.
⑷ 吸附技術在水處理中的應用
活性炭是最常用的抄
碳質吸襲附劑
,由
無定形碳
和少量
無機物
灰分所組成,活性炭
比表面積
很大,可達900-1700m2/g,因此具有很高的
吸附容量
;同時,活性炭表面有多種
官能團
,具有
物理吸附
、
化學吸附
兩種功能,對原水中極性和非極性有機物均具有良好的吸附能力。
活性炭能夠比較有效的去除水中的
余氯
、有機物、色度、
濁度
、臭味等。
⑸ 水處理材料 有哪些
我是專業做循環水處理的。循環水主要應用於工業系統上,包括冶金、石回化、電力、化工答、中央空調等。當然各個行業的用途的不一樣的。舉個例子,電廠的循環水是冷卻凝汽器里的水蒸汽的,從而產生真空,推動汽輪機發電。化工企業呢一般是降低溫度的,例如蒸餾出來的東西需要冷卻下來。雖然各個行業的循環水冷卻的對象不同,但它的主要目的就是利用水來冷卻工藝介質。此外水處理葯劑還有絮凝劑、混凝劑、膜用水處理葯劑等等。我是專門做水處理的,如果什麼問題可以發郵件給我,我們可以互相探討.我的EMAIL是[email protected].
這方面有一定的前途,如果有機會不妨運作一下。
⑹ 凱氏定氮法,雙縮尿法、Folin-酚試劑法和紫外吸收法、考馬斯亮藍法、BCA法的原理和大體過程
[編輯本段]1 原理
蛋白質是含氮的有機化合物。食品與硫酸和催化劑一同加熱消化,使蛋白質分解,分解的氨與硫酸結合生成硫酸銨。然後鹼化蒸餾使氨游離,用硼酸吸收後再以硫酸或鹽酸標准溶液滴定,根據酸的消耗量乘以換算系數,即為蛋白質含量。
1.有機物中的胺根在強熱和CuSO4,濃H2SO4 作用下,硝化生成(NH4)2SO4
反應式為:
CuSO4 +2NH2—+H2S04+2H+=(NH4)2S04
2.在凱氏定氮器中與鹼作用,通過蒸餾釋放出NH3 ,收集於H3BO3 溶液中
反應式為:
(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4
2NH3+4H3BO3=(NH4)2B4O7+5H2O
3. 用已知濃度的H2SO4(或HCI)標准溶液滴定,根據HCI消耗的量計算出氮的含量,然後乘以相應的換算因子,既得蛋白質的含量
反應式為:
(NH4)2B4O7+H2SO4+5H2O=(NH4)2SO4+4H3BO3
(NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3
[編輯本段]2 試劑
所有試劑均用不含氨的蒸餾水配製。
2.1 硫酸銅。
2.2 硫酸鉀。
2.3 硫酸。
2.4 2%硼酸溶液。
2.5 混合指示液:1份0.1%甲基紅乙醇溶液與5份0.1%溴甲酚綠乙醇溶液臨用時混合。也可用2份0.1%甲基紅乙醇溶液與1份0.1%次甲基藍乙醇溶液臨用時混合。
2.6 40%氫氧化鈉溶液。
2.7 0.025mol/L硫酸標准溶液或0.05mol/L鹽酸標准溶液。
[編輯本段]3 儀器
定氮蒸餾裝置:如圖所示。
凱氏定氮法儀器1.安全管
2.導管
3.汽水分離管
4.樣品入口
5.塞子
6.冷凝管
7.吸收瓶
8.隔熱液套
9.反應管
10.蒸汽發生瓶
[編輯本段]4 操作方法
1、 樣品處理:精密稱取0.2-2.0g固體樣品或2-5g半固體樣品或吸取10-20ml液體樣品(約相當氮30-40mg),移入乾燥的100ml或500ml定氮瓶中,加入0.2g硫酸銅,3g硫酸鉀及20毫升硫酸,稍搖勻後於瓶口放一小漏斗,將瓶以45度角斜支於有小孔的石棉網上,小火加熱,待內容物全部炭化,泡沫完全停止後,加強火力,並保持瓶內液體微沸,至液體呈藍綠色澄清透明後,再繼續加熱0.5小時。取下放冷,小心加20ml水,放冷後,移入100ml容量瓶中,並用少量水洗定氮瓶,洗液並入容量瓶中,再加水至刻度,混勻備用。取與處理樣品相同量的硫酸銅、硫酸鉀、硫酸銨同一方法做試劑空白試驗。
2、 按圖裝好定氮裝置,於水蒸氣發生器內裝水約2/3處加甲基紅指示劑數滴及數毫升硫酸,以保持水呈酸性,加入數粒玻璃珠以防暴沸,用調壓器控制,加熱煮沸水蒸氣發生瓶內的水。
3、 想接收瓶內加入10ml 2%硼酸溶液及混合指示劑1滴,並使冷凝管的下端插入液面下,吸取10.0ml樣品消化液由小玻璃杯流入反應室,並以10ml水洗滌小燒杯使流入反應室內,塞緊小玻璃杯的棒狀玻璃塞。將10ml 40%氫氧化鈉溶液倒入小玻璃杯,提起玻璃塞使其緩慢流入反應室,立即將玻璃蓋塞緊,並加水於小玻璃杯以防漏氣。夾緊螺旋夾,開始蒸餾,蒸氣通入反應室使氨通過冷凝管而進入接收瓶內,蒸餾5min。移動接收瓶,使冷凝管下端離開液皿,再蒸餾1min,然後用少量水沖洗冷凝管下端外部。取下接收瓶,以0.01N硫酸或0.01N鹽酸標准溶液定至灰色或藍紫色為終點。
同時吸取10.0ml試劑空白消化液按3操作。
計算:
X =((V1-V2)*N*0.014)/( m*(10/100)) +F*100
X:樣品中蛋白質的含量,g;
V1:樣品消耗硫酸或鹽酸標准液的體積,ml;
V2:試劑空白消耗硫酸或鹽酸標准溶液的體積,ml;
N:硫酸或鹽酸標准溶液的當量濃度;
0.014:1N硫酸或鹽酸標准溶液1ml相當於氮克數;
m:樣品的質量(體積),g(ml);
F:氮換算為蛋白質的系數。蛋白質中的氮含量一般為15~17.6%,按16%計算乘以6.25即為蛋白質,乳製品為6.38,麵粉為5.70,玉米、高粱為6.24,花生為5.46,米為5.95,大豆及其製品為5.71,肉與肉製品為6.25,大麥、小米、燕麥、裸麥為5.83,芝麻、向日葵為 5.30。
[編輯本段]注意事項
(1) 樣品應是均勻的。固體樣品應預先研細混勻,液體樣品應振搖或攪拌均勻。
(2) 樣品放入定氮瓶內時,不要沾附頸上。萬一沾附可用少量水沖下,以免被檢樣消化不完全,結果偏低。
(3) 消化時如不容易呈透明溶液,可將定氮瓶放冷後,慢慢加入30%過氧化氫(H2O2)2-3ml,促使氧化。
(4) 在整個消化過程中,不要用強火。保持和緩的沸騰,使火力集中在凱氏瓶底部,以免附在壁上的蛋白質在無硫酸存在的情況下,使氮有損失。
(5) 如硫酸缺少,過多的硫酸鉀會引起氨的損失,這樣會形成硫酸氫鉀,而不與氨作用。因此,當硫酸過多的被消耗或樣品中脂肪含量過高時,要增加硫酸的量。
(6) 加入硫酸鉀的作用為增加溶液的沸點,硫酸銅為催化劑,硫酸銅在蒸餾時作鹼性反應的指示劑。
(7) 混合指示劑在鹼性溶液中呈綠色,在中性溶液中呈灰色,在酸性溶液中呈紅色。如果沒有溴甲酚綠,可單獨使用0.1%甲基紅乙醇溶液。
(8) 氨是否完全蒸餾出來,可用PH試紙試餾出液是否為鹼性。
(9) 吸收液也可以用0.01當量的酸代表硼酸,過剩的酸液用0.01N鹼液滴定,計算時,A為試劑空白消耗鹼液數,B為樣品消耗鹼液數,N為鹼液濃度,其餘均相同。
(10) 以硼酸為氨的吸收液,可省去標定鹼液的操作,且硼酸的體積要求並不嚴格,亦可免去用移液管,操作比較簡便。
(11) 向蒸餾瓶中加入濃鹼時,往往出現褐色沉澱物,這是由於分解促進鹼與加入的硫酸銅反應,生成氫氧化銅,經加熱後又分解生成氧化銅的沉澱。有時銅離子與氨作用,生成深蘭色的結合物[Cu(NH3)4]2+
(12) 這種測算方法本質是測出氮的含量,再作蛋白質含量的估算。只有在被測物的組成是蛋白質時才能用此方法來估算蛋白質含量。
管道直飲水,採用納濾膜特有的選擇透過性性能,可脫除自來水中有機物、細菌和病毒,保留水中有益於人體的微量元素,是對「自來水飲用水的深度處理」,經臭氧、紫外線、變頻恆壓輸出至用戶可直接生飲的水。
分質供水是指根據生活中人們對水的不同需要,由市政提供的自來水為生活飲用水,採用特殊工藝將自來水進行深度加工處理成可直接飲用的純凈水,然後由食品衛生級的管道輸送到戶,並單獨計量。這種直接飲用的純凈水分純水或凈水,即按照中華人民共和國GB 17323《瓶裝飲用純凈水》,以符合生活飲用水衛生標準的水為原料,通過反滲透膜(Revvrse Osmosis Element/RO)凈化處理後,稱為純水。按照建設部CJ 94《飲用凈水水質標准》[3],用同樣符合生活用水衛生標準的水為原料,通過納濾膜(Nanofiltration Element/NF)或法國卡提斯(CARTIS)載銀活性炭凈化處理後,稱為凈水。
國家《生活飲用水管道分質直飲水衛生規范(討論稿)》[2]要求管道直飲水用戶龍頭出水任何時間必須符合《飲用凈水水質標准(CJ 94-1999)》[3]規定要求。管道分質直飲水系統的設計生產必須符合《管道直飲水系統技術規程(討論稿)》[4],在法規上給予了嚴格的行業規范和強有力的衛生行政執法依據,真正確保每一個小區管道分質直飲水用戶的飲水衛生安全與飲用健康,這便是新一代的高效、綠色環保、節能型水質處理供水裝置。
1.2直飲水
以上純水或凈水經臭氧氣液混合後密封於容器中且不含任何添加物,再通過紫外線照射,經電子(場)水處理器(微電解殺菌器)流經的水在微弱的電場中產生大量具有極強和廣譜殺生能力的活性水,由食品衛生級管道供每家每戶直接飲用,可供直接飲用的水叫直飲水。
1.3直飲機
管道直飲機,是在飲水機的基礎功能上增加進水自動控制器,使用時只需將管道直飲機與飲用水管道直接聯接,實現自動進水,可直接飲用的飲水機。是現代住宅小區、寫字樓供水的終端飲水設備。
1.4管道分質供水系統
管道分質直飲水及直飲機是將水處理裝置與供水管網、管道直飲機有機的結合,在處理工藝上都有嚴格要求和衛生規范,工藝中除沉澱、吸附、過濾常規方式外,採用新的水處理材料及工藝,用銅鋅濾料(KDF)替代石英砂;用臭氧(Ozone/Q3)與顆粒活性炭(Grancule Activated Carbon/GAC)結合成生物-活性炭法(Biological Activated Carbon/BAC)消毒方式替代普通活性炭(Activated Carbon/AC);用鈦金屬濾芯(HDF)替代聚丙烯(PPF);用超濾膜(Ultrafiltration Element/UF)作為預處理;用納濾膜(Nanofiltration Element/NF)或卡提斯(CARTIS)替代通常的逆滲透膜(Revvrse Osmosis Element/RO),將水的利用率提高;將電量的消耗減少,產品水主要採用臭氧加紫外線殺菌器的最佳組合,增加電子(場)水處理器(微電解殺菌器),是管道分質供水系統管網循環殺菌的理想產品。對管網進行定期循環,經卡提斯(CARTIS)處理過的水溶氧量大,增加了水的活性,能抑制細菌生長,可持續保鮮,有效保證管網內水的新鮮與飲用衛生安全。系統的供水量嚴格遵守每天的按用水需求量設計,再加上管道直飲機內儲存水容量不會大於3升(家用型)、30升(單位型),保持隨時飲用隨時補充新鮮水。國家《生活飲用水管道分質直飲水衛生規范(2002)》[2]標准(討論稿)要求管道直飲水用戶龍頭出水任何時間必須符合《飲用凈水水質標准(CJ94-1999)》[3]。由於直飲水水質純凈,口感甜潤,每天的產水每天飲用完,管網系統每天定時用臭氧、紫外線殺菌、電子(場)水處理器消毒保鮮,水中含氧量的提高能預防直飲水的二次污染,使每天的直飲水新鮮可口。給水採用恆壓變頻水泵輸送,滿足高層建築要求。分質供水非常適應於現代城市住宅小區管道直接飲用水的需求,從而提高人民生活質量。
1.5預處理裝置
預處理裝置是將自來水經臭氧氧化、活性炭吸附、5μm精度多級過濾,使原水達到初級凈化的裝置。其由臭氧水處理儀、原水罐、增壓泵、銅鋅沉澱過濾、活性炭吸附過濾、金屬鈦棒微孔精密過濾,經預處理後的水滿足超濾膜凈化處理,提供給予後置反滲透膜或納濾膜進水要求。
1.6水質深度處理裝置
水質深度處理裝置是將經預處理後的水,由高壓泵加壓作用於反滲透膜(簡稱RO)或反滲透膜納濾膜(簡稱NF)的反滲透功能達到純凈水的目的[9],電導率檢測儀、臭氧裝置、紫外線消毒殺菌器、和微電腦控制電器組合而成。通過去除水中有機物(如三鹵甲烷中間體、膠體、懸浮物、微生物、細菌、藻類、霉類等)、熱源、病毒、異色異味等,經處理的水質符合衛生部《生活飲用水衛生規范》[1]的有關規定和建設部《飲用凈水水質標准(CJ 94-1999)》[3]。
1.5凈水的製造方法:納濾膜滲透法(簡稱NF)
納濾滲透膜技術是介於反滲透膜與超濾膜性能之間的承前啟後膜技術,作為一種新型分離技術,納濾膜在其分離應用中表現出下列三個顯著特徵[7]:一是其截留分子量介於反滲透膜和超濾膜之間,為150~2000 Å;二是納濾膜對無機鹽有一定的截留率,因為它的表面分離層是由聚電解質所構成,對離子有靜電相互作用。三是超低壓大通量,即在超低壓下(0.1MPa)仍能工作,並有較大的通量。也是最先進、最節能、效率最高的膜分離技術。其原理是在高於溶液滲透壓的壓力下,藉助於只允許水分子透過納濾滲透膜的選擇截留作用,將溶液中的溶質與溶濟分離,從而達到凈化水的目的。納濾滲透膜是由具有高度有序矩陣結構的聚洗胺合成納米纖維素組成的。它的孔徑為0.001微米(相當於大腸肝菌大小的百分之一,病毒的十分之一)。利用納濾滲透膜的分離特性,可以有效的去除水中的溶解鹽、膠體、有機物、細菌和病毒等,納濾膜比反滲透膜優異之處,在於除去有害物質相同之下,納濾膜保留了水分子中人體所需生命元素。有純凈水的口感,礦泉水的微量元素。
2 工藝流程與處理單元
自來水
高頻臭氧
活性炭
銅鋅濾料
鈦金屬
增壓水泵
超濾膜
直飲水
紫外線
恆壓水泵
卡提斯
納濾膜
高頻臭氧
高壓泵
電子水處理儀
電腦控制
鈦金屬
循環水泵
管網用戶
2.1生物活性碳(Biological Activated Carbon)
臭氧活性碳技術是目前國際上最先進的水處理工藝,在日、美、歐等發達國家已廣泛採用,目前我國採用臭氧消毒處理是水處理消毒的發展趨勢。臭氧與顆粒活性炭相結合的臭氧生物活性炭凈水處理工藝(BAC法),包括三個過程:臭氧氧化、活性炭吸附和生物降解。BAC法能高效去除水中的有機物,延長活性炭使用壽命。
活性炭(Carbon)是一種經特殊處理的炭,每克活性炭的表面積為500~1500平方米。活性炭有很強的「物理吸附」和「化學吸附」功能,解毒作用就是利用了其巨大的面積,將毒物吸附在活性炭的微孔中,從而阻止毒物的吸收。同時,活性炭能與多種化學物質結合,從而阻止這些物質的吸收。 活性炭能夠濾除水中化學有機物、重金屬、色度、異味、氯離子等,主要功能改善口感。
生物活性炭[8],臭氧和活性炭處理的結合,一種電解自由基氧化、生物活性炭水處理技術,將需要處理的原水進入處理單元的電解部分,首先經過陽極產生的羥基自由基的氧化和陰極產生的氫自由基在陰極表面的催化加成,使有機物降解脫毒;同時陽極產生的分子態氧供給下一步生物活性炭利用,經降解脫毒後的處理水再經過生物活性炭處理後,有機污染物進一步去除,達到深度處理的目的。使用該技術處理水源水,可以使原水中的揮發性有機物由原來的11種降解至7種,TOC減少85%以上。可以使生活污水的COD減少75%以上。是一種新型的給水或有機廢水深度處理的技術,在飲用水深度處理與難降解有機廢水處理領域有著廣闊的應用前景。生物活性炭的運行周期一般都達3至4年(使用壽命與水源水質有關);
2.2銅鋅介質沉澱過濾器(KDF)
銅鋅KDF濾料[5]是一種顆粒狀高純度合金,表面有著極強的抗氧化能力,近幾年來流行的新型水處理過濾材料[3]。KDF濾料通過離子的氧化還原反應來工作。這種離子交換使許多有害物質成為無害物質,如使氯成為氯化物,重金屬等附著在凱得菲KDF濾料上,從而降低了有害物質的含量,用KDF濾料進行水處理是一種簡單、低消耗的方法,對於微濾、超濾、納濾、反滲透膜、離子交換樹指、顆粒活性碳等,KDF濾料介質能夠保護這些昂貴的水處理組件不受氯、微生物、礦物質結垢的影響,提高系統的使用壽命。此外,KDF濾料能去除水中高達98%的可溶性重金屬,如鉛、汞、銅、鎳、鎘、砷,銻、鋁等,因此可用於飲用水或其他水處理中重金屬的超出的治理。另外,藉助沉澱在KDF濾料上發生的氧化還原反應還可以降低水中的碳酸鹽,硝酸鹽、硫酸鹽等。約10年內不用更換濾料(使用壽命與水源水質有關);
2.3鈦金屬微過濾器(HD)
鈦棒過濾芯是以粉沫鈦燒結而成,具有抗化學腐蝕,耐高溫、耐氧化、壽命長,易清洗, 可再生的特點,最近兩年廣泛地應用在水處理領域,是一種水的過濾中 比較理想的濾芯,鈦棒過濾器操作簡單,拆卸方便,可在線完成清洗。採用5微米HD鈦棒芯過濾,攔截大於5微米的物體,耐臭氧,主要功能延長膜的壽命,約2年內不用更換濾料(使用壽命與水源水質有關)。《循環管網回水用鈦金屬微過濾器,採用0.45微米HD鈦棒芯過孔徑大小濾,攔截大於0.45微米的物體,耐臭氧,約3年內不用更換濾料》。
2.4超濾(UF)膜凈化處理器[6]
超濾膜是一種具有超級「篩分」分離功能的多孔膜。它的孔徑只有幾納米到幾十納米,也就是說只有一根頭發絲的1‰!就能篩出大於孔徑的溶質分子,以分離分子量大於500道爾頓、粒徑大於2~20納米的顆粒。超濾以膜兩側的壓力差為驅動力,以超濾膜為過濾介質,在一定的壓力下,當原液流過膜表面時,超濾膜表面密布的許多細小的微孔只允許水及與孔徑大小的小分子物質通過而成為透過液,而原液中體積大於膜表面微孔徑的物質則被截留在膜的進液側,成為濃縮液,因而實現對原液的的凈化、分離和濃縮的目的,可有效去除水中的微粒、膠體、細菌墊層及高分子有機物質,達到保護納濾膜的功效。
2.5納濾(NF)膜深度處理器[5]
高壓水泵(單泵,也可備一用),提供納濾膜透過水的工作壓力。促進水的滲透,保持產水率。
膜的分離孔徑在10-6cm-10-7cm,能除去水中有機物(如三鹵甲烷中間體、膠體、懸浮物、微生物、細菌、藻類、霉類等)、熱源、病毒等物質,流體經前五級預處理後的水經反滲透RO膜或納濾NF膜主機深層分離處理後,使有益於人體健康的水通過,不利於人體健康的水排除,脫鹽率60-98%。,納濾膜在產水過程中會截留大量的小於5微米的微粒,如不及時沖洗,在壓力的作用下附著在膜表面形成污垢,嚴重影響膜的滲透。通過電腦定時對電磁閥的控制能及時沖洗膜表面附著的微粒,阻止膜表面污垢的形成,延緩膜的衰減,延長膜的壽命,約3年內不用更換膜元件(使用壽命與水源水質有關)。納濾膜是超低壓,大通量膜,較反滲透膜節電50%,節水10%,。
2.6卡提斯(CARTIS TM)載銀活性炭技術
卡提斯粉末中共價鍵的銀對活性碳起到保護和防止污染物腐蝕作用及抑制溶解化合物的毒性析出;粉末吸附余氯和溶解的化合物、重金屬,細菌;每克卡提斯粉末面積相當於1500一2000㎡的足球場,卡提斯粉末使吸附的細菌不再變化,卡提斯粉末中共價鍵的銀對於活性碳中細菌起到抑制其滋生作用,就是使其不在繁殖或增加細菌。卡提斯處理後的水在封閉管道里含有相似天然的催化能力;此時的滅菌功效靠卡提斯水中數以千計的微電磁場與水中礦物質相互作用和卡提斯粉末產生的其它方面等等的相關作用對水進行滅菌;同時強大的微電磁場可對輸水管道進行清洗和減少結垢現象。因此卡提斯水在封閉管道和容器中的持續滅菌時間會更長。
經過大量的測試顯示:卡提斯設備處理後的水,溶解氧可提高30%左右。卡提斯設備處理後的水,將對其水中的致病病菌(厭氧菌)非常有效地進行滅菌並抑制其繁殖。因此在一定的時間內,卡提斯粉末處理後的水口感和衛生指標都是最好的,充分發揮了卡提斯技術的功效。簡單試驗可以看出:卡提斯處理後的水會產生氧化作用,廣泛應用於家庭和社區團體的直飲水、管道分質供水,滿足所有對高質量用水的需求。
3 電導率顯示儀
在線隨時動態顯示凈水生產的水質狀態。
4 高頻臭氧水處理儀
4.1臭氧的殺菌特點[12]
臭氧處理生活飲用水,其主要的目的為消毒並降低生物耗氧量(BOD)和化學耗氧量(COD),去除亞硝酸鹽、懸浮固體及脫色,已達到全面生產應用的水平。飲用水的處理在使用臭氧設備時,臭氧的投加量一般在1-3mg/L,接觸時間10-15分鍾即可,可作為選型時根據用水量計算參考。化學耗氧量(錳法)(COD-Mn),溶解性有機物(DOC),紫外消光值(SAC-254nm)。臭氧的投加量的單位為PPm=mg/L。臭氧主要功能是能氧化微生物細胞的有機物或破壞有機體鏈狀結構而導致細胞死亡。因此,臭氧對頑強的微生物如病毒、芽孢等有強大的殺傷力。此外,臭氧在殺傷微生物的同時,還能氧化水中的各種有機物,去除水中的色、嗅、味和酚等能抑制微生物的繁殖起到凈化水的作用;延長CD活性炭、HD鈦棒芯、UF膜、NF膜的使用壽命。
當臭氧水中的臭氧濃度達到滅菌濃度0.3mg/L時,消毒和滅菌作用瞬間發生,水中剩餘臭氧濃度達0.3mg/L時,在0.5~1分鍾內就可以100%的致死細菌,剩餘臭氧濃度達到0.4mg/L時,1分鍾內對病毒的滅活率達100%[10]。
臭氧氧化其它物質和有機質,最終生成無害的氧氣、水和二氧化碳,剩餘臭氧在常溫下半衰期為20~50分鍾,數小時後全部分解,還原為氧氣。因而臭氧發生器也成為所有礦泉水、純凈水生產企業必選的先進殺菌消毒設備。純氧氣經電解生成臭氧氣,經氣液混合泵混合於水箱水中, 臭氧氣溶水效率達98%,增加了水中的活性氧。臭氧裝置由制氧機、臭氧發生器、氣液混合泵、儲水罐組成。供水系統為了防止純凈水的二次污染,延長純凈水的存放時間,由微電腦通過氣液混合泵自動完成臭氧氣與凈化水的混合,臭氧投加量為1-5mg / L , 接觸時間為4-10min,維持臭氧氣在水中濃度0.5-1mg / L剩餘臭氧濃度。僅30秒起到最佳殺菌功效,殺菌率可達100%。臭氧殺菌不產生有害氣體物質、無污染、無殘留物,環保節能等優點;臭氧溶於水中,臭氧在水中分解時,所產生氫氧基具有強大的氧化力,可將水中的雜質如鐵、錳、臭味、細菌、病毒等迅速清除,並將水分子變小,使水的味道甘甜。且自來水中的氯或鹵代有機物也可完全消除。(詳情請參照《臭氧對水質處理之特性》專欄)。並產生負離子。臭氧在水中約20分鍾至30分鍾會分解一半,因此臭氧在水中靜止1小時後很快就會還原成氧氣。 臭氧是無毒物質安全氣體,在濃度高於1.5mg/L以上時,人員須離開現場,原因是臭氧刺激人的呼吸系統,嚴重會造成傷害,為此,臭氧工業協會制定衛生標准:
國際臭氧協會:0.1mg/L,接觸10小時
美 國:0.1mg/L,接觸8小時
德、法、日等國:0.1mg/L,接觸10小時
中 國:0.15mg/L,接觸8小時
以上是人在臭氧化氣體環境下的安全衛生標准,其濃度與接觸時間的乘積可視為基準點。「應用臭氧一百多年來,世界沒有發生一起臭氧中毒事件」。
臭氧濃度以重量百分比表示,分別取0~2.0之間八個數值,通過接觸裝置反應五分鍾後的數據。
表1 臭氧水濃度與臭氧濃度對照表為:
臭氧濃度 0.2 0.4 0.6 0.8 1.0 1.5 2.0
臭氧水濃度 0.35 0.55 0.75 0.85 1.15 1.65 2.15
以上結果表明,臭氧水的濃度與臭氧濃度成線性正比關系,制備高濃度的臭氧水必須先產生出高濃度的臭氧。因此,在現場使用過程中,很多單位採用了氧氣作為氣源來產生臭氧。在實驗中當臭氧濃度(重量百分比)達到3.0時,臭氧水的濃度可達到15mg/L以上。
表2 國內外公認的臭氧滅菌消毒的實驗數據
臭氧消毒 投放濃度 投放時間 病毒、病原體種類 殺滅效率
10mg/m³ 20分鍾 乙型肝炎表面抗原
(HbsAg) 99.99%
0.5mg/L 5分鍾 甲型流感病毒 99%
0.13mg/L 30秒 脊髓灰質炎病毒I型
(PVI) 100%
40µg/L 20秒 大腸桿菌噬菌體
ms2 98%
0.25mg/L 1分鍾 猿輪狀病毒SA-H
和人輪狀病毒2型 99.60%
4mg/L 3分鍾 艾滋病毒
(HIV) 100%
8mg/m³ 10分鍾 支原體(Mycoplasma)、
衣原體(Chlamydia)等
病原體 99.85%
5 恆壓變頻裝置(單泵,也可一備一用或二備一用)
由微處理器、壓力感測器、運算放大器、變頻器、斷路器、液位感測器、可編程序控制器、觸摸顯示屏人機操作界面組成。水泵按設定的壓力變頻運行,保證管網壓力恆定不變,不用水時自動停機,用水時自動補水,維持管網流量恆定。變頻器電子保護功能:過載保護、高低電壓保護、瞬間跳電保護、逆轉保護、過熱保護、漏電保護、欠相保護、無水停機保護等, 均可達到運動功能的顯示, 查找故障原因,並能達到自動復位的功能。恆壓變頻裝置控制器應用的最大優勢是,恆壓、節電。
6 紫外線殺菌器[10]
利用紫外線C波段《T253.7nm (240 - 260nm)》對細菌、病毒等致病微生物具有高效、廣譜殺滅的能力,就是以紫外線破壞及改變微生物的組織結構(DNA-核酸),使其喪失復制、繁殖的能力。抑制微生物活動力以達到殺菌作用的殺菌力取決於紫外線輸出量的大小,紫外線輸出量不低於300000μW/cm2時(在此強度下消毒時間不超過0.8秒),在額定水流量內瞬間殺菌滅各種細菌、病毒。殺菌率可達99%~99.99%。具有保鮮效果的富氧水再經紫外線殺菌器輸出,不改變水的性狀、原色、原味,不產生任何消毒副產物,能確保飲用水原汁原味,衛生安全,燈管壽命約10000小時,實際裝置的設計照射量相當於D10×4,即50mw.s/cm2以上。
紫外消毒的殺菌原理是利用紫外線光子的能量破壞水體中各種病毒、細菌以及其它致病體的DNA結構,使各種病毒、細菌以及其它致病體喪失復制繁殖能力,達到滅菌的效果。
通常,水消毒用的紫外線燈的中心輻射波長是253.7nm。顯然,紫外線的殺菌效果取決於紫外線的輻射強度和照射時間的乘積,即輻照劑量。表1列出了微生物不同殺滅率需要的紫外線輻照劑量值,試驗水樣染菌1×105cfj/L,水深2cm。
⑺ 常見的水處理工藝有哪些
目前,工業廢水的處理技術主要有以下幾種。 一、混凝沉澱法 混凝沉澱法是利用混凝劑對工業廢水進行凈化處理的一種方法。混凝劑通常有無機高分子絮凝劑、有機高分子絮凝劑和生物高分子絮凝劑3大類。目前,在水處理方面應用最為廣泛的是無機高分子絮凝劑中的聚鋁鹽和復合型聚鋁鹽。聚合氯化鋁(PAC)、聚合硫酸鋁(PAS)是工業上應用最廣泛的兩種聚鋁鹽,其生產工藝成熟,生產原料來源廣泛。實驗證明,PAC對處理石油化工廢水具有高效的絮凝效果,不僅去濁率高,對原水的pH值影響小,處理後水的色度好,可作為石化污水回收處理的絮凝劑。用其處理河水除濁和除COD(化學需氧量)效果良好(除濁度低於 4mg/L、COD低於 6 mg/L )。PAS的絮凝效果大大優於傳統的硫酸鋁絮凝劑,溫度適用范圍廣泛,適合於飲用水、工業用水及絕大多數廢水的絮凝處理,用其處理河水無論是除濁還是去除COD均能達到良好的處理效果。近年來,為了改善單一聚鋁鹽的絮凝效果,人們合成了新型的高分子復合鋁鹽絮凝劑,如聚合氯化鋁鐵(PAFC)、聚合硫酸鋁鐵(PAFS)、聚合硫酸氯化鋁鐵(PAFCS)、聚合硅(磷)酸鋁(鐵)等。這些高分子復合鋁鹽絮凝劑廣泛用來處理飲用水、工業用水、礦井廢水、油田含油廢水、生活用水、天然黃河水、長江原水、印染廢水等。 二、吸附法 吸附法是利用吸附劑對廢水進行處理。目前工業上應用較多的吸附劑有氫氧化鎂、活性纖維素碳(ACF)及新型的吸附劑-殼聚糖及其衍生物。氫氧化鎂作為酸性工業廢水處理劑的應用范圍很廣,可以用於造紙和印染廢水、城市生活污水、電鍍廢水、含氟廢水等,安全可靠,即使中和過量其PH值也不會超過9,且中和過程平緩,沉澱晶粒粗大密實,淤泥易於過濾和排放。由於其比表面積大,吸附力強,可從各種不同的工業廢水中吸附並除去對環境造成危害的Ni2+、Cd2+、Mn2+、Cr3+、Cr6+等重金屬離子。氫氧化鎂還可以有效地除去工業廢水和生活污水中的氨和磷,降低江河等水系的富營養化,控制藻類的生長,有利於生態保護;活性纖維素碳(ACF)是一種高效的吸附材料,是天然纖維、人造纖維經炭化後得到的。其微孔結構分布狹窄均勻,微孔的體積占總體積的90%左右,其孔徑在1nm左右,它具有巨大的比表面積(2000m3/g),因而具有極強的吸附能力。它可以使水澄清、去除水中的異詳情www.likeqing.com味、吸附水中的錳、鐵離子效果最好,對於CN-、Cl-、F-、苯酚的去除率在98%以上,對於細菌有很好的過濾作用。與高分子絮凝劑相比,活性纖維素碳具有極強的再生能力,因此在水處理工業中具有很廣的應用前景;殼聚糖是甲殼素的主要衍生物,分子中含有活性基團-胺基和羥基,是一種很好的絮凝劑和螯合劑,對過渡金屬離子有極強的鏊合作用,可除去工業廢水中的銅、鉻、鎘、汞、鋅等貴金屬離子,其中對汞離子的去除率大於99。8%,對電鍍廢水中的重金屬離子Cr3+、Ni2+、Cu2+、Zn2+的去除率均大於99%,且可回收重金屬。殼聚糖的羧甲基化衍生物對水溶性染料廢水特別是水溶性很好的陰離子型染料脫色效果顯著。研究表明,用羧甲基殼聚糖處理的印染廢水,不僅脫色效果好,而且絮凝速度快,絮體不易破碎,優於合成高分子有機絮凝劑聚丙烯醯胺(PAM)和明礬。用殼聚糖其衍生物處理食品廢水或含高蛋白質廢水可以回收殘渣作飼料,不引起二次污染。研究表明,用其處理味精廠廢水,除濁率可達99.5%, CODcr的去除率可達89.7%;用於處理大豆加工食品生產的廢水,可有效絮凝回收蛋白類固體,也可將處理後的殘渣加工成飼料或餌料。另外,它還廣泛用於水中有機物(如氯酚、聯苯)、造紙廢水的處理、城市生活污水和海水的處理,也用於處理赤潮生物及海水中的COD及固定氧化池廢水中的藻類物質等。 三、生物降解法。 目前,印染和造紙廢水是造成環境污染的兩大主要因素。現在所用染料大多是人工合成的大分子芳香類化合物,結構復雜,難以降解,染料工業廢水顏色深,用物理方法處理的染料廢水色度降低程度雖大,但對COD的去除率較差,且處理費用昂貴,並易引起二次污染,而用化學合成的有機物則會使水體發生中毒,使用生物降解法不僅可以克服上述問題,同時還具有以下優點:①不需對污染物進行預處理;②對其它微生物具有抗括作用;③可以處理污染重、毒性大的污染物;④降解物具有廣譜性。白腐真菌和黃胞原毛平抱菌是兩種很好的可降解含本質素印染造紙廢水的菌種。 四、離子交換樹脂法 離子交換樹脂(IER)是一種含有活性基團的合成功能高分子材料,它是交聯的高分子共聚物引入不同性質離子交換基團而成的。離子交換樹脂具有交換。選擇、吸附和催化等功能,在工業廢水處理中,主要用於回收重金屬和貴稀有金屬,凈化有毒物質,除去有機廢水中的酸性或鹼性的有機物質如酚、酸以及胺等。目前,在工業廢水處理中使用的離子交換樹脂有陰離子交換樹脂、陽離子交換樹脂、兩性離子交換樹脂,應用IER進行工業廢水處理,不僅樹脂可以再生,而且操作簡單,工藝條件成熟且流程短,目前已為一些大型企業採用,其應用前景很好。 五、膜分離技術 在工業廢水處理中,應用膜分離技術可處理各種廢水。用超濾膜對含油廢水進行處理,可以使油脂去除率達到97%-100%。採用梯度氧化鋁膜管和無機膜一生物反應器處理生活廢水,BOD的去除率達83%,COD、NH3-N和濁度的去除率分別超過96%、95%和98%,對SS的去除率達100%。採用耐酸鹼無機膜處理鹼性造紙黑液,不需要調整PH值,利用不同孔徑的膜可回收纖維素、木質素等有用成分,處理後的水質可用於蒸煮制漿、實現造紙廢水的閉路循環;採用泥膜混合工藝處理製革廢水,對CODCr、S2-、Cr6+的去除率分別達86.14%、88.39%和54.5%。此外,利用膜技術還可以處理餐飲廢水、醫葯化工廢水、染料廢水等。 蘇州昊諾整理解答
記得採納啊
⑻ 活性炭吸附法優缺點是什麼
活性炭吸附法是以活性炭為主要材料,對大氣、水污染中的成分進行吸附,讓大氣變得干凈,水源變得清澈等。由於活性炭的吸附效果比較高,它也是目前物理吸附中最為常用的吸附劑之一,深受大眾的喜愛。使用活性炭來對大氣或污水進行吸附的效果很好,那麼活性炭吸附法在工業、商業中都可以運用,活性炭吸附法優缺點是什麼呢?
活性炭吸附法
活性炭是用木材、煤、果殼等含碳物質在高溫缺氧條件下活化製成,它具有巨大的比表面積(500-1700m2/g)。水處理過程中使用的活性炭有粉末炭和粒狀炭兩類。粉末炭採用混懸接觸吸附方式,而粒狀炭則採用過濾吸附方式。活性炭吸附法廣泛用於給水處理及廢水二級處理出水的深度處理。
活性炭吸附法優點
(1)不需要添加任何的絮凝劑和氧化劑等化學試劑,直接利用活性炭的微孔結構進行吸附。
(2)成本低,操作簡單;活性炭所用的原料是果殼、煤和木材等物質,相對來講,成本較低。且進行吸附時,沒有太高的技術要求,操作簡單靈活。
(3)由於孔隙多,表面積很大,所以吸附能力強,吸附效果自然也就比較好。
(4)對重金屬進行處理時,對金屬離子的吸附選擇性好、穩定性強。
(5)對於吸附的難以被降解的物質可以直接將活性炭與其填埋,以防對水體的再次污染,不存在二次污染問題。
(6)可以對活性炭進行再生,重新使用。現在對活性炭的回收利用已經有很多方法,包括熱再生法、生物再生法、化學溶液再生法、電化學再生法等等。這些方法對活性炭的再生有出色的效果,經過再生的活性炭,可以重新進行使用。
活性炭吸附法缺點
摻和物是灰分,它是活性炭的無機部分,幾種活性炭的元素組成,易造成二次污染。而且用局限性強,只能適合污染較輕、通風良好、不著急入住的情況。處理費用高昂。
活性炭吸附法吸附工藝
在油庫,當油罐車裝載汽油的時候,原來空油罐里的油氣和空氣與裝載的液態產品揮發的油氣相混合,這種混合氣體被裝載入油罐的產品所代替。隨著液體注滿空的油罐車,液體把空氣和油氣從油罐頂部擠出,通過一根油氣軟管進入集汽管道系統。油氣通過集汽管道系統流入一個汽液分離器。該汽液分離器能從油氣中分離出液態汽油,還能用泵抽回油罐。之後完全不帶液體的油氣流入油氣回收系統。
進入油氣回收系統之後,油氣進入兩個吸附塔中的一個。每個吸附塔都裝滿了特殊的活性炭。空氣-油氣混合氣體中的碳氫化合物被吸到活性炭粒子表面,並在大氣條件下停留在那裡。混合氣體中的空氣成分不受活性炭的影響,通過活性炭之後進入大氣,中間不再摻雜碳氫化合物。在吸附過程中,特殊的活性炭利用表面動能的動力吸引碳氫化合物,油氣回收裝置使用的特殊活性炭,它有很大的表面吸收面積。這么大的表面面積使每公斤活性炭可吸附多達0.5公斤碳氫化合物。
當空氣-碳氫化合物混合氣體通過巨大的吸收表面之後,碳氫化合物被吸引到活性炭表面,並停留在這里直到出現更大的反向力。這種吸引的現象叫做「吸附」。
活性炭吸附法優缺點是什麼?活性炭吸附法的處理程度是非常好的,在有污染的空氣中放入活性炭,在短時間里能夠有效的吸附掉受污染的氣體,而讓空氣變得清新,因此在裝修後可以買一些活性炭放在你的家裡,讓室內的甲醛、苯等有害氣體能夠消除掉;活性炭也能夠幫助渾濁的水變得干凈,讓人們可以喝到干凈的水源,解決生存危機。
⑼ 吸附劑的作用原理
1)絮凝作用原理:PAM用於絮凝時,與被絮凝物種類表面性質,特別是動電位,粘度、濁度及懸浮液的PH值有關,顆粒表面的動電位,是顆粒阻聚的原因加入表面電荷相反的PAM,能使動電位降低而凝聚。
2)吸附架橋:PAM分子鏈固定在不同的顆粒表面上,各顆粒之間形成聚合物的橋,使顆粒形成聚集體而沉降。
3)表面吸附:PAM分子上的極性基團顆粒的各種吸附。
4)增強作用:PAM分子鏈與分散相通過種種機械、物理、化學等作用,將分散相牽連在一起,形成網狀。
聚丙烯醯胺的作用
1)用於污泥脫水根據污泥性質可選用本產品的相應型號,可有效在污泥進入壓濾之前進行污泥脫水,脫水時,產生絮團大,不粘濾布,壓濾時不散,流泥餅較厚,脫水效率高,泥餅含水率在80%以下。
2)用於生活污水和有機廢水的處理,本產品在配性或鹼性介質中均呈現陽電性,這樣對污水中懸浮顆粒帶陰電荷的污水進行絮凝沉澱,澄清很有效。如生產糧食酒精廢水,造紙廢水,城市污水處理廠的廢水,啤酒廢水,味精廠廢水,製糖廢水,有機含量高 廢水、飼料廢水,紡織印染廢水等,用陽離子聚丙烯醯胺要比用陰離子、非離子聚丙烯醯胺或無機鹽類效果要高數倍或數十倍,因為這類廢水普遍帶陰電荷。
3)用於以江河水作水源的自來水的處理絮凝劑,用量少,效果好,成本低,特別是和無機絮凝劑復合使用效果更好,它將成為治長江、黃河及其它流域的自來水廠的高效絮凝劑。
4)造紙用增強劑及其它助劑。提高填料、顏料等存留率、紙張的強度。
5)用於油田經學助劑,如粘土防膨劑,油田酸化用稠化劑。
6)用於紡織上漿劑、漿液性能穩定、落漿少、織物斷頭率低、布面光潔。 又稱合成沸石或分子篩,其化學組成通式為:
[M2(Ⅰ)M(Ⅱ)]O.Al2O3.nSiO2. mH2O
式中M2(Ⅰ)和M(Ⅱ)分別為為一價和二價金屬離子,多半是鈉和鈣,n稱為沸石的硅鋁比,硅主要來自於硅酸鈉和硅膠,鋁則來自於鋁酸鈉和Al(HO)3等,它們與氫氧化鈉水溶液反應製得的膠體物,經乾燥後便成沸石,一般n=2~10,m=0~9。
沸石的特點是具有分子篩的作用,它有均勻的孔徑,如3A0、4A0、5A0、10A0細孔。有4A0孔徑的4A0沸石可吸附甲烷、乙烷,而不吸附三個碳以上的正烷烴。它已廣泛用於氣體吸附分離、氣體和液體乾燥以及正異烷烴的分離。 實際上也是一種活性炭,它與一般的碳質吸附劑不同之處,在於其微孔孔徑均勻地分布在一狹窄的范圍內,微孔孔徑大小與被分離的氣體分子直徑相當,微孔的比表面積一般占碳分子篩所有表面積的90%以上。碳分子篩的孔結構主要分布形式為:大孔直徑與碳粒的外表面相通,過渡孔從大孔分支出來,微孔又從過渡孔分支出來。在分離過程中,大孔主要起運輸通道作用,微孔則起分子篩的作用。
以煤為原料製取碳分子篩的方法有碳化法、氣體活化法、碳沉積法和浸漬法。其中炭化法最為簡單,但要製取高質量的碳分子篩必須綜合使用這幾種方法。
碳分子篩在空氣分離製取氮氣領域已獲得了成功,在其它氣體分離方面也有廣闊的前景。 本產品具有比表面積大、吸附力強、耐磨強度高、使用安全、簡便經濟、過濾速度快等特性,是各種含油污水處理的理想材料。
【產品性能及特點】
⑴產品性能表 型號 NUSL-1 形態 顆粒狀 外觀 深褐色 粒度(cm) ≤1 密度(g/cm) 0.28~0.30 400℃燒失率(%) 70~80 含水量(%) ≤10 ⑵產品特點
1)除油效率高,吸附速率快;
2)對各種含油污水具有很強的適應性,耐沖擊負荷能力強;
3)工藝簡單,處理裝置安裝維護簡便,材料更換簡單易行;
4)與常規破乳氣浮相比,無二次污染,投資和運行成本低;
5)吸附飽和後,材料後處理簡便易行,可作為助燃劑或燃料使用。
【適用范圍】
該產品可廣泛應用於石油工業的採油、煉油、貯油運輸產生的污水,另外油輪壓艙水、洗艙水、機械工業的冷潤滑液、軋鋼水,電鍍污水及糧油加工、皮革、造紙、紡織、食品加工等多行業污水均可應用。產品同時也可應用於膜法、樹脂預處理除油、油田回注水除油和高溫凝結水除油。
【工藝流程】
根據污水中含油量的高低採用多個吸附柱串聯處理污水,在出水處監測油含量,若出水水質不達標則進入循環系統繼續處理直至達標為止。產品使用工藝流程圖如下圖所示:若含油污水中COD、乳化物含量較高,在進入反應器前先進入COD去除裝置和乳化物及溶解性物質去除裝置等進行預處理。 該產品以植物為主要成分,通過一系列先進的工藝精製而成。該品能吸附多種重金屬、適應濃度范圍廣泛。廣泛適用於廢水中Cr6+、Cu2+、Zn2+、Ni2+、Pb2+、Cd2+等重金屬離子的去除,對重金屬吸附容量大。同時,該系列產品對油也有很好的去除效果,吸附飽和後的材料易於燃燒,可採用熱處理使其減容,並回收重金屬,不會造成二次污染。
【產品性能及特點】
⑴產品性能表 型號 NUSL-2 形狀 顆粒狀 顏色 深褐色 粒度(cm) ≤1 堆密度(g/cm2) 0.98~1.02 400℃燒失率(%) 61.0~65.0 含水量(%) 13.4~15.0 ⑵產品特點
1)吸附重金屬離子能力強;
2)投資運行成本低;
3)與常規的化學沉澱法和吸附法相比,無二次污染產生;
4)吸附飽和後的材料易於燃燒且可回收重金屬。
【適用范圍】
適用於處理各種含重金屬廢水,如采礦、冶煉、電鍍、電解、醫葯、油漆、合金、紡織、印染、農葯、造紙、煙草、陶瓷與無機顏料製造等行業。
【工藝流程】
採用多個「易更換抽屜式反應器」串聯處理污水,在出水處監測,若出水不達標進入循環系統繼續處理直至達標。若污水中含有有機污染物,進入反應器前可加入COD去除裝置作為預處理。產品使用工藝流程圖如下圖所示:處理效果】 項目 Cr6+(mg/L) Cu2+(mg/L) Ni2+(mg/L) Zn2+(mg/L) Pb2+(mg/L) Cd2+(mg/L) 進水 20~120 20~80 20~100 50~90 20~100 20~80 出水 ≤0.2 ≤0.5 ≤0.5 ≤2.0 ≤0.5 ≤0.1 註:對於進水濃度超過上述范圍的污水,可採取多級串聯的方式進行處理。
新一代再生水處理材料UERW-1
在再生水處理研究領域,目前採用較多的工藝方法是「老三段」法,即二級出水經混凝沉澱+砂濾+消毒;近年來也出現了「生物+臭氧」工藝,但是這些工藝方法均存在工藝流程長、佔地面積大、設備投資大、成本較高、產生生物或化學污泥量大、氮磷和有害病菌無法同步去除的問題,難以廣泛應用。本產品以天然礦物為基體,經過一系列改性工藝制備而成,它具有同步去除氮磷、有機物和抗菌能力,且易於再生,城市污水廠二級出水經該產品「一步法」處理後出水即達到再生水水質指標。
【產品性能及特點】
⑴產品性能表 型號 UERW-1 形狀 顆粒狀 顏色 肉紅色 密度 1.9g/cm3 含水量(%) <0.5 ⑵產品特點
1)同步去除二級出水中磷酸鹽、氨氮和硝態氮以及有害病菌;
2)運行成本低,是「老三段」處理方法成本的1/2左右;
3)工藝簡單,佔地面積小,無化學和生物污泥產生;
4)產品易於再生,可重復利用。
【適用范圍】
適用於處理城市污水廠二級出水作為再生水,如景觀水、土地回灌、道路沖洗水;也可用於生活小區中水回用處理、工業污水的三級處理以及氮、磷超標水的處理。
【主要污染物處理效果】 項目 COD(mg/L) TP(mg/L) TN(mg/L) NH3-N(mg/L) N-NO3-(mg/L) 大腸菌群(個/L) 進水 60 1.5 20 8 10 104 出水 ≤15 ≤0.2 ≤1.5 ≤1.0 ≤0.5 ≤3 註:上述效果為城市污水廠二級出水處理後主要水質指標 吸附劑的良好吸附性能是由於它具有密集的細孔構造。與吸附劑細孔有關的物理性能有:
a.孔容(VP):吸附劑中微孔的容積稱為孔容,通常以單位重量吸附劑中吸附劑微孔的容積來表示(cm3/g).孔容是吸附劑的有效體積,它是用飽和吸附量推算出來的值,也就是吸附劑能容納吸附質的體積,所以孔容以大為好。吸附劑的孔體積(Vk)不一定等於孔容(VP),吸附劑中的微孔才有吸附作用,所以VP中不包括粗孔。而Vk中包括了所有孔的體積,一般要比VP大。
b.比表面積:即單位重量吸附劑所具有的表面積,常用單位是m2/g。吸附劑表面積每克有數百至千餘平方米。吸附劑的表面積主要是微孔孔壁的表面,吸附劑外表面是很小的。
c.孔徑與孔徑分布:在吸附劑內,孔的形狀極不規則,孔隙大小也各不相同。直徑在數埃(A0)至數十埃的孔稱為細孔,直徑在數百埃以上的孔稱為粗孔。細孔愈多,則孔容愈大,比表面也大,有利於吸附質的吸附。粗孔的作用是提供吸附質分子進入吸附劑的通路。粗孔和細孔的關系就象大街和小巷一樣,外來分子通過粗孔才能迅速到達吸附劑的深處。所以粗孔也應佔有適當的比例。活性炭和硅膠之類的吸附劑中粗孔和細孔是在製造過程中形成的。沸石分子篩在合成時形成直徑為數微米的晶體,其中只有均勻的細孔,成型時才形成晶體與晶體之間的粗孔。
孔徑分布是表示孔徑大小與之對應的孔體積的關系。由此來表徵吸附劑的孔特性。
d.表觀重度(dl):又稱視重度。
吸附劑顆粒的體積(Vl)由兩部分組成:固體骨架的體積(Vg)和孔體積(Vk),即:
Vl= Vg+ Vk
表觀重度就是吸附顆粒的本身重量(D)與其所佔有的體積(Vl)之比。
吸附劑的孔體積(Vk)不一定等於孔容(VP),吸附劑中的微孔才有作用,所以VP中不包括粗孔。而Vk中包括了所有孔的體積,一般要比VP大。
e.真實重度(dg):又稱真重度或吸附劑固體的重度,即吸附劑顆粒的重量(D)與固體骨架的體積Vg之比。
假設吸附顆粒重量以一克為基準,根據表觀重度和真實重度的定義則:
dl==l/Vl ; dg=l/Vg
於是吸附劑的孔體積為:
Vk=l/dl – l/dg
f.堆積重度(db):又稱填充重度,即單位體積內所填充的吸附劑重量。此體積中還包括有吸附顆粒之間的空隙,堆積重度是計算吸附床容積的重要參數。
以上的重度單位常用g/cm3、kg/l、kg/m3表示。
g.孔隙率(εk):即吸附顆粒內的孔體積與顆粒體積之比。
εk=Vk/(Vg+Vk)=(dg-dl)/ dg=1-dl/dg
h.空隙率(ε):即吸附顆粒之間的空隙與整個吸附劑堆積體積之比。
ε=(Vb-Vl)/Vb=(dl-db)/dl=1-db/dl
