絮狀物沉澱到底部而被去除,清水從上部溢流出水自流進入砂濾罐,出水自流進入清水池,清水池前投加二氧化氯進行殺菌消毒。砂濾罐的反沖冼水自流進入污泥池,上清液自流進入曝氣池,以提高礦井廢水資源的利用率。出水若用作生活用水,則砂濾罐出水進入活性炭吸附裝置處理後流入清水池用作生活用水。
五、主要處理單元
1、預沉池曝氣
礦井廢水中含有少量的有機物,通過曝氣接觸氧化去除廢水中的有機物。另外,井下液壓支柱等設備產生少量油類,通過氣浮除油,使廢水中油類達標。
2、混凝沉澱
煤礦礦井水主要污染物為懸浮物,處理懸浮物主要採用混凝沉澱法,用鋁鹽或鐵鹽做混凝劑,混凝劑混合方式採用管道混合器混合。混凝沉澱裝置採用倒喇叭口作為反應區,水流在反應區中流速逐漸降低,使廢水和混凝劑葯液的反應在反應器中逐漸全部完成。完全反應的廢水流出反應區後開始形成混凝狀物質,經過布水區進入斜管填料,由於斜管填料採用PVC六角峰窩狀填料,利用多層多格淺層沉澱,提高了沉澱效率。將絮狀物沉澱到底部而被去除,清水從上部溢流排出。
3、砂濾凈化
礦井廢水經混凝沉澱後,水中還含有較小顆粒的懸浮物和膠體,利用砂濾設備將懸浮顆粒和膠體截留在濾料的表面和內部空隙中,它是混凝沉澱裝置的後處理過程,同時也是活性炭吸附深度處理過程的預處理。砂濾罐為重力式無閥濾池,採用自動虹吸原理達到反沖洗,不需要人工單獨管理,操作簡便,管理和維護方便。砂濾罐通常採用不同等級的石英砂多層濾料。
4、活性炭吸附
該煤礦礦井廢水主要含有揮發酚,酚類屬於高毒物質,它可以通過皮膚、粘膜、口腔進入人體內,低濃度可使細胞蛋白變性,高濃度可使蛋白質沉澱。長期飲用被酚污染的水源,會引起蛋白質變性和凝固,引起頭暈、出疹、貧血及各種神經症狀,甚至中毒。處理中水用作生活飲用水,必須用活性炭吸附裝置處理。活性炭的比表面積可達800~2000m2/g,具有很強的吸附能力。該裝置採用連續式固定床吸附操作方式,活性炭吸附劑總厚度達3.5m,廢水從上向下過濾,過濾速度在4~15m/h,接觸時間一般不大於30~60min。隨著運行時間的推移,活性炭吸附了大量的吸附質,達到飽和喪失吸附能力,活性炭需更換或再生。
5、消毒
廢水中含有一定的病菌、大腸菌群,處理後回用於洗浴時,若不經過消毒,對人體皮膚傷害嚴重。所以礦井廢水處理後作為生活用水必須經過消毒處理,本工藝採用二氧化氯消毒,現場用鹽酸和氯酸鈉反應產生二氧化氯,二氧化氯無毒、穩定、高效、殺菌能力是氯的5倍以上。
六、處理工藝特點
1、以上可知A煤礦礦井廢水處理工程是根據礦井水水質特點確定工藝技術參數,採用一次提升到混凝沉澱裝置,再自流進入後續各處理構築物,出水水質穩定可靠,動力設備較少,能耗較低。
2、採用混凝沉澱裝置與砂濾罐相結合的工藝技術,主要處理構築物採用組合式鋼結構,具有佔地面積小、使用壽命長、工程投資省、工藝簡單、操作管理方便、運行成本低等特點。砂濾罐設計採用重力式無閥濾池,反沖洗完全自動,操作管理方便。
3、該煤礦礦井廢水處理系統實現了自動加葯、自動反沖洗的全過程監控,包括電控系統、上位監控系統和儀表檢測系統。儀表檢測系統包括加葯流量、處理流量 、水池液位和加葯箱液位、進水和出水濁度等連續自動檢測。