導航:首頁 > 廢水知識 > 葯廠污水處理設計方案

葯廠污水處理設計方案

發布時間:2021-12-01 15:04:38

1. 污水處理廠畢業設計

首先明確,我認為污水處理廠畢業設計其中的關鍵點是:

1、能夠根據給出的進出水水質,結合《給水工程》、《排水工程》等教材,和指導老師的要求,給出合理的工藝流程和水量計算;

2、明白各級處理構築物的處理方法原理,並參照部分參考文獻進行工藝計算。這里推薦崔玉川的《水處理構築物設計與計算》;

3、根據題干條件,確定尾水排放方案,確定尾水排放管徑等,並給出計算書;

4、基於以上計算書和畢業設計要求,繪制主要處理構築物的平面圖、剖面圖、原理圖等等。

5、按照畢業設計要求,完成畢業設計文本的編制。

其實就題目給出的條件,來做一個水處理項目的話,是完全不夠的。例如無機鹽的含量很高,但具體是什麼鹽?是否需要處理都沒有明確。給出的地震烈度、地下水位,我認為是多餘的信息,在畢業設計這個階段讓學生去考慮施工止水和結構形式,有點超綱。這些問題都可以與指導老師溝通。

總的來說,面對高COD高含氮量的污水,重點應放在生物處理階段;而出水要求一級A,那麼深度處理也是必不可少的。下面有一些參考資料

2. 誰有污水處理廠的設計說明書,越詳細越好

第一章 設計資料
一、自然條件
1、 氣候:該城鎮氣候為亞熱帶海洋季風性季風氣候,常年主導風向為東南風。
2、 水文:最高潮水位 6.48m(羅零高程,下同)
高潮常水位 5.28m
低潮常水位 2.72m
二、城市污水排放現狀
1、污水水量
(1)生活污水按人均生活污水排放量300L/人.d;
(2)生產廢水量按近期1.5萬m3/d,遠期2.4萬m3/d;
(3)公用建築廢水量排放系數按近期0.15,遠期0.20考慮;
(4)處理廠處理系數按近期0.80,遠期0.90考慮。
2、污水水質
(1) 生活污水水質指標為
CODcr 60g/人.d
BOD5 30g/人.d
(2) 工業污染源參照沿海開發區指標,擬定為:
CODcr 300mg/L;
BOD5 170mg/L
(3) 氨氮根據經驗確定為30md/L。
三、污水處理廠建設規模與處理目標
1、 建設規模
該污水處理廠服務面積為10.09km2, 近期(2000年)規劃人口為6.0萬人,遠期(2020年)規劃人口為10.0萬人。處理水量近期3.0萬m3/d,遠期6.0萬m3/d。
2、 處理目標
根據該城鎮環保規劃,污水處理廠出水進入的水體水質按國家3類水體標准控制,同時執行國家關於污水排放的規范和標准,擬定出水水質指標為
CODcr≤100mg/L; BOD5≤30mg/L; SS≤30mg/L ; NH3-N≤10mg/L
四、建設原則
污水處理工程建設過程中應遵從下列原則:污水處理工藝技術方案,在達到治理要求的前提下應優先選擇基建投資和運行費用少、運行管理簡便的先進的工藝;所用污水、污泥處理技術和其他技術不僅要求先進,更要求成熟可靠;和污水處理廠配套的廠外工程應同時建設,以使污水處理廠盡快完全發揮效益;污水處理廠出水應盡可能回用,以緩解城市嚴重缺水問題;污泥及浮渣處理應盡量完善,消除二次污染;盡量減少工程佔地。

第二章 污水處理工藝方案選擇
一、工藝方案分析
本項目污水以有機污染為主,BOD/COD=0.54 可生化性較好,重金屬及其他難以生物降解的有毒有害污染物一般不超標,針對這些特點,以及出水要求,現有城市污水處理技術的特點,以採用生化處理最為經濟。由於將來可能要求出水回用,處理工藝尚應硝化。
根據國內外已運行的大、中型污水處理廠的調查,要達到確定的治理目標,可採用「普通活性污泥法」或「氧化溝」法。
普通活性污泥法,也稱傳統活性污泥法,推廣年限長,具有成熟的設計運行經驗,處理效果可靠,如設計合理,運行得當,出水BOD5可達10-20mg/L,它的缺點是工藝路線長,工藝構築物及設備多而復雜,運行管理困難,運行費用高。
氧化溝處理技術是20世紀50年代有荷蘭人首創。60年代以來,這項技術在國外已被廣泛採用,工藝及構築物有了很大的發展和進步。隨著對該技術缺點(佔地面積大)的克服和對其優點的逐步深入認識,目前已成為普遍採用的一項污水處理技術。
氧化溝工藝一般可不設初沉池,在不增加構築物及設備的情況下,氧化溝內不僅可完成碳源的氧化,還可實行脫氮,成為A/O工藝,由於氧化溝內活性污泥已經好氧穩定,可直接濃縮脫水,不必厭氧消化。
氧化溝污水處理技術已被公認為一種成功的革新的活性污泥法工藝,與傳統活性污泥系統相比較,它在技術、經濟等方面具有一系列獨特的優點。
1、 工藝流程簡單、構築物少,運行管理方便。一般情況下,氧化溝工藝可比傳統活性污泥法少建初沉池和污泥厭氧消化系統,基建投資少。另外,由於不採用鼓風曝氣和空氣擴散器,不建厭氧硝化系統,運行管理方便。
2、 處理效果穩定,出水水質好。
3、 基建投資省,運行費用低。
4、 污泥量少,污泥性質穩定。
5、 具有一定承受水量、水質沖擊負荷的能力。
6、 佔地面積少。
污水處理廠的基建投資和運行費用與各廠的污水濃度和建設條件有關,但在同等條件下的中、小型污水廠,氧化溝比其他方法低,據國內眾多已建成的氧化溝污水處理廠的資料分析,當進水BOD5在120-180mg/L時,單方基建投資約為700-900元/(m3.d),運行成本為0.15-0.30元/m3污水。
由以上資料,經過簡單的分析比較,氧化溝工藝具有明顯優勢,故採用氧化溝工藝。
二、工藝流程確定:(如圖所示)
說明:由於不採用池底空氣擴散器形成曝氣,故格柵的截污主要對水泵起保護作用,擬採用中格柵,而提升水泵房選用螺旋泵,為敞開式提升泵。為減少柵渣量,格柵柵條間隙已擬定為25.00mm。
曝氣沉砂池可以克服普通平流沉砂池的缺點:在其截流的沉砂中夾雜著一些有機物,對被有機物包裹的沙粒,截流效果也不高,沉砂易於腐化發臭,難於處置。故採用曝氣沉砂池。
本設計不採用初沉池,原則上應根據進水的水質情況來確定是否採用初沉池。但考慮到後面的二級處理採用生物處理,即氧化溝工藝。初沉池會除去部分有機物,會影響到後面生物處理的營養成分,即造成C/N比不足。因此不予考慮。
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准,故污泥負荷和污泥泥齡分別低於0.15kgBOD/kgss*d和高於20.0d。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
為了使沉澱池內水流更穩定(如避免橫向錯流、異重流對沉澱的影響、出水束流等)、進出水更均勻、存泥更方便,常採用圓形輻流式二沉池。向心式輻流沉澱池採用中心進水,周邊出水,多年來的實際和理論分析,認為此種形式的輻流沉澱池,容積利用率高,出水水質好。設計流量 Q=2.85萬m3/d=1208.3 m3/h,迴流比 R=0.7。

第三章 污水處理工藝設計計算
一、水質水量的確定
1. 水量的確定
近期水量:生活廢水Q生活=6.0×104×300L/人•天=1.8×104m3/d
工業廢水Q工業=1.5×104m3/d
公用建築廢水Q公用=1.8×104×0.15=0.27×104m3/d
所以近期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(1.8+1.5+0.27)×104 =3.57×104m3/d
近期的處理系數為0.8,故近期污水處理廠的處理量
Qp=3.57×104×0.8=2.856×104m3/d

遠期水量:生活廢水Q生活=10.0×104×300L/人•天=3.0×104m3/d
工業廢水Q工業=2.4×104m3/d
公用建築廢水Q公用=3.0×104×0.2=0.6×104m3/d
所以遠期產生的廢水量為Q
Q=Q生活+Q工業+Q公用=(3.0+2.4+0.6)×104 =6.0×104m3/d
遠期的處理系數為0.9,故遠期污水處理廠的處理量
Qp=6.0×104×0.9=5.4×104m3/d
通常設計污水處理廠時遠期的設計處理量為近期的兩倍,綜合考慮近期和遠期的處理水量,取近期的設計處理水量Qp=3.0×104m3/d,遠期的設計處理水量Qp=6.0×104m3/d。
2. 水質的確定
近期COD:
COD = =242mg/L
近期BOD5:
BOD5= =129mg/L
遠期COD:
COD= =240 mg/L
遠期BOD5:
BOD5= =128mg/L
NH3-N按規定取為30 mg/L
所以處理廠的處理水質確定為COD=242mg/L,BOD5=129mg/L,NH3-N=30 mg/L
二、曝氣沉砂池設計計算說明書
沉砂池的作用是從污水中去除砂子、煤渣等比重比較大的無機顆粒,以免這些雜質影響後續構築物的正常運行。常用的沉砂池有平流式沉砂池、曝氣沉砂池、豎流沉砂池和多爾沉砂池等。平流式沉砂池構造簡單,處理效果較好,工作穩定,但沉砂中夾雜一些有機物,易於腐化散發臭味,難以處置,並且對有機物包裹的砂粒去除效果不好。曝氣沉砂池在曝氣的作用下顆粒之間產生摩擦,將包裹在顆粒表面的有機物除掉,產生潔凈的沉砂,通常在沉砂中的有機物含量低於5%,同時提高顆粒的去除效率。多爾沉砂池設置了一個洗砂槽,可產生潔凈的沉砂。渦流式沉砂池依靠電動機機械轉盤和斜坡式葉片,利用離心力將砂粒甩向池壁去除,並將有機物脫除。後3種沉砂池在一定程度上克服了平流式沉砂池的缺點,但構造比平流式沉砂池復雜。
和其它形式的沉砂池相比,曝氣沉砂池的特點是:一、可通過曝氣來實現對水流的調節,而其它沉砂池池內流速是通過結構尺寸確定的,在實際運行中幾乎不能進行調解;二、通過曝氣可以有助於有機物和砂子的分離。如果沉砂的最終處置是填埋或者再利用(製作建築材料),則要求得到較干凈的沉砂,此時採用曝氣沉砂池較好,而且最好在曝氣沉砂池後同時設置沉砂分選設備。通過分選一方面可減少有機物產生的氣味,另一方面有助於沉砂的脫水。同時,污水中的油脂類物質在空氣的氣浮作用下能形成浮渣從而得以被去除,還可起到預曝氣的作用。只要旋流速度保持在0.25~0.35m/s范圍內,即可獲得良好的除砂效果。盡管水平流速因進水流量的波動差別很大,但只要上升流速保持不變,其旋流速度可維持在合適的范圍之內。曝氣沉砂池的這一特點,使得其具有良好的耐沖擊性,對於流量波動較大的污水廠較為適用,其對0.2mm顆粒的截流效率為85%。
由於此次設計所處理的主要是生活污水水中的有機物含量較高,因此採用曝氣沉砂池較為合適。
曝氣沉砂池的設計參數:
(1)旋流速度應保持0.25—0.3m/s;
(2)水平流速為0.08—0.12 m/s;
(3)最大流量時停留時間為1—3min;
(4)有效水深為2—3m,寬深比一般採用1~1.5;
(5)長寬比可達5,當池長比池寬大得多時,應考慮設置橫向擋板;
(6)1 污水的曝氣量為0.2 空氣;
(7)空氣擴散裝置設在池的一側,距池底約0.6~0.9m,送氣管應設置調節氣量的閥門;
(8)池子的形狀應盡可能不產生偏流或死角,在集砂槽附近可安裝縱向擋板;
(9)池子的進口和出口布置,應防止發生短路,進水方向應與池中旋流方向一致,出水方向應與進水方向垂直,並考慮設置擋板;
(10)池內應考慮設置消泡裝置。
一、 曝氣沉砂池的設計與計算
1. 最大設計流量Qmax
Qmax=Kz×Qp
式中的Kz為變化系數,Kz=1.42
Qmax=1.42×0.347=0.493 m3/s

2. 池子的有效容積
V=60Qmaxt
式中 V——沉砂池有效容積,m3;
Qmax——最大設計流量,m3/s;
t——最大設計流量時的流動時間,min,設計時取1~3min。
所以 V=60×0.493×1.5=44.37m3
3. 水流斷面面積
A=
式中 A——水流斷面面積,m2
Qmax——最大設計流量,m3/s;
V——水流水平流速,m/s。
所以 A=4.11m2
取 A=4.2m2
4.池寬B
B=
h——沉砂池的有效水深,m。
取h=2m。所以B= =2.1m
B/h=1.05,滿足要求。
5. 池長
L= = m,取L=10.5m
此時L/B=5滿足要求
6.流速校核
Vmin= m/s,在0.8~1.2m/s之間,滿足要求
7.曝氣沉砂池所需空氣量的確定
設每立方米污水所需空氣量 d=0.2m3空氣/m3污水
8.沉砂槽的設計
若設吸砂機工作周期為t=1d=24h,沉砂槽所需容積

式中Qp的單位為m3/h
設沉砂槽底寬0.5m,上口寬為0.7,沉砂槽斜壁與水平面夾角60°,
沉砂槽高度為 h1=
沉砂槽容積為
9.沉沙池總高
設池底坡度為0.3,坡向沉砂槽,池底斜坡部分的高度為
h2=0.3×0.7=0.21m
設超高 ,沉沙池水面離池底的高
m
10.曝氣系統的設計
採用鼓風曝氣系統,羅茨鼓風機供風,穿孔管曝氣
(1)干管直徑d1:由於設置兩座曝氣沉砂池,可將空氣管供應兩座的氣量,即主管最大氣量為q1=0.0694×2=0.1388m3/s,取干管氣速v=12m/s,
干管截面積A= = =0.0116m2
d1= = m=120mm,
因為沒有120mm的管徑,所以採用接近的管徑100mm。
回算氣速v=17.7m/s 雖然超過15 m/s,但若取150的管氣速又過小,所以還是選擇管徑100mm。
(2)支管直徑d2:由於閘板閥控制的間距要在5m以內,而曝氣的池長為10.5米,所以每個池子設置三根豎管,設支管氣速為v=5m/s,
支管面積 A= m2
d2= = mm,
取整管徑d2=80mm
校核氣速v=4.6m/s (滿足3—5m/s)
(3)穿孔管:採用管徑為6mm的穿孔管,孔出口氣速為設5m/s,孔口直徑取為5mm(在2~6mm之間)
一個孔的平均出氣量 q= =9.81×10-5m3/s
孔數:n= 個
孔間隔 為 ,在10~15mm之間,符合要求。
穿孔管布置:在每格曝氣沉砂池池長一側設置1根穿孔管曝氣管,共兩根。
二、細格柵的選型和計算
選用XG1000型細格柵,參數如下
設備寬B:1000mm 有效柵寬B1:850㎜ 有效柵隙:5㎜ 耙線速度:2 m/min 電機功率:1.1kw 安裝角度:60° 渠寬B3:1050㎜ 柵前水深h2:1.0m/s 流體流速:0.5~1.0m/s
柵條寬度s=0.01m
1. 柵前後的水頭損失
水流斷面面積 m2
柵前流速
在0.4~0.9m/s范圍內,復合要求
設過柵流速為v=0.6m/s
設柵條斷面為銳邊矩形斷面,取k=3 ,則通過格柵的水頭損失為:

3. 柵槽總長度
柵前的渠道超高設為0.45m,所以渠道高度為1.45m
因為安裝高度是取60°,所以格柵所佔的渠道長為1.45×ctg =1.45×ctg60°=0.84m
柵後長1米。
所以渠道的總長度
L=0.5+0.84+1=2.34m
三、水面標高
根據經驗值污水每經過一個障礙物水面標高下降3~5cm,根據曝氣沉砂池的有效水深以及砂斗的高度可推算出各個構築物的水面標高,本次設計以經過一個障礙物水位下降5cm來計算,以曝氣沉砂池的砂槽底為0米進行計算。
曝氣沉砂池的水面標高:2.38m
細格柵與曝氣沉砂池之間的配水井的水面標高: 2.43m
細格柵柵後水面標高: 2.48m
細格柵柵前水面標高:2.48+0.29=2.77m
配水井外套桶水面標高: 2.82m
配水井內套桶水面標高: 2.88
設配水井超高為0.35m
則整個曝氣沉砂池系統的最高標高為3.23m
則曝氣沉砂池的超高為h1=3.23-2.38=0.85m
四、配水井的計算
設配水井的平均停留時間為T=1.5min,Qp=0.347 m3/s,假設配水井水柱高為5.03米。
配水井面積為

配水井直徑為

因為進水管徑為1000,管離底為200mm。所以覆土厚度為1.28m。
五、砂水分離器和吸砂機的選擇
(1)選用直徑LSSF型螺旋式砂水分離器
(2)根據池寬選用LF-W-CS型沉砂池吸砂機,其主要參數為:
潛污泵型號:AV14-4(潛水無堵塞泵)
潛水泵特性 揚程:2m,流量:54m3/h,功率:1.4kw
行車速度為2-5m/min,提耙裝置功率 0.55kw
驅動裝置功率: 0.37×2kw
鋼軌型號 15kg/mGB11264-89
軌道預埋件斷面尺寸(mm) (b1-20) 60 10(b1:沉砂池牆體壁厚)
軌道預埋件間距 1000mm
四、氧化溝
1、設計說明
擬用卡羅塞爾氧化溝,去除COD與BOD之外,還應具備硝化和一定的脫氮作用,以使出水NH3低於排放標准。採用卡式氧化溝的優點:立式表曝機單機功率大,調節性能好,節能效果顯著;有極強的混合攪拌與耐沖擊負荷能力;曝氣功率密度大,平均傳氧效率達到至少2.1kg/(kW*h);氧化溝溝深加大,可達到5.0以上,是氧化溝佔地面積減小,土建費用降低。
氧化溝採用垂直曝氣機進行攪拌,推進,充氧,部分曝氣機配置變頻調速器,相應於每組氧化溝內安裝在線DO測定儀,溶解氧訊號傳至中控室微機,給微機處理後再反饋至變頻調速器,實現曝氣根據DO自動控制
2、設計計算
(1).設計參數:
qv=30000m3/d(設計採用雙池,則單池流量=15000 m3/d),
設計溫度15℃,最高溫度25℃,
進水水質:近期:CODCr=242mg/L,BOD5=129.4mg/L, NH3-N=30mg/L,
遠期:CODCr=240mg/L,BOD5=128mg/L, NH3-N=30mg/L,
出水水質:CODCr=100mg/L,BOD5=30mg/L,SS=30mg/L,NH3-N=10mg/L
(2).確定採用的有關參數:
取MLSS=3500mg/L,假定其70%是揮發性的,DO=3.0mg/L,k=0.05,Cs(20)=9.07mg/L
y=0.6mgVSS/mgBOD5,Kd=0.05d-1,qD,20=0.05kgNH3-N/kgMLVSS•d,CS(20)=9.07mg/L,
α=0.90,β=0.94,
剩餘鹼度:100mg/L(以CaCO3),所需鹼度7.14mg鹼度/mgNH3-N氧化;產生鹼度3.0mg鹼度/mgNO3-N還原,硝化安全系數:3。
(3).設計泥齡:
確定硝化速率μN
μN=0.47e0.098(T-15)*N/KN+N*DO/ Ko+DO=0.47*e0.098*(15-15)*30/(100.051*15-1.158+30)*2/(1.3+2)
=0.22d-1
θcm=1/=1/0.22=4.5d,設計泥齡θc=3*4.5=13.5d
為了保證污泥穩定,應選擇泥齡為30d
(4).設計池體體積:
①確定出水中溶解性BOD5的量:
出水中懸浮固體BOD5=1.4*0.68*30*70%=20mg/L
出水中溶解性BOD5的量=30-20=10mg/L
②好氧區容積計算:
V1=y*qv*(So-Se)*θc/MLVSS*(1+Kd*θc)=0.6*30000*(129.4-10)*30/(0.7*3500*(1+0.05*30))=9278m3
水力停留時間t1= V1/ qv =9278/30000=0.31d=7.4h

③脫氮計算:
產生污泥量=y*qv*(So-Se)/(1+Kd*θc)=0.6*30000*(129.4-10)/(1000*(1+0.05*30))=860kg/d
假設污泥中大約含12.4%的氮,這些氮用於細胞合成,
用於合成的氮=0.124*860=106.6kg/d,轉化為:106.6*1000/30000=3.55mg/L
故脫氮量=30-10-3.55=16.45mg/L。
④鹼度計算:
剩餘鹼度=300-7.14*20+3.0*16.45+0.1(129.4-10)=218.5mg/L(以CaCO3)
大於100mg/L,可以滿足pH>7.2
⑤缺氧區容積計算:
qD=qD,20*1.08T-20=0.05*1.0815-20=0.032 kgNH3-N/kgMLVSS•d
V2=qv*△N/qD/MLVSS=30000*16.45/0.032/0.7/3500=6295m3
水力停留時間t2=V2/qv=6295/30000=0.21d=5h
⑥總池容積計算
V=V1+V2=9278+6295=15573m3,t=t1+t2=7.4+5=12.4h
(5).曝氣量計算
①計算需氧氣量
R=(So-Se)qv*/(1-e-kt)-1.42Px+4.6*qv*△N-2.6*qv*NO3-0.56Px
=30000*(129.4-10)/(1-e-kt)/1000-1.42*856.8+4.6*30000*20/1000
-2.6*30000*16.45/1000-0.56*856.8=5049kg/d=211 kg/h
②實際需氧量
Ro』=1.2*R=1.2*211=253.2kg/d
校核:Ro=R*Cs(20)/α/(β*Cs(T)-C)/1.024T-20=253.2*9.07/0.9/(0.94*8.24-3)/1.024 25-20
=477.6kg/h (在400-500之間 符合)
6.溝型尺寸設計及曝氣設備選型
採用卡式氧化溝(兩座並聯):
取有效水深H=3.5m,單溝的寬度b=7.8m,進水量15000 m3/d,
則單溝長=[V/2-0.5π(2b)2 h-2*0.5πb2 h]/4Hb=53m,
單溝好氧區總長度=單溝長*4* V1 /V=126m
單溝厭氧區總長度=單溝長*4* V2 /V=76m
採用四溝道,兩台55kW的立式表曝氣機(單池)
曝氣設備:PSB3250:D=3.25m,P=132kW,n=30r/min,清水充氧量:252kg/h,

7.配水井設計
污水在配水井的停留時間最少不低於3min(不計迴流污泥的量),
設截面中半圓的半徑為r,矩形的寬度為r,長度為2r,設計的有效水深為4.0m
(2*r*r+0.5πr2)*4=30000*3/24/60
r=2.7m
8.其它附屬構築物的設計
工程設計中牆的厚度為250mm;氧化溝體表面設置走道板的寬度為800mm;;倒流牆的設計半徑為3.9m;配水井的進水管道採用的規格為DN900,污泥迴流管道採用的規格為DN500;出水井的設計尺寸為3000mm*1000mm*1000mm,出水堰高為100mm,堰孔直徑為40mm,出水管採用的規格為DN700。
五、輻流式二沉池
1.設計說明
1.1二沉池的類型
二沉池的類型有:平流式二沉池、豎流式二沉池、輻流式二沉池、斜流式二沉池。其中,輻流式二沉池又分為:中進周出式、周進周出式、中進中出式。
1.2選擇輻流式(中進周出)二沉池的原因
由於平流式二沉池佔地面積大;豎流式二沉池多用於小型廢水中絮凝性懸浮固體的分離;斜流式二沉池較多時候,在曝氣池出口污泥濃度高,而且沒有設置專門的排泥設備,容易造成阻塞。因此選擇輻流式二沉池。從出水水質和排泥的方面考慮,理論上是周進周出效果最好。但是,實際上,考慮異重流,是中進周出的效果最好。因此,選擇了選擇輻流式(中進周出)二沉池。
2.設計計算
2.1污泥迴流比:

2.2沉澱部分水面面積:
流量: ;
最大流量(設計流量):
單個池子的設計流量:
污泥負荷q取1.1m3/(m2.h), 池子數n為2 。
沉澱部分水面面積:
2.3校核固體負荷:

因為142<150,符合要求。
2.4池子直徑
池子直徑: 根據選型取池子直徑為35.0m。
2.5沉澱部分的有效水深
沉澱時間t為2.5s 有效水深:
2.6沉澱池總高

2.7校核徑深比:
徑深比為 符合要求。
2.8進水管的設計
單體設計污水流量:
進水管設計流量:
取管徑D=700mm ,流速為
因為,0.697>0.6符合要求,所以進水管直徑為D=700mm。
2.9穩流筒
進水井的流速為0.8m/s ,則過水面積為
過水面積和泥管面積的總和:
由過水面積和泥管面積的總和求出直徑為
筒壁厚為250mm, 取管徑為900mm。
進行校核:過水面積為
流速為 。
筒上有8個小孔 ,孔面積為S2= ,所以 。
二沉池採用的是ZBX型周邊傳動吸泥機,穩流筒的直徑為3880mm。
取穩流筒出流速度為0.1m/s, 則過水面積為
穩流筒下部與池底距離為
所以穩流筒下部與池底距離大於0.2m,即符合要求。
2.10配水井
配水井設計為馬蹄形,在外圍加寬700mm為污泥井。
時間取3分鍾 流量為
取配水井直徑為D=3000mm 則配水井高度
其中,設計水深為7.0m,超高為0.6m。
2.11出水部分單池設計流量:
出水溢流堰設計
(1) 堰上水頭 H=0.05mH2O
(2) 每個三角堰的流量0.783L/s
(3) 三角堰個數 因此取n=223(個)
2.12排泥部分
迴流污泥量為
剩餘污泥量為
因為剩餘污泥量小,所以忽略不計,即總污泥量為0.188m3/s。
取流速為0.8(m/s) 直徑為 取直徑為D=400mm
校核:流速為 0.6<0.75<0.9 因此符合要求。
綜上, 二沉池採用的是ZBX型周邊傳動吸泥機 池徑為35000mm.

希望能夠幫助你,污水凈化團隊竭誠為你服務!

3. 污水處理廠加葯間怎麼設計

污水處理廠加葯間在設計時要考慮所用到的葯劑之間是否發生反應,其次要考慮會用到什麼類型的諸城瑞霖環保自動加葯裝置,處理污水時會用到多大量的污水葯劑及儲備空間。

4. 畢業設計(污水處理廠設計)

7月16日 16:30 你可以參考一下: 建設污水處理廠是為了城市污水,凈化環境,達到排放標准,滿足環境保護的要求。

一 污水處理程度的確定

基本資料:某城市設計人口11.5萬,城市中共有5個工廠。資料如下:

名稱 流量(L/S) BOD5(mg/L) SS(mg/L)
化工廠 91 360 258
印染廠 87 480 300
棉紡廠 90 250 200
食品廠 129 420 160
屠宰場 84 680 380
生活污水 200 320 300

要求離排放口完全混合斷面自取水樣,BOD5不大於4mg/L 、SS不大於5 mg/L,河水流量按枯水季節最不利情況考慮。河水流量25m3/s、流速為3m/s。河水本底的BOD5=2 mg/L 、SS=3 mg/L經預處理及一級處理SS去除率為50%、BOD5去除率為30%考慮。根據以上資料設計污水廠。

(一):污水處理程度確定

1生活污水量(Qmax)===153L/S=0.153m3/s

式中: ns——120(L/人·d)

N——110000(人)

KZ——1.55

2總污水量(Q)=1.55·(153+91+87+90+129+84) =1008 L/S= 1.002m3/s

3混合後污水的BOD5

BOD5=

=406 mg/L

4蘇聯統計表(岸邊排水與完全混合斷面距離Km)

河水流量與廢水流量之比(Q/q) 河水流量Q(m3/s)
5 5~60 50~500 >500
5:1~25:1 4 5 6 8
25:1~125:1 10 12 15 20
125:1~600:1 25 30 35 50
>600:1 50 60 70 100

5河水流量與污水理的比值

==25:1

6查上表完全混合時離排放口的距離L=5(Km)

7處理程度確定

(1)C0/===4.02mg/L

式中:k1=0.1 t==0.02(天)

C===54.41mg/L

E=×100%==86.60%

8混合後SS的濃度

SS==262 mg/L

C===54.89mg/L E=×100%=×100%=79.05%

9工藝流程圖

(二)·格柵的設計

1柵條間隙數

設:柵前水深(h)為0.4m 過柵流速(v)為1.0m/s 柵條間隙(b)為0.021m 格柵傾角(α)為60°

n===56

2柵槽寬度(B)

設:s為0.01m

B=s(n-1)+bn=0.01×(56-1)+0.021×56=1.726(m)

3通過格柵的水頭損失(h1)

h0=£sinα=0.9×=0.04m

h1=k h0=3×0.04=0.12m

式中:k=3 β=2.42 £=β=0.9

4柵後槽總高度(H)

H=h+h1+h2=0.40+0.12+0.3=0.82m

式中:柵前渠道超高(h2)為0.3m

5進水渠道漸寬部分長度

設:進水渠道寬(B1)為1.5m 漸寬部分展開角度α1為20°

===0.31m

==0.155m

6柵槽總長度(L)

L=++1.0+0.5+=0.31+0.155+1.0+0.5+=2.37m

式中:H1=h+h2=0.7m tgα=1.732

7每日柵渣量

W===4.356(m3/日)

式中:W1=0.08(m3/103m3污水) KZ=1.55

(三)·平流式沉砂沉池

1長度

設:v= 0.25(m/s) t=40(s)

L= v× t=0.25×40=10(m)

2水流斷面面積

A===4.008(m2)

3池總寬度

設:n=8 每格寬b=0.6

B=n×b=8×0.6=4.8(m)

4有效水深

h2===0.835m

5沉砂斗所需容積

設:T=2(天) X=30m3/10m3污水

V===3.35m3

6每個沉泥斗所需容積

設:每一格有2個泥斗

V0= =0.21m3

7沉砂斗各斗各部分尺寸

設:泥斗底寬a1=0.5m 斗壁與水平面的傾角為斗高h3/=0.4m 沉砂鬥上口寬:

a=+ a1=1.0m

沉砂斗容積:

V0===0.23 m3

8沉砂室高度

採用重力排砂,設池底坡度為0.02,坡向砂斗

h3=h3/+0.022=0.4+0.02×3.9=0.478

式中L2=(10-2×1-0.2)/2=3.9

9池總高度

設:超高h1=0.3m

H=h1+h2+h3=0.3+0.835+0.478=1.613m

(四)·一級沉澱池(平流式沉澱池)

1池子總表面積

設:表面負荷q/=2.0(m3/m2·h)

A===1803.6(m2)

2沉澱部分有效水深h2

設:污水停留時間t=1.5h

h2=q/×t=2×1.5=3(m)

3沉澱部分有效容積

V/=Qmax×t×3600=1.002×1.5×3600=5410.8(m3)

4池長

設:水平流速v=5mm/s

L=v×t×3.6=5×1.5×3.6=27(m)

5池子總寬度

B===66.8(m)

6池子個數

設:每個池子寬b=6(m)

n===11

7校核長寬比

==4.5

8污泥部分需要的總容積

設:T=2天

V= =1463.36(m3)

9每格池污泥所需容積

V//===133.03(m3)

10污泥斗容積

h//4===4.76(m)

V1==×4.76×(36+0.25+3)=62.3(m3)

11污泥斗以上梯形部分污泥容積

h/4=(L+0.3-b)×0.02=(27+0.3-6)×0.02=0.426(m)

=L+0.3+0.5=27.8(m)

=6(m)

V2===43.2(m3)

12污泥斗和梯形部分污泥容積

V1+V2=62.3+43.2=105.5(m3)

13池子總高度

H=h1+h2+h3+h4=0.3+3+0.5+5.19=8.99(m)

(五)·生物濾池的設計

1

(1) 混合污水平均日流量

Q==55853.42m3/d=646.45L/s

(2) 混合污水BOD5的濃度

406×(1-30%)=284(mg/L)

(3) 因為>200 mg/L必須使用迴流水稀釋,迴流稀釋後混合污水BOD5濃度

取迴流比r=2 =54.41( mg/L)

===130.94 (mg/L)

(4) 迴流稀釋倍數n

n===2

(5) 濾池總面積A

設NA=2000Gbod5/m2d

A===10970.27(m2)

(6) 濾池濾料總體積V

取濾料層高為H=2m

V=H×A=2×10970.27=21940.54(m3)

(7) 每個濾池面積,採用8個濾池

A1===1371.28 (m2)

(8) 濾池的直徑

D=m

(9) 校核水力負荷

Nq=m3/m2d

2旋轉布水器的計算

(1) 最大設計流量Qmax

Qmax=1.002×24×3600=86572.8m3/d

(2) 每個濾池的最大設計流量

Q/==125.25L/s

(3) 布水橫管直徑D1與布水小孔直徑d

取D1=200mm d=15mm 每檯布水器設有4個布水橫管

(4) 布水器直徑D2

D2=D-200=41800-200=41600mm

(5) 每根布水橫管上的布水小孔數目

m=(個)

(6) 布水小孔與布水器中心距離

a·第一個布水小孔距離:

r1=

b. 第174布水小孔距離

r174=R

c第348布水小孔距離

r348= R

(7) 布水器水頭損失H

=3.98m

(8) 布水器轉速

n=(轉/min)

(六)·輻流式二沉池的設計

1沉澱部分水面面積

設:池數n=2 表面負荷q=2(m3/m2·h) Qmax=1.002×3600=3607.2m3/hr

F==(m2)

2池子直徑

D==m

3沉澱部分有效水深

設:沉澱時間t=1.5(h)

h2=q/×t=2×1.5=3(m)

4沉澱部分有效容積

m3

5污泥部分所需的容積

設:設計人口數N=110000 兩次清除污泥相隔時間T=2天

V=

=731.68(m3)

6污泥斗容積

設:污泥斗高度h5=1.73(m) 污泥鬥上部半徑r1=2(m) 污泥斗下部半徑r2=1(m)

=12.7m3

7污泥斗以上圓錐體部分污泥容積

設: 坡度為0.05

圓錐體高度h4=(R-r1)×0.05=0.75(m)

×=256.7(m3)

8沉澱池總高度

設:超高h1=0.3(m) 緩沖層高度h3=0.5(m)

H=h1+h2+h3+h4+h5=0.3+3+0.5+0.75+1.73=6.28(m)

9沉澱池池邊高度

H/= h1+ h2+h3=0.3+3+0.5=3.8(m)

10徑深比

(符合要求)

(七)·接觸消毒池

1接觸容積

(m3)

2表面積

取有效水深4(m)

(m2)

3 接觸池長

取池寬B=5m 則廊道長L=(m)

(m)

4長寬比

>8(符合要求)

5池總高

取超高h1=0.3m 池底坡度0.05

h3=0.05×15.03=0.75(m)

H=h1+h2+h3=0.3+4+0.75=5.05(m)

(八)·污泥濃縮池

1剩餘污泥量

△ X=a×Qmax×()-b×Xv×V=0.6×86572.8×(0.2842-0.05441)-0.08×4×0.75×731.68

=11760.54(kg/d)

式中:Qmax=0.99561×3600×24=86572.8(m3/d)

(mg/L)=0.2842(kg/ m3)

(mg/L)=0.05441(kg/ m3)

Qs==1306.73( m3/d)

2濃縮池有效水深

濃縮前污泥含水率99%,(由於初沉污泥含水率較低96%,因此僅對二沉池污泥進行濃縮)濃縮部分上升流速v=0.1(mm/s),濃縮時間T=14hr,採用4個豎流式重力濃縮池

h2=0.1×10-3×14×3600=5.04(m)

3中心管面積

設:中心管流速v0=0.03(m/s)

(m2)

4中心管直徑

(m)

5喇叭口直徑,高度

取(m)

高度(m)

6濃縮池有效面積

(m2)

7濃縮池直徑

(m)

8濃縮後剩餘泥量

( m3/d)

9濃縮池污泥斗容積

設:=50° 泥斗D1=0.6(m)

(m)

(m3)

10污泥的停留時間

(hr)在10~16之間,符合要求

11池子高度

設:緩沖層高h4=0.3(m) 超高h1=0.3(m)

中心管與反射板縫隙高度h3=0.3(m)

H=h1+h2+h3+h4+h5=0.3+5.04+0.3+0.3+3.81=9.75(m)

5. 制葯廠廢水處理設計

這個一兩句說不清吧。

6. 制葯廠廢水處理工程工藝設計(越全越好,最好有CAD圖)

我要報酬

7. 葯廠污水處理的方法有哪些

氨蛋酶技術使用於制葯污水

閱讀全文

與葯廠污水處理設計方案相關的資料

熱點內容
大話西遊1完整版免費 瀏覽:634
玻璃濾芯哪裡有賣 瀏覽:485
污水處理站汛期安全教育 瀏覽:505
污水處理土地系統法的優點 瀏覽:425
菏澤污水處理廠是什麼單位 瀏覽:701
廚房飲水機怎麼擺 瀏覽:130
少婦的誘惑電影 瀏覽:733
棗陽農村生活污水處理設備多少錢 瀏覽:27
空氣過濾袋的製作流程 瀏覽:774
鎳在污水中危害 瀏覽:86
環氧樹脂防腐 瀏覽:880
深夜和女友看小電影 瀏覽:797
無需軟體成人免費電影網站 瀏覽:108
如何進行離子交換柱子的再生 瀏覽:559
穿越清末的小說 瀏覽:159
日本優秀少兒電影推薦 瀏覽:234
超濾能直接喝嗎 瀏覽:27
超能力 學院 電影名字 瀏覽:929
減壓蒸餾溫度怎麼換算 瀏覽:206
賓館購污水處理設備會計分錄 瀏覽:621