導航:首頁 > 廢水知識 > 污水處理ots

污水處理ots

發布時間:2022-01-29 18:20:49

⑴ 求助英文文獻

油田污水處理技術
Waste Water Treatment Technology
Sewage-treated Technology
Oil-field Wastewater treatment
Sewage Treatment Technology for Oilfield
Technique for Waste Water Treatment in the Oilfields
oilfield sewage treatment technology
------------------------------------------------
http://www.paper.e.cn/download_doctor_paper.php?serial_number=D200708-3183

http://en.wikipedia.org/wiki/Wastewater_treatment

http://zh.wikipedia.org/wiki/%E6%B1%A1%E6%B0%B4%E8%99%95%E7%90%86

http://books.google.com.sg/books?hl=en&id=Ja4AxcKIvQUC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=LTuxIUa4Hi&sig=2NCtO3LeBneL75Tgej7cxrAnl50

http://en.wikipedia.org/wiki/List_of_waste_water_treatment_technologies

http://zh.wikipedia.org/wiki/%E5%BB%A2%E6%B0%B4%E8%99%95%E7%90%86%E6%8A%80%E8%A1%93%E5%88%97%E8%A1%A8

http://books.google.com.sg/books?hl=en&id=BbjkzblQAOQC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=dfiLXTX0QY&sig=STHy-Q-rVvteHthlFoWr64HGVW4

http://books.google.com.sg/books?hl=en&id=02Lb2wTIzUwC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=8ltbrIs0XR&sig=HhyuTKetQKyQ3FUOptLnxJUQGxU

http://books.google.com.sg/books?hl=en&id=yomR2U_pBqIC&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=OLccTwFgzp&sig=cgS4JKR4BVuc4wBPTuQS1mJNQo0

http://books.google.com.sg/books?hl=en&id=cVdK6rexgd0C&dq=Wastewater+treatment&printsec=frontcover&source=web&ots=jbtXiMbcAD&sig=wp4eElURlMB7zw9DSzgQMOJqhIk

http://www.aqwise.com/UserFiles/File/Aquize/PDF%20files/Papares%20and%20Abstracts/Hydraulics.pdf

http://www.ncbi.nlm.nih.gov/pubmed/11561628?ordinalpos=1&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_Discovery_RA&linkpos=1&log$=relatedarticles&dbfrom=pubmed

http://www.cababstractsplus.org/google/abstract.asp?AcNo=20043057837

純水系統反滲透怎樣加葯清洗

反滲透系統的維護與清洗
反滲透水處理是一種先進的脫鹽技術,即可應版用於生水脫鹽、權純凈水制備,也可用於廢水處理、污水回收。它和離子除鹽的本質區別在於它是一種物理脫鹽,具有操作簡單、運行經濟、沒有污染有利於環境保護等特點,同時可大大降低生產人員的勞動強度,提高生產效率。
反滲透膜元件的維護:
膜元件的維護歸納為兩個大的方面:一是反滲透的預處理,二是反滲透設備的沖洗、清洗及保養。
反滲透設備的預處理
反滲透系統的預處理,首先要根據原水水質情況配置預處理設備,這一點對整個系統的安全性至關重要。

⑶ 關於環境污水處理Cyclic Activated Sludge System(CASS)的英語文獻

給你些很不錯的英語文獻和網站吧

http://web.deu.e.tr/atiksu/ana58/cass.html

CASS™ (Cyclic Activated Sludge System)...

Brief History of Sequencing Batch Reactors...

Activated sludge is the most widely used biological wastewater treatment process in the developed world, treating both sewage and a variety of instrial wastewaters. Batch operation of the activated sludge process is nothing new. During the early development of the activated sludge process in the United Kingdom by Adern and Lockett around 1914, plants were operated using fill-and-draw or interrupted batch feed methods. These researchers firmly established the concept of operating a single reactor basin using repetitive cycles of aeration, settlement and discharge of treated effluent. Around 1956, ring the development of oxidation ditch technology, Pasveer incorporated interrupted and continuously fed batch treatment principles. Further advancements to the oxidation ditch fed-batch treatment then too place by incorporating a rectangular basin configuration. By the late 1970's, the generic sequencing batch reactor (SBR) was well established and many small plants were in operation. A major development took place in 1978 with the incorporation of a pre-react zone within the SBR to control filamentous sludge bulking. Further refinements of SBR processes took place mainly in Australia and the United States and has led to the wide scale application of the technology worldwide. The shortfalls of the original design have led to the development of the present state-of-the-art CASS™ Sequencing Batch Reactor. While SBRs have generally been classified by the water instry for small or medium scale applications, CASS™ has found application in large scale municipalities ( 50 MGD or 400,000 + population equivalent ) and the molar expansion, retrofit or upgrading of existing wastewater treatment facilities.

CASS™ Process Components...

CASS™ is a combination of a biological selector and variable volume process reactor. The process operates with a single sludge in a single reactor basin to accomplish both biological treatment and solids-liquid separation. CASS™ is by design and operation with municipal wastewaters, a biological nutrient removal process, configured to function with filamentous sludge bulking control. A simple repeated sequence of aeration and non-aeration is used to provide aerobic, anoxic and anaerobic process conditions, which in combination with the aeration intensity, favor nitrification, denitrification and biological phosphorus removal.

The essential features of the CASS™ technology are the plug-flow initial reaction conditions and the complete-mix reactor basin. Each CASS™ reactor basin is divided by baffle walls into three sections (Zone 1: Selector, Zone 2: Secondary Aeration, Zone 3: Main Aeration). For typical domestic wastewater treatment applications, these sections are in the approximate proportions of 5%, 10%, and 85%. Sludge biomass is continuously recycled from Zone 3 to the Zone 1 selector to remove the readily degradable soluble substrate and favor the growth of floc-forming microorganisms. System design is such that the sludge return rate causes an approximate daily cycling of biomass in the main aeration zone through the selector zone. The mechanisms of Zone 1 and the internal sludge recycle eliminate the requirement for separate fill-ratio selectivity, anoxic, and anaerobic mixing periods. The selector is self-regulating for any load condition and operates under anoxic and anaerobic reaction conditions ring non-aerated periods. Polishing denitrification and enzymatic transfer of available substrate ring enhanced biological phosphorus removal is also achieved in the selector zone. The complete-mix nature of the main reactor provides flow and load balancing and a tolerance to shock or toxic loadings, and the process prevents solids washout ring peak or wet weather hydraulic surges.

Process Cyclic Operation...

CASS™ utilizes a simple repeated time-based sequence which incorporates :

FILL-AERATION (for biological reactions)
FILL-SETTLE (for solids-liquid separation)
DECANT (to remove treated effluent)

Completion of these three operations constitute a cycle which is then repeated. The sequence above can also include a FILL, FILL-MIX, FILL-REACT, and REACT if required.

During the period of a cycle, the liquid level inside the reactor basin rises from a set bottom water level in response to a varying wastewater flow rate. Aeration ceases at a predetermined period of the cycle to allow the biomass to flocculate and settle under quiescent conditions. After a specific settling period, the treated effluent supernatant is removed (decanted), using a moving weir decanter. This operation returns the liquid level in the reactor basin to the bottom water level. Surplus solids are wasted as required to maintain the biomass MLSS at the required level. Solids wasting after settling enables waste sludge concentrations in excess of 10,000 mg/L to be removed.

Fill - Aeration...

The FILL-AERATION (react) operation refers to the air-on time of the process cycle. During this period, influent is received into the basin through the selector zone where it contacts with the biomass recycled from the main aeration zone. Complete-mix reaction conditions occur in Zone 3 ring this variable volume operational period.

Fill - Settle...

This refers to the first part of the air-off time period when quiescent settling conditions are created in Zone 3 for solids-liquid separation. The activated sludge solids form a sludge-level interface which progressively falls toward the floor of the basin. The flocs adhere together and the mass settles as a blanket leaving a clear supernatant. At the end of the aeration period, the sludge is at a uniform concentration. During the initial settling period, the sludge undergoes internal flocculation e to the resial mixing energy within the basin. As this energy dissipates the sludge interface forms and settles as a blanket. Dense solids fall through the formed mass to settle on the basin floor. There is an initial slow settling velocity which increases and then graally falls off e to the compressive accumulation of solids on the basin floor. Zone settling velocity is a function of the initial solids concentration, basin depth, total area of the basin and nature of the biological solids. A top water level solids concentration of around 3,500 mg/L will typically settle to form a layer of sludge having a mean concentration of around 10,000 mg/L. CASS™ facilities are sized and configured to operate with inflow into the basin ring the settle phase of the cycle. Biomass is returned from the main aeration zone to the selector zone to promote selectivity and create anoxic/anaerobic conditions.

Decant ( Effluent Removal )...

Inflow to the basin undergoing decanting (effluent withdrawal) is interrupted and directed to an alternate basin in a multi-basin facility or stored in a pump well in a single basin facility. The weir trough of the decanter is situated above top water level for both aeration and settling phases to prevent the accidental discharge of mixed liquor suspended solids. When operated ring the decant phase of the cycle, the decanter travels down at an initial fast speed. Interaction with the liquid level is detected by a level indicator float switch which causes the skimmer to proceed at its design rate of travel procing a constant rate of discharge of treated effluent from the basin. On reaching designated bottom water level, the decanter is reversed to its rest position at the initial fast speed.

Idle...

In practice, decanting will always be less than the allocated time available. This resial time is designated as IDLE and can be used as a period of inflow without aeration or reaction. The IDLE sequence begins 4 minutes after the skimmer has traveled in the reverse up direction and finishes at the end of the designated decant period. Biomass is recycled from Zone 3 to the selector zone to promote selectivity and create anoxic/anaerobic conditions.

Respiration Rate Control (RRC™)...

Dissolved oxygen is a necessary requirement for the biological oxidation reactions which take place with the CASS™ process. Resial dissolved oxygen occurs as a result of oxygen which is not used by the microorganisms in the biomass. Too much dissolved oxygen in the CASS™ process is wasteful of energy and may inhibit biological nutrient removal mechanisms. A simple control method has been developed to ensure optimum biological reaction conditions take place and valuable energy is not wasted. Advantage is taken of the fact that the CASS™ process conforms to a complete-mix reaction model. This also means that CASS™ provides a very stable reaction environment when compared to other conventional plug-flow activated sludge, extended aeration, contact stabilization, or sequencing batch reactor systems. A dissolved oxygen sensor is used to measure changes in biomass oxygen demand. For example, a rection in the oxygen load demand to a CASS™ basin will automatically cause a lowering of the aeration intensity (air supply) so that the excessive dissolved oxygen concentrations are prevented. Conversely, an increase in load demand will cause an increase in aeration intensity so that the metabolic activity of the biomass, as registered by its propensity to use oxygen, is matched with the corresponding aeration intensity rate of air feed into the reaction basin.

RRC™ directly interacts with the best sensor which is available for the control of air into the process. The system is an in-basin respirometer. Simply stated, low oxygen demand caused by low loadings ring diurnal, or other variations can now be directly matched to energy use. The biomass senses the oxygen requirements which are needed for the process. The dissolved oxygen sensor interprets that message and causes interaction with the rate of introction of air into the reaction basin.

The CASS™ RRC™ is simple and direct. RRC™ has direct benefits :

- Saves operating costs.
- Rection of waste activated sludge.
- Improved nutrient removal performance.

http://www.energymanagertraining.com/textiles/pdf/Cyclic%20Activated%20Sludge%20Technology.pdf

http://www.sbrcass.com/process.htm

http://www.freepatentsonline.com/7083324.html

http://books.google.com.sg/books?id=lyM6SgHXimEC&pg=PA657&lpg=PA657&dq=cyclic+activated+sludge+system&source=web&ots=RZhwp9iKY3&sig=wpKRxcRFOj0qWKz5pJSqZApCgBU&hl=en

http://www.sawea.org/Workshops/Presentation2005/MainSession/Nov30/LUCAS%20ACTIVATED%20SLUDGE%20TECH.%20-%20WATERLEAU.pdf

http://books.google.com.sg/books?id=Cnic0Co2V2QC&pg=PA351&lpg=PA351&dq=cyclic+activated+sludge+system&source=web&ots=wTkt1_5Rji&sig=lv5pGQArXqqESB7M1wr2AoE3zfI&hl=en

⑷ 世界油頁岩產業發展趨勢及存在問題

(一)世界油頁岩干餾技術發展趨勢

20世紀干餾理論研究、科學試驗的成果和工業化生產取得的經驗促使地面干餾技術不斷完善,形成了一批先進的干餾技術方法,如ATP工藝;也形成了地下原位干餾技術,如ICP原地轉化干餾技術。這些新進展將引導和推動21世紀油頁岩干餾技術不斷進步和發展。

從油頁岩干餾技術發展過程看,試驗已證實地下原位干餾技術可行且具有很好的發展前景。盡管地下原位干餾如ICP尚未在商業規模上加以驗證,但它具有地面干餾技術無法相比的優點。因此,地下原位干餾技術將是未來發展趨勢,但地面干餾工藝仍是近期干餾技術應用主體。

成本、技術、環保是發展油頁岩產業的關鍵。技術革命可以突破成本、環境的瓶頸。目前及今後世界油頁岩產業發展方向主要圍繞三個方面:一是利用新技術提高頁岩煉油的油收率,並以規模化生產來降低單位成本;二是提高油頁岩的綜合利用率,通過整條生產鏈將其「吃干榨盡」,從而攤薄成本;三是發展地下原位干餾技術。

油頁岩干餾技術發展趨勢主要體現以下幾個方面:

1.簡化工藝

地下原位干餾工藝簡單且有效,適應性強,將是今後技術發展的主要方向,如ICP原地轉化干餾技術,在某些方面與常規石油鑽井採油過程類似,過程簡單,無需采礦、處理尾礦,有助於大規模干餾、降低成本和提高生產效率。

2.降低成本

實現成本最佳效益,是未來干餾技術重要發展方向。如地面干餾一方面通過改進工藝、提高單爐處理能力,擴大生產規模,降低生產成本;另一方面通過油頁岩綜合優化利用的方法,將干餾爐製取頁岩油和燃氣所生成的油頁岩半焦廢棄物經破碎與油頁岩煉油過程中廢棄的顆粒細渣進行混合構成混合物料,供給循環流化床鍋爐燃燒,燃燒產生的熱量轉化為蒸汽,一部分作為外供取暖,一部分驅動汽輪機帶動發電機發電。混合物料經循環流化床燃燒後產生的灰渣,進一步用來生產水泥、陶粒和建築砌塊,提高附加值,增強市場競爭能力。

3.保護環境

對環境友好、實現零排放,也是油頁岩干餾技術發展的一個重要趨勢。研發出有利於環保的技術方法和控制手段,避免或減輕對環境的影響。重視監測空氣、地表水、地下水、土壤及生物質量,回收和利用有毒物質、廢物和廢水,進行土地復墾等方面工作。

4.技術綜合

各種技術滲透、綜合、集成和應用新技術是當今干餾技術發展的主要方向之一。如信息技術大量應用在工藝監測和控制,工藝過程模擬和建模研究上,這些經驗技術可以降低工藝各個環節成本,准確地推斷和描述干餾產物組成、性質、工藝參數,優化工藝流程,提高生產效率。

(二)世界頁岩油產能預測

世界有關能源機構和專家對世界油頁岩產業發展的預測有很大的不同,但一致認為今後會有較快發展。

1.美國科羅拉多礦業學院油頁岩工藝研究中心的預測

美國科羅拉多礦業學院油頁岩工藝研究中心主任Dr.Jeremy Boak在2009年6月愛沙尼亞塔林國際油頁岩會議上做了一個報告(Boak,2009)。報告認為,除了當前正在進行頁岩油生產的國家愛沙尼亞、中國和巴西將增產以外,潛在的有較大資源、且今後可能生產頁岩油的國家有美國、摩洛哥、約旦、澳大利亞和俄羅斯等。他還提出了世界范圍內大規模發展油頁岩產業的設想(圖1-3),認為當前世界頁岩油生產約1.5~2萬桶/d(75~100×104t/a),今後如果以每年增產15%~20%計,則在10年後,至2020年世界頁岩油產量約可達12萬桶/d(600×104t/a);在25年以後,至2035年,世界頁岩油的產量約可達100萬桶/d(5000×104t/a)。該設想是基於目前的發展狀況推測,很保守。

不過,美國科羅拉多礦業學院的專家也向美國政府提出了一項十分樂觀的建議,即建議美國減少石油戰略儲備量,從而將節省下來的1000億美元用於建立頁岩油產業,可以年產2×108t頁岩油(Sewalk等,2008)。

2.美國能源部的預測

美國能源部則對美國未來的油頁岩產業做出了大膽設想。2004年3月美國能源部的研究報告預計,從2011年開始開發油頁岩資源,到2020年使頁岩油年產量達到200萬桶/d(1×108t/a),2040年達到300萬桶/d(1.5×108t/a),最終建成年產1000萬桶/d(5×108t/a)的頁岩油生產能力(圖1-4)。該預測是基於美國資源現狀推測的,未免太樂觀。

圖1-5 美國頁岩油產能預測

3.歐洲科學院對歐盟油頁岩發展的研究報告

歐盟議會於2007年委託歐洲科學院進行了歐盟油頁岩發展的研究。研究報告表明世界頁岩油資源高達3萬億桶,北美高達2萬億桶,歐洲也有3700億桶,主要是在義大利,佔73%,愛沙尼亞佔19%,法國佔7%。報告認為油頁岩可以作為潛在的能源,列入歐盟的能源發展政策(Taher,2009;Siirde等,2009)。

4.愛沙尼亞Eesti能源公司對油頁岩發展的規劃

愛沙尼亞Eesti能源公司規劃增建改進的Galoter干餾裝置,至2015年,頁岩油日產3萬桶(年產150×104t)。並增建油頁岩循環流化燃燒裝置兩套,每套400MW(Live,2009)。

5.跨國公司參與油頁岩發展

當前世界大型跨國石油公司很多參與油頁岩的開發。殼牌公司在美國科羅拉多州、休斯敦等地開展地下干餾現場中試。埃克森美孚公司和雪佛龍公司等都在美國開展地下干餾模擬研究。最近法國TOTAL與約旦等國家簽署協作協議,參與油頁岩開發(Allix,2008)。

(三)世界油頁岩產業發展存在的問題

油頁岩產業的發展主要取決於經濟、環保、資源、技術和政策等問題。對於具體國家而言,由於國情的不同,主要的問題也不同。

關於愛沙尼亞,歐盟支持愛沙尼亞油頁岩產業的發展,但對環境保護提出了嚴格的要求。因此,愛沙尼亞在今後增產頁岩油和油頁岩發電的同時,需要採用對環境影響較小的加工工藝。例如,選擇了Galoter裝置干餾煉油,該工藝污水較Kiviter工藝為少,可以直接送往電站燒掉。而且Galoter裝置產出的頁岩灰較Kiviter產出的頁岩半焦,其污染物也較少(Allix,2008)。愛沙尼亞在油頁岩發電方面增建油頁岩循環流化燃燒工藝,其煙氣的排放可以符合歐盟的標准,以局部代替懸浮式燃燒、污染物排放超標的老工藝(Ots,2009;Sarkki,2009;Weber,2009)。

關於美國,有世界上最豐富的油頁岩資源,品位也較高。發展頁岩油可以減少美國大量石油的進口,而且會有很好的經濟效益及增加就業機會。但是美國對環境保護很嚴格,而且綠河地區可以提供的水源不足以支持當地大量頁岩油的生產需求。雖然美國能源部等機構積極宣傳和支持油頁岩的開發,但只有解決了環保和水源問題後,美國才能建立大規模頁岩油產業(Killen,2009)。

關於澳大利亞,有著豐富的探明油頁岩儲量,澳大利亞的公司(SPP/CPM)也曾經放大了加拿大Taciuk工藝數十倍進行了澳大利亞油頁岩干餾示範性的工業爐試驗(6000t/d),但由於諸多工藝和工程問題,試車數年未獲成功,導致經營失敗,後來裝置和資源售予美國一能源公司(李術元等,2009)。澳大利亞停止ATP生產的原因不是技術問題,而是當時國際原油價格低、民間環保組織阻擾、停停修修成本高、公司債務纏身等綜合原因,不得已把這套ATP裝置賣給債主了。

但是澳大利亞仍然有開發油頁岩資源的願望。最近,澳大利亞地方政府發出了20a的油頁岩禁開令,明確提出在油頁岩技術沒有達到昆士蘭州的環保要求之前,不準開發利用油頁岩資源。

關於巴西,由於近年來在海上發現了大量天然石油儲量,因此對於頁岩油的發展沒有增產的計劃(Epifanio,2009)。

關於俄羅斯,由於本國有著豐富的油氣資源,因此對於發展頁岩油未提上日程。

關於加拿大,多年來由於成功的開發利用了儲量豐富的油砂,從油砂中抽提稠油,加氫生產成合格的汽、柴油。2008年產量達6500×104t稠油,獲得了巨大的經濟和社會效益(Ekelund,2009)。油砂煉油作為一種非常規油源,對於油頁岩的開發有很大的啟示。加拿大也在不斷勘探油頁岩資源,作為一種後備能源(Butler,2009)。

關於約旦,約旦雖地處中東,卻沒有天然石油,但有著豐富的油頁岩資源,而且品位較高,可露天開采。約旦曾送油頁岩至中國、德國等用各國技術進行約旦油頁岩的干餾煉油試驗,取得較好結果。約旦政府擬建立頁岩油產業,但缺乏資金,希望能與有關國家或公司合作。但是,由於約旦地處政治不穩定的地區,至今沒有投資方的合作(Madanat等,2009)。

關於德國,建立起以油頁岩為原料的小規模水泥廠。對油頁岩進行流化燃燒發電和頁岩灰制水泥的綜合利用,已有四十餘年的成功經驗。由於當地的油頁岩資源的限制,擴大生產的餘地不大。

閱讀全文

與污水處理ots相關的資料

熱點內容
盛源泉凈水器在哪裡買 瀏覽:632
大孔離子交換樹脂的 瀏覽:933
食品鍋爐除垢劑 瀏覽:250
超威電瓶加蒸餾水還是電解液 瀏覽:841
牛仔褲水洗廢水的排放標准 瀏覽:387
蒸餾儀架 瀏覽:70
海爾飲水機加熱溫控怎麼檢查好壞就常亮 瀏覽:82
怡口超濾膜和活性炭 瀏覽:720
安吉爾新凈水器怎麼安裝 瀏覽:950
地下污水池怎麼做防滲漏 瀏覽:150
紅薯澱粉廢水蛋白回收 瀏覽:964
飲水機燒水不燒什麼原因 瀏覽:815
污水廠在線監測試劑使用情況 瀏覽:600
大凈的凈水器怎麼賣 瀏覽:398
本田飛度4s店換空氣濾芯多少錢 瀏覽:48
河北油田廢水處理葯劑批發廠家 瀏覽:483
小型的反滲透水處理設備需要多少錢 瀏覽:368
搭樹脂瓦雨棚多少錢一平方 瀏覽:16
活性炭污水處理起什麼作用 瀏覽:102
廢水中總砷測定儀器 瀏覽:209