將廢水或污水經二級處理和深度處理後回用於生產系統或生活雜用被專稱為污水回用。污水回用的范圍屬很廣,從工業上的重復利用到水體的補給水和生活用水。
污水回用即可以有效地節約和利用有限的寶貴的淡水資源,又可以減少污水或廢水的排放量,減輕水環境的污染,還可以緩解城市排水管道的超負荷現象,具有明顯的社會效益、環境效益和經濟效益。
2. 含表面活性劑的廢水,用什麼方法進行處理後即可回用
表面活性劑廢水的處理既要去除廢水中的大量表面活性劑, 同時也要考慮降低廢水的COD 和 BOD 等。不同類型的表面活性劑廢水要採用不同的處理方法,目前國內外對於表面活性劑廢水主要有以下幾種處理技術:
1 泡沫分離法
泡沫法是發展比較早、並己經有了初步應用的一種物理方法,是在含有表面活性劑的廢水中通入空氣而產生大量氣泡,使廢水中的表面活性劑吸附於氣泡表面而形成泡沫,泡沫上浮升至水面富集形成泡沫層,除去泡沫層即可使廢水得到凈化。研究表明,用微孔管布氣,氣水比6 ∶1~9 ∶1 ,停留時間 30~40 min ,泡沫層厚度0. 3~0. 4 m ,此時泡沫分離對廢水中LAS 的去除率可達90 %以上。宋沁 表明當進水LAS 低於70 mg ·L - 1 時,經處理後的出水LAS < 5 mg ·L - 1 ,LAS 平均去除率> 90 %。韋幫森採用泡沫分離技術在10 d 連續運行中,進水COD 平均濃度783. 14 mg ·L - 1 ,出水COD 平均濃度為49. 02 mg ·L - 1 , COD 平均去除率為 9315 %,出水做鼓泡試驗無泡沫產生,說明表面活性劑濃度小於10 mg ·L - 1 ,處理效果好。泡沫分離法尤其是適用於較低濃度情況下的分離。但泡沫分離法對表面活性劑廢水的COD 去除率不高,需要與其他方法聯合使用。
2 吸附法
吸附法是利用吸附劑的多孔性和大的比表面積,將廢水中的污染物吸附在表面從而達到分離目的。常用的吸附劑有活性炭、吸附樹脂、硅藻土、高嶺土等。常溫下對表面活性劑廢水用活性炭法處理效果較好,活性炭對LAS 的吸附容量可達到55. 8 mg ·g - 1 ,活性炭吸附符合Freundlich 公式 。但活性炭再生能耗大,且再生後吸附能力亦有不同程度的降低,因而限制了其應用。天然的粘土礦物類吸附劑貨源充足、價廉,應用較多,為了提高吸附容量和吸附速率,對這類吸附劑研究的重點在於吸附性能、加工條件的改善和表面改性等方面 。吸附法優點是速度快、穩定性好、設備佔地小,主要缺點是投資較高、吸附劑再生困難、預處理要求較高。
3 混凝法
混凝反應不僅能去除廢水中膠體顆粒和吸附在膠體表面上的表面活性劑,還能與溶解在水相中的表面活性劑形成難溶性的沉澱。常用於表面活性劑廢水處理的混凝劑有鐵鹽、鋁鹽及其聚合物和各種有機混凝劑。丁娟研究了三氯化鐵、硫酸鋁、聚合氯化鋁對表面活性劑廢水的混凝效果,指出聚合氯化鋁為處理表面活性劑廢水循環利用的最佳混凝劑。混凝法雖然處理成本低、工藝成熟,但其佔地面積大、葯劑用量大,並產生大量廢渣與污泥,要常與其它的處理方法聯合使用才能達到完全去除的目的,一般作為處理高濃度表面活性劑廢水的預處理。宋爽利用混凝法預處理了洗滌劑生產廢水中大量的SS、油脂類物質及表面活性劑,具有較好的效果,對保證後續處理達標有重要作用。
4 膜分離法
膜分離法指利用膜的高滲透選擇性來分離溶液中的溶劑和溶質。常應用膜分離技術有反滲透、超濾、微濾、電滲析和納濾,其中超濾膜和納濾膜對表面活性劑廢水有很好的處理效果。膜分離法效率高、能耗小,但膜易污染,清洗困難,操作費用高。王錦利用聚丙烯、聚丙烯腈和聚碸3 種不同材質超濾膜處理洗滌污水,發現聚丙烯腈膜較優,能有效去除了水中濁度、懸浮物、油脂等污染物,一定程度保留了游離陰離子表面活性劑,長期循環洗滌對衣物的白度無不良影響。薛罡令洗浴廢水經微絮凝纖維過濾- 超濾組合工藝處理後,使原水中超標的COD、濁度、LAS 得到有效降低,而且工藝流程簡單、佔地面積小、運行操作簡易,實現了洗浴廢水的簡易物化處理法。膜分離的關鍵是尋找高效高滲透膜和提高處理量,並解決好膜污染問題。近年來膜生物反應器污水處理技術發展較快,它是將膜分離技術中的膜組件與污水生物處理工程中的生物反應器相互結合的新型技術,目前對LAS 廢水的處理正處在小試階段。這種技術綜合了膜分離和生物處理技術的優點,在廢水回用方面是極具有發展前景的處理技術。
5 催化氧化法
催化氧化法是對傳統化學氧化法的改進與強化。常用的Fenton 處理法就是催化氧化法的一種, 屬均相氧化法,處理時,如果鐵鹽濃度較高,則LAS 的去除主要靠絮凝作用;濃度低時,則主要靠氧化作用而去除。近年出現了多相催化氧化法和光催化氧化法。王效成等用多相催化氧化法處理COD 為 840 mg ·L - 1 、LAS 為360 mg ·L - 1的廢水,處理後 COD 去除率為84. 8 %,LAS 去除率為88. 3 % ,去除率隨反應溫度升高而降低,p H 的變化對去除率沒有影響。光催化氧化法是在光與催化劑的作用下, 利用反應過程中產生的HO ·等自由基離子來氧化分解表面活性劑的。單建國以TiO2 / GAC 作光催化劑,用太陽光作光源對洗滌劑模擬廢水進行光催化降解。結果表明,1 g TiO2 / GAC 可將120 mg 左右、起始質量濃度為150 mg ·L - 1 的LAS 降至 20 mg ·L - 1 。光催化降解速率與表面活性劑的分子結構、離子電荷、吸附性能有很大關系。研究發現,表面活性劑分子中芳環部分比烷基鏈或烷氧基更易受到·OH、·OOH 的攻擊而實現斷鏈降解, 芳香族衍生物比脂肪族衍生物易於光催化降解,在相同條件下光催化降解速率一般為陰離子型> 非離子型> 陽離子型。Hidaka等利用人工光源研究了LAS 和BDDAC 在TiO2 表面上的催化降解, 發現陰離子表面活性劑比陽離子表面活性劑降解快,芳環部分比烷基部分降解快。
6 生物法
生物法降解表面活性劑是目前研究得最多的一種方法,而且已經被一些污水處理廠採用。該法可以粗略地分為活性污泥法、厭氧消化法和利用土壤的自凈作用的方法,他們均是利用微生物可以將表面活性劑作為唯一碳源加以利用的特性來完成對表面活性劑的降解。研究發現假單胞菌的許多菌屬, 包括溝槽假單胞菌屬、孔雀尾假單胞菌屬、德阿昆哈假單胞菌屬、膜狀假單胞菌屬、小田假單胞菌屬、克羅斯韋假單胞菌屬等和克雷伯氏菌屬、無色細菌屬、黃桿菌屬、微球菌屬等都可以降解表面活性劑,但對於高濃度的表面活性劑廢水,這些細菌的降解活性會受到一定程度的限制。
3. 是什麼影響了烯烴類生產廢水回用的處理效果
1 廢水主要是有機物,處理工藝主要以生化法為主。
2 生化法處理廢水主要版用到的葯劑是殺菌權類葯劑,用量不大,也就是幾個ppm,該類葯劑的價格不高。
3 生化法處理前期投資高,基本上每方水的投資1萬元。(量越小越高,因為人工、安裝、調試平攤後就高了)
4. 蘇氨酸生產廢水回用建設步驟如何
蘇氨酸的抄生產方法主要有發酵法蛋白質水解法和化學合成法3種,微生物發酵法生產蘇氨酸,因其工藝簡單,成本低廉等優點已成為目前主流方法。發酵中間過程中蘇氨酸含量的測定方法有多種,主要有氨基酸分析儀法、茚三酮法、紙層析法、甲醛滴定法等 。
5. 阿莫西林生產廢水回用都有哪些功能
可以養魚養花都好
6. 胰島素生產廢水回用技術有哪些
1.混凝法 北京胰島素生產廢水回用中的混凝法是目前國內外普遍採用的一種水質版處理方法 它被廣泛用於胰權島素生產廢水預處理及後處理過程中 如硫酸鋁和聚合硫酸鐵等用於中葯廢水等 高效混凝處理的關鍵在於恰當地選擇和投加性能優良的混凝劑 近年來混凝劑的發展方向是門七低分子向聚合高分子發展 由一成分功能單一型向復合型發展
2 氣浮法 氣浮法通常包括充氣氣浮 溶氣氣浮 化學氣浮和電解氣浮等多種形式 新昌制葯廠採用CAF渦凹氣浮裝置對胰島素生產廢水進行處理 在適當葯物劑配合下 COP的平均去除率在25%左右
7. 蘇氨酸廢水回用工藝處理流程有哪些
蘇氨酸是一種必需的氨基酸,其應用領域主要為醫葯、化學試劑、食品強化劑、飼料添加劑等方面。其生產廢水屬於典型的高含量難降解廢水,處理生產廢水勢在必行,今天小編帶您一起看看蘇氨酸生產廢水回用技術有哪些類型吧。
1、物理處理法:膜濾法,適用於水質變化大的情況。
2、物理化學法:適用於污水水質變化較大的情況。一般採用的方法有:砂濾、活性炭吸附、浮選、混凝沉澱等。這種流程的特點是:採用中空纖維超濾器進行處理,技術先進,結構緊湊,佔地少,系統間歇運行,管理簡單。
3、生物處理法:適用於有機物含量較高的污水。一般採用活性污泥法、接觸氧化法、生物轉盤等生物處理方法。或是單獨使用,或是幾種生物處理方法組合使用,如接觸氧化+生物濾池;生物濾池+活性炭吸附;轉盤十砂濾等流程。這種流程具有適應水力負荷變動能力強、產生污泥量少、維護管理容易等優點。
蘇氨酸生產廢水回用技術有哪些類型的內容今天就為您介紹到這里了,希望對您有幫助,用戶可以按照上述內容自行選擇處理方法。
8. 胰島素生產廢水回用都使用哪些方法
胰島素是體內能來降低血糖自 促進糖原 脂肪和蛋白質合成的激素,外源性胰島素主要用於治療糖尿病 在生產胰島素時 也會產生胰島素廢水 胰島素生產廢水成分復雜 有機物濃度高 鹽度高 COD高 需對一具處理才能排放或者繼續使用,根據胰島素生產廢水的水質特點 在其處理過程中需要採用物化處理作為生化處理或後處理工序 那麼 北京胰島素生產廢水回用可採用哪些方法
1.混凝法 北京胰島素生產廢水回用中的混凝法是目前國內外普遍採用的一種水質處理方法 它被廣泛用於胰島素生產廢水預處理及後處理過程中 如硫酸鋁和聚合硫酸鐵等用於中葯廢水等 高效混凝處理的關鍵在於恰當地選擇和投加性能優良的混凝劑 近年來混凝劑的發展方向是門七低分子向聚合高分子發展 由一成分功能單一型向復合型發展
2 氣浮法 氣浮法通常包括充氣氣浮 溶氣氣浮 化學氣浮和電解氣浮等多種形式 新昌制葯廠採用CAF渦凹氣浮裝置對胰島素生產廢水進行處理 在適當葯物劑配合下 COP的平均去除率在25%左右
9. 制葯廢水特點
制葯工業廢水主要包括抗生素生產廢水、合成葯物生產廢水、中成葯生產廢水以及各類制劑生產過程的洗滌水和沖洗廢水四大類。其廢水的特點是成分復雜、有機物含量高、毒性大、色度深和含鹽量高,特別是生化性很差,且間歇排放,屬難處理的工業廢水。隨著我國醫葯工業的發展,制葯廢水已逐漸成為重要的污染源之一,如何處理該類廢水是當今環境保護的一個難題。
1 制葯廢水的處理方法
制葯廢水的處理方法可歸納為以下幾種:物化處理、化學處理 、生化處理 以及多種方法的組合處理等,各種處理方法具有各自的優勢及不足。
1.1 物化處理
根據制葯廢水的水質特點,在其處理過程中需要採用物化處理作為生化處理的預處理或後處理工序。目前應用的物化處理方法主要包括混凝、氣浮、吸附、氨吹脫、電解、離子交換和膜分離法等。
1.1.1 混凝法
該技術是目前國內外普遍採用的一種水質處理方法,它被廣泛用於制葯廢水預處理及後處理過程中,如硫酸鋁和聚合硫酸鐵等用於中葯廢水等。高效混凝處理的關鍵在於恰當地選擇和投加性能優良的混凝劑。近年來混凝劑的發展方向是由低分子向聚合高分子發展,由成分功能單一型向復合型發展。劉明華等以其研製的一種高效復合型絮凝劑F-1處理急支糖漿生產廢水,在 pH為6.5, 絮凝劑用量為300 mg/L時,廢液的COD、SS和色度的去除率分別達到69.7%、96.4%和87.5%,其性能明顯優於PAC(粉末活性炭)、聚丙烯醯胺(PAM)等單一絮凝劑。
1.1.2 氣浮法
氣浮法通常包括充氣氣浮、溶氣氣浮、化學氣浮和電解氣浮等多種形式。新昌制葯廠採用CAF渦凹氣浮裝置對制葯廢水進行預處理,在適當葯劑配合下,COD的平均去除率在25%左右。
1.1.3 吸附法
常用的吸附劑有活性炭、活性煤、腐殖酸類、吸附樹脂等。武漢健民制葯廠採用煤灰吸附-兩級好氧生物處理工藝處理其廢水。結果顯示, 吸附預處理對廢水的COD去除率達41.1%,並提高了BOD5/COD值。
1.1.4 膜分離法
膜技術包括反滲透、納濾膜和纖維膜,可回收有用物質,減少有機物的排放總量。該技術的主要特點是設備簡單、操作方便、無相變及化學變化、處理效率高和節約能源。朱安娜等採用納濾膜對潔黴素廢水進行分離實驗,發現既減少了廢水中潔黴素對微生物的抑製作用,又可回收潔黴素。
1.1.5 電解法
該法處理廢水具有高效、易操作等優點而得到人們的重視,同時電解法又有很好的脫色效果。李穎採用電解法預處理核黃素上清液,COD、SS和色度的去除率分別達到71%、83%和67%。
1.2 化學處理應用化學方法時,某些試劑的過量使用容易導致水體的二次污染,因此在設計前應做好相關的實驗研究工作。化學法包括鐵炭法、化學氧化還原法(fenton試劑、H2O2、O3)、深度氧化技術等。
1.2.1 鐵炭法
工業運行表明,以Fe-C作為制葯廢水的預處理步驟,其出水的可生化性可大大提高。樓茂興等[9]採用鐵炭—微電解—厭氧—好氧—氣浮聯合處理工藝處理甲紅黴素、鹽酸環丙沙星等醫葯中間體生產廢水,鐵炭法處理後COD去除率達20%,最終出水達到國家《污水綜合排放標准》(GB8978—1996)一級標准。
1.2.2 Fenton試劑處理法
亞鐵鹽和H2O2的組合稱為Fenton試劑,它能有效去除傳統廢水處理技術無法去除的難降解有機物。隨著研究的深入,又把紫外光(UV)、草酸鹽(C2O42-)等引入Fenton試劑中,使其氧化能力大大加強。程滄滄等[10]以TiO2為催化劑,9 W低壓汞燈為光源,用Fenton試劑對制葯廢水進行處理,取得了脫色率100%,COD去除率92.3%的效果,且硝基苯類化合物從8.05 mg/L降至0.41 mg/L。
1.2.3採用該法能提高廢水的可生化性,同時對COD有較好的去除率。如Balcioglu等對3種抗生素廢水進行臭氧氧化處理,結果顯示,經臭氧氧化的廢水不僅BOD5/COD的比值有所提高,而且COD的去除率均為75%以上。
1.2.4 氧化技術
又稱高級氧化技術,它匯集了現代光、電、聲、磁、材料等各相近學科的最新研究成果,主要包括電化學氧化法、濕式氧化法、超臨界水氧化法、光催化氧化法和超聲降解法等。其中紫外光催化氧化技術具有新穎、高效、對廢水無選擇性等優點,尤其適合於不飽合烴的降解,且反應條件也比較溫和,無二次污染,具有很好的應用前景。與紫外線、熱、壓力等處理方法相比,超聲波對有機物的處理更直接,對設備的要求更低,作為一種新型的處理方法,正受到越來越多的關注。肖廣全等[13]用超聲波-好氧生物接觸法處理制葯廢水,在超聲波處理60 s,功率200 w的情況下,廢水的COD總去除率達96%。
1.3 生化處理
生化處理技術是目前制葯廢水廣泛採用的處理技術,包括好氧生物法、厭氧生物法、好氧-厭氧等組合方法。
1.3.1 好氧生物處理
由於制葯廢水大多是高濃度有機廢水,進行好氧生物處理時一般需對原液進行稀釋,因此動力消耗大,且廢水可生化性較差,很難直接生化處理後達標排放,所以單獨使用好氧處理的不多,一般需進行預處理。常用的好氧生物處理方法包括活性污泥法、深井曝氣法、吸附生物降解法(AB法)、接觸氧化法、序批式間歇活性污泥法(SBR法)、循環式活性污泥法(CASS法)等。
1.3.2 厭氧生物處理
目前國內外處理高濃度有機廢水主要是以厭氧法為主,但經單獨的厭氧方法處理後出水COD仍較高,一般需要進行後處理(如好氧生物處理)。目前仍需加強高效厭氧反應器的開發設計及進行深入的運行條件研究。在處理制葯廢水中應用較成功的有上流式厭氧污泥床(UASB)、厭氧復合床(UBF)、厭氧折流板反應器(ABR)、水解法等。
(2)UBF法買文寧等將UASB和UBF進行了對比試驗,結果表明,UBF具有反應液傳質和分離效果好、生物量大和生物種類多、處理效率高、運行穩定性強的特徵,是實用高效的厭氧生物反應器。
(3)水解酸化法
水解池全稱為水解升流式污泥床(HUSB),它是改進的UASB。水解池較之全過程厭氧池有以下優點:不需密閉、攪拌,不設三相分離器,降低了造價並利於維護;可將污水中的大分子、不易生物降解的有機物降解為小分子、易生物降解的有機物,改善原水的可生化性;反應迅速、池子體積小,基建投資少,並能減少污泥量。近年來,水解-好氧工藝在制葯廢水處理中得到了廣泛的應用,如某生物制葯廠採用水解酸化-二段式生物接觸氧化工藝處理制葯廢水,運行穩定,有機物去除效果顯著,COD、BOD5和SS的去除率分別為90.7%、92.4%和87.6%。
1.3.3 厭氧-好氧及其他組合處理工藝
由於單獨的好氧處理或厭氧處理往往不能滿足要求,而厭氧-好氧、水解酸化-好氧等組合工藝在改善廢水的可生化性、耐沖擊性、投資成本、處理效果等方面表現出了明顯優於單一處理方法的性能,因而在工程實踐中得到了廣泛應用。
2 制葯廢水的處理工藝及選擇
制葯廢水的水質特點使得多數制葯廢水單獨採用生化法處理根本無法達標,所以在生化處理前必須進行必要的預處理。一般應設調節池,調節水質水量和pH,且根據實際情況採用某種物化或化學法作為預處理工序,以降低水中的SS、鹽度及部分COD,減少廢水中的生物抑制性物質,並提高廢水的可降解性,以利於廢水的後續生化處理。
預處理後的廢水,可根據其水質特徵選取某種厭氧和好氧工藝進行處理,若出水要求較高,好氧處理工藝後還需繼續進行後處理。具體工藝的選擇應綜合考慮廢水的性質、工藝的處理效果、基建投資及運行維護等因素,做到技術可行,經濟合理。總的工藝路線為預處理-厭氧-好氧-(後處理)組合工藝。如陳明輝等採用水解吸附—接觸氧化—過濾組合工藝處理含人工胰島素等的綜合制葯廢水,處理後出水水質優於GB8978-1996的一級標准。氣浮-水解-接觸氧化工藝處理化學制葯廢水、復合微氧水解-復合好氧-砂濾工藝處理抗生素廢水、氣浮-UBF-CASS工藝處理高濃度中葯提取廢水等都取得了較好的處理效果。
3 制葯廢水中有用物質的回收利用
推進制葯業清潔生產,提高原料的利用率以及中間產物和副產品的綜合回收率,通過改革工藝使污染在生產過程中得到減少或消除。由於某些制葯生產工藝的特殊性,其廢水中含有大量可回收利用的物質,對這類制葯廢水的治理,應首先加強物料回收和綜合利用。如浙江義烏華義制葯有限公司針對其醫葯中間體廢水中含量高達5%~10%的銨鹽,採用固定刮板薄膜蒸發、濃縮、結晶、回收質量分數為30%左右的(NH4)2SO4、NH4NO3作肥料或回用,具有明顯經濟效益;某高科技制葯企業用吹脫法處理甲醛含量極高的生產廢水,甲醛氣體經回收後可配成福爾馬林試劑,亦可作為鍋爐熱源進行焚燒。通過回收甲醛使資源得到可持續利用,並且4~5年內可將該處理站的投資費用收回[33],實現了環境效益和經濟效益的統一。但一般來說,制葯廢水成分復雜,不易回收,且回收流程復雜,成本較高。因此,先進高效的制葯廢水綜合治理技術是徹底解決污水問題的關鍵。
10. 原料葯廢水回用設備工藝特點有哪些
1、出水水質好:原料葯廢水回用設備出水清澈,SS含量低,水質中的有機污染物、磷酸版鹽、細菌、病毒權、寄生蟲卵等均被截留在MBR生物反應器內。
2、運行穩定:由於MBR生物反應器中污泥濃度高,在負荷變化大的情況下,原料葯廢水回用設備的去除效果變化小,處理出水穩定。
3、性價比高:原料葯廢水回用設備處理工藝流程短,佔地小,結構緊湊、簡單,運行穩定靈活, 操作管理、維護簡單,節約工程投資。