❶ 城市污水進水總氮含量高是什麼原因
城市污水進水總氮含量高是什麼原因?
--------------有機磷排放過多!
❷ 生活污水處理氨氮總氮超標怎麼辦
其實說白了,總氮是包含氨氮的,看你的排放標准了,有總氮的話就算總氮,有氨氮就算氨氮,如果既有總氮也有氨氮要求,那就兩個都算,分開列就是了。
❸ 污水處理廠出水總氮超標怎麼回事
城市污水處理廠出水氮磷超標因素分析及對策摘要:脫氮除磷工藝越來越多的應用到城市污水處理廠當中,但是在實際運行過程中,出水氮磷含量超標的情況常常困擾著水廠的工作人員。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行,出水氮磷含量達標。關鍵詞:城市污水處理廠,脫氮除磷,對策分析1概述近年來污水處理的主要工藝已發生變化,從常規二級處理逐漸變為重視脫氮除磷的深度處理上來。但是在實際運行過程中,由於工藝復雜性及參數的變化性,導致常常出水氮磷含量超標,影響著水廠的運行。因此,釐清脫氮除磷工藝的重要參數並加以控制,能夠很好的保證系統的正常運行。2污水氮含量超標原因及控制方法2.1氨氮超標2.1.1污泥負荷與污泥齡生物硝化屬低負荷工藝,F/M一般在0.05~0.15kgBOD/kgMLVSS?d。負荷越低,硝化進行得越充分,NH3-N向NO3--N轉化的效率就越高。與低負荷相對應,生物硝化系統的SRT一般較長,因為硝化細菌世代周期較長,若生物系統的污泥停留時間過短,污泥濃度較低時,硝化細菌就培養不起來,也就得不到硝化效果。SRT控制在多少,取決於溫度等因素。對於以脫氮為主要目的生物系統,通常SRT可取11~23d。2.1.2迴流比與水力停留時間生物硝化系統的迴流比一般較傳統活性污泥工藝大,主要是因為生物硝化系統的活性污泥混合液中已含有大量的硝酸鹽,若迴流比太小,活性污泥在二沉池的停留時間就較長,容易產生反硝化,導致污泥上浮。通常迴流比控制在50~100%。生物硝化曝氣池的水力停留時間也較活性污泥工藝長,至少應在8h以上。這主要是因為硝化速率較有機污染物的去除率低得多,因而需要更長的反應時間。2.1.3BOD5/TKNBOD5/TKN越大,活性污泥中硝化細菌所佔的比例越小,硝化速率就越小,在同樣運行條件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多城市污水處理廠的運行實踐發現,BOD5/TKN值最佳范圍為2~3左右。2.1.4溶解氧硝化細菌為專性好氧菌,無氧時即停止生命活動,且硝化細菌的攝氧速率較分解有機物的細菌低得多,如果不保持充足的氧量,硝化細菌將「爭奪」不到所需要的氧。因此,需保持生物池好氧區的溶解氧在2mg/L以上,特殊情況下溶解氧含量還需提高。2.1.5溫度與pH硝化細菌對溫度的變化也很敏感,當污水溫度低於15℃時,硝化速率會明顯下降,當污水溫度低於5℃時,其生理活動會完全停止。因此,冬季時污水處理廠特別是北方地區的污水處理廠出水氨氮超標的現象較為明顯。硝化細菌對pH反應很敏感,在pH為8~9的范圍內,其生物活性最強,當pH<6.0或>9.6時,硝化菌的生物活性將受到抑制並趨於停止。因此,應盡量控制生物硝化系統的混合液pH大於7.0。2.2 總氮超標2.2.1污泥負荷與污泥齡由於生物硝化是生物反硝化的前提,只有良好的硝化,才能獲得高效而穩定的的反硝化。因而,脫氮系統也必須採用低負荷或超低負荷,並採用高污泥齡。2.2.2內、外迴流比生物反硝化系統外迴流比較單純生物硝化系統要小些,這主要是入流污水中氮絕大部分已被脫去,二沉池中NO3--N濃度不高。另一方面,反硝化系統污泥沉速較快,在保證要求迴流污泥濃度的前提下,可以降低迴流比,以便延長污水在曝氣池內的停留時間。運行良好的污水處理廠,外迴流比可控制在50%以下。而內迴流比一般控制在300~500%之間。2.2.3缺氧區溶解氧對反硝化來說,希望DO盡量低,最好是零,這樣反硝化細菌可以「全力」進行反硝化,提高脫氮效率。但從污水處理廠的實際運營情況來看,要把缺氧區的DO控制在0.5mg/L以下,還是有困難的,因此也就影響了生物反硝化的過程,進而影響出水總氮指標。2.2.4BOD5/TKN反硝化細菌是在分解有機物的過程中進行反硝化脫氮的,所以進入缺氧區的污水中必須有充足的有機物,才能保證反硝化的順利進行。由於目前許多污水處理廠配套管網建設滯後,進廠BOD5低於設計值,而氮、磷等指標則相當於或高於設計值,使得進水碳源無法滿足反硝化對碳源的需求,也導致了出水總氮超標的情況時有發生。2.2.5溫度與pH反硝化細菌對溫度變化雖不如硝化細菌那麼敏感,但反硝化效果也會隨溫度變化而變化。溫度越高,反硝化速率越高,在30~35℃時,反硝化速率增至最大。當低於15℃時,反硝化速率將明顯降低,至5℃時,反硝化將趨於停止。反硝化細菌對pH變化不如硝化細菌敏感,在pH為6~9的范圍內,均能進行正常的生理代謝,但生物反硝化的最佳pH范圍為6.5~8.0。3 污水生物除磷總磷超標原因及對策3.1 污泥負荷與污泥齡厭氧-好氧生物除磷工藝是一種高F/M低SRT系統。當F/M較高,SRT較低時,剩餘污泥排放量也就較多。因而,在污泥含磷量一定的條件下,除磷量也就越多,除磷效果越好。對於以除磷為主要目的生物系統,通常F/M為0.4~0.7kgBOD5/kgMLSS•d,SRT為較大,選擇價廉,易得的填料也是需要考慮的一個重要因子。3.2 填料的種類生物滴濾常用的填料都是一些惰性材料。從天然的卵石、粗碎石、木炭到人工合成的陶粒、陶瓷、聚丙烯小球、塑料、不銹鋼、APC微粒、炭素纖維、海綿等品種繁多。目前應用於生物滴濾塔中的填料主要有以下幾種。3.2.1 陶粒陶粒是由人工用粘土燒制而成,其形狀是不規則的球形實體,內部或外部有大量微小的孔隙,其具有較大的比表面積,孔隙率高吸附性大,造價低,但氣阻大,容易形成壁流,填料的中央易產生厭氧區。3.2.2 拉西環常用的拉西環為外徑與高度相等的圓環,在強度允許的條件下,壁厚應盡量薄,以提高空隙率及降低堆積密度。為了增加強度可以在環內增加隔板形成θ環和十字格環,其優點是,形狀簡單易成型,但與其它填料相比,氣體阻力大,通量小,溝流、壁流嚴重。3.2.3 鮑爾環在普通拉西環側壁上開有兩排方形窗孔,開孔時只斷開四邊形中的三條邊,另一邊保留,使被切開的環壁呈舌狀穹入環內,這些舌片在環中心幾乎對接起來,這樣可以使氣、液進入環內,使氣體阻力大為降低,液體分布可以改善,但與拉西環一樣,具有比表面積小,空隙率低,不易掛膜等缺點。3.2.4 階梯環環高是直徑的5/8,且一端向外翻喇叭口,這種填料孔隙率大,而且填料個體之間呈點接觸,可以使液膜不斷更新,具有壓降小,傳質效率高等特點。具體參見更多相關技術文檔。3.2.5 塑料多孔球形填料該填料的外部輪廓為球形,由縱橫交錯的幾個大小不等的圓或半圓形成球,中間有填充物,以增加比表面積有利於掛膜,特點是質輕,強度大,不易老化,並且比表面積和空隙率容易協調,水流、氣流通暢。3.2.6 活性炭該填料是一種新型開發填料,有巨大的比表面積,對臭氣有很大的吸附量,對微生物也極易固定,但造價昂貴,氣阻大且易發生堵塞。除上述填料外,還有以固定化生物顆粒作填料作為脫臭填料。也有將粉末活性炭熔到PVA粒子表面,作為生物填充塔的填料,將去除不同臭氣的微生物分到不同的區域,最大限度發揮了每一類群微生物的代謝活動,這一處理系統可以很好的滿足對住宅區內的臭味控制。(中國市政工程西北設計研究院有限公司)污水處理廠出水總氮超標怎麼回事?
❹ 生活污水總氮出水高導致檢測超標,有沒有好的辦法處理總氮超標問題呢
樓主您好,我來為您解答下,如果總氮超標的話,需要檢測總氮中哪專種氮存在超標屬現象(氨氮、有機氮、硝態氮、亞硝態氮)。
超標現象之一:氨氮超標,說明好氧硝化系統存在問題,這時候需要檢測和核算系統中的鹼度、溶解氧、停留時間是否合理,調整後再進行下一步分析。這是第一步。
超標現象之二:硝態氮超標,這中情況說明反硝化存在問題,需要核算系統的迴流量,碳源是否合理(新爾特研究的反硝化菌碳氮比是5:1才能良好進行,5是碳源,1是硝態氮和亞硝態氮,不是其它的總氮,否則不準確)。
超標現象之三:有機氮超標,一般有兩種原因,一是該有機氮非常穩定,難以破解,而是生化系統存在嚴重問題,不能把有機氮分解開來。
樓主,涉及到技術點和工況較多,因此需要具體問題具體分析,有需要可以聯系,希望對您有幫助。
新爾特生物為您提供。
❺ 生活污水氨氮超標的主要原因
1、超標的原因可能有:
1)你們公司比較節約用水;
2)你們公司人員十分密集,人員多,廁所使用頻率高;
3)你們公司人員排泄時間段比較集中,比如集中在白天,污水廠取樣也是在該時間段。
4)排放口距離廁所很近(導致污水廠人員所取樣品不具有代表性)。
5)其它污水混入。
2、排查方法:定期取樣檢測;
1)在同一天的不同時間段在排放口分別取樣,測定氨氮值。
2)在廠區不同的排放井口取樣,測定氨氮值。
3)測定靠近廁所最近的管道檢查井內的樣品氨氮值。
分別分析,即可確定貴單位是否是排放不均勻,是否是取樣無代表性,是否是廁所排出水導致。
如果都不是,那麼必然會有某處的井內氨氮值偏高,調查該處廢水來源即可確定高氨氮值廢水來自何處。
3、處理方法:不知道原因,沒有具體改善方法。總之,對症下葯即可。
4、購買工具設施:如果你們單位氨氮值超標很多,而且最終發現沒有什麼客觀原因,就是超標,那麼就需要設立處理設施。
❻ 總氮超標什麼原因
工業廢水處理中,各行業有關總氮的問題不少,總氮包括有機氮、氨氮、硝態氮,每種成分都可能存在問題。隨著人們對污水總氮處理問題的研究,有大量的新型脫氮工藝涌現,但由於工藝不成熟,大部分污水處理廠仍然採用傳統的生物脫氮法。
傳統的生物脫氮工藝基本原理是在生物處理過程中,先將有機氮轉化為氨氮,再通過硝化菌和反硝化菌的作用將氨氮轉化為亞硝態氮和硝態氮,最終通過反硝化作用將硝態氮轉化為氮氣完成脫氮。總氮處理中硝化與反硝化反應的進行存在相互制約的關系,在有機物大量存在的情況下,自養硝化菌對氧氣和營養物的競爭力不如好養異養菌;反硝化需要有機物作為電子供體,但是硝化過程去除了大量的有機物,導致反硝化過程中缺乏碳源,所以為了得到良好的總氮處理效果,發展出了各種生物脫氮方法相結合的工藝,如A/O工藝、A2/O工藝等等。
經過組合的工藝在總氮處理中,要對硝化菌和反硝化菌的反應環境分別控制,從而均衡兩者之間的矛盾加大了運行成本。在我們實際污水處理過程中,氨氮超標是很容易避免和解決的,難解決的是硝態氮超標導致的總氮超標問題,也就是說反硝化反應的控制,因此這里提出硝態氮處理的解決辦法。
針對傳統工藝的反硝化反應問題,採用總氮處理富增集成裝備IDN-BMP,對原有池體進行優化改造,達到高效反硝化的目的。
IDN-BMP總氮處理裝備提升脫氮效率的原因如下:
第一,採用特殊定製的填料,超細纖維絲在改性葯劑內經浸洗-連續編織,形成具有親水性的膨脹性生物巢,能夠快速富集大量優質反硝化菌;
第二,採用湛清環保耐毒/耐鹽菌株 IDN-B5反硝化脫氮菌,環境適應性強,能夠在 5d 內復甦並發揮作用;
第三,該裝備中採用了特殊的脫氣裝置,結合 CFD 模擬模擬技術,強化了微生物在空間內的分布狀態。
眾所周知,反硝化脫氮菌在反硝化反應中起著非常重要的作用,選用活性高、適應能力強的菌種就是促進反硝化系統的快速進行,提升脫氮能力。
❼ 請問,為什麼生活污水中測得的氨氮比總氮高。
水質檢測時,氨氮分析結果高於總氮可能的原因
水質檢測時,氨氮分析結果高於總氮可能的原因有:
1、樣品引入的誤差 由於水中的氮化合物是在不斷變化著的, 採集後送回實驗室等待實驗 分析的樣品, 它們的存放時間、 存放地點, 光照情況等, 甚至分析人員 取樣的先後次序等, 都會給氨氮和總氮的實驗分析帶來不同的誤差。
2、 實驗環境引入的誤差 在實驗室周圍有衛生間或存放氨水等等, 使實驗室的空氣不同程度地 常含有氨和銨鹽, 氨和銨鹽都極易溶於水, 使實驗用水也不同程度地 含有銨離子。 可以說, 整個實驗分析過程都難達到無氨操作, 這種環境 當然對氨氮和總氮的分析實驗帶來用全程序空白難以完全扣除的誤差, 尤其給氨氮的實驗測試帶來的正誤差更直接、更大。
3、實驗條件引入的誤差 氨氮的分析通常採用較為經典的納氏試劑光度法, 雖然顯色要求鹼性 環境, 但沒有長的前處理過程, 直接顯色測定後, 就可以計算得出結 果。當中實驗條件一般沒有大的誤差引入。總氮的分析就要經歷在鹼性 條件下 30min 的加溫加壓處理, 使樣品中所含的不同形態、 不同狀態的 氮全部轉化為高價的硝酸根離子, 用稀鹽酸調節樣品的 pH 值後, 在紫 外分光光度計上比色測定。 這相對於氨氮的測定說來, 是一個很長的前 處理過程, 當中最為重要的是前處理的效率問題, 因為任何前處理的 效率都很難達到 100 % , 也就是說, 樣品中氮化合物在前處理後的轉化 不可能為 100 % ,這當中必有誤差存在。
4、樣品濁度引入的誤差 總氮分析前處理能消除的濁度影響在氨氮分析中消除不了, 加上比色 時常用不同種比色皿, 這幾種影響因素加起來, 對最後結果帶來差異。
5、不同分析人員引入的誤差所以,本人認為重點要做到: (1)對於總氮和氨氮的分析時間要保持一致; (2)測總氮是要消除濁度的干擾。
❽ 我們污水處理廠老是總磷,總氮超標,請問下具體是什麼原因和有什麼好的解決方法沒有 (我們用的是CASS工藝)
除了推薦答案外,我說幾句。
各個污水處理廠的實際情況不同,面對處版理的問題,需要尋求權適合自身的解決之道。
這個需要的是工作人員的長期探索。
我提供一個方案,在理論上有可行的可能,在實際中還沒實踐過。
就是在最後的沉澱池處,認為引起水華現象。
我們知道,水體富營養化會引起水華,水體富營養化主要是氮磷過高。而水體富營養化的危害又體現在藻類等水生植物的死亡之後。所以,認為引起的水華會讓水生植物大量吸取氮磷元素,同事,加大清理藻類的頻次,讓它們在未死亡之前就被打撈出來。
這個是我聽一個污水處理廠工程師講的,具體是否可行,你有條件,可以試驗一下。
❾ 污水處理中引起總氮超標有哪些因素
在實際生產過程中,總氮指標超標不外乎以下幾點:
1.原水不穩定,2.生物的可生化性差,3.缺少c元素