A. 污水處理廠的污泥焚燒有哪些危害
污泥是
污水處理廠
和污水處理的必然產物。未經恰當處理處置的污泥進入環境後,直接給水體和大氣帶來二次污染,不但降低了
污水處理系統
的有效處理能力,而且對生態環境和人類的活動構成了嚴重的威脅。存在的主要環境問題如下:
(1)
污泥含水率
高。未脫水污泥含水率大於90%,初步脫水污泥含水率也高達80%,造成
運輸成本
高、堆放面積大,擠壓
垃圾填埋場
庫容,堵塞
垃圾滲濾液
管等問題;
(2)細菌滋生。不僅造成
視覺污染
,而且為其他有害生物的滋生提供了場所;
(3)
大氣污染
。污泥堆放在露天散發出臭氣和異味,日曬風刮,污染物顆粒會造成大氣污染;
(4)污染水體。經水浸泡、溶解,污染物伴隨污水流入河道,會污染地表水,進入地下水;
(5)含有重金屬。如不加以控制,則可能污染土地。
將流態的原生、濃縮或
消化污泥
脫除水分,轉化為半固態或固態泥塊的一種
污泥處理
方法。經過脫水後,污泥含水率可降低到55~80%,視污泥和沉渣的性質和
脫水設備
的效能而定。污泥的進一步脫水則稱污泥干化,干化污泥的含水率低於10%。脫水的方法,主要有自然干化法、機械脫水法和
造粒
法。自然干化法和機械脫水法適用於污水污泥。造粒法適用於
混凝
沉澱的污泥。
目前,我國
城市污水處理廠
普遍採用
污泥脫水機
進行脫水,形成含水率80~75%的脫水污泥,目前的市污水處理廠脫水污泥處置方法中,污泥農用佔44.8%、陸地填埋佔31%、其他處理約10.5%、沒有處理約13.7%。
B. 關於污水處理廠污泥處置的申請報告模板
城市污泥同處理處置式本效益析
——北京市例
張義安高 定陳同斌*鄭砥李艷霞
科院理科與資源研究所環境修復北京 100101
摘要:北京市例估算同電價及運輸距離填埋、焚燒及堆肥等式城市污泥處理處置本基礎討論各種處理處置案前景展望北京市污泥處理處置路污泥填埋定期內主要處理處置式所佔比例逐漸降;堆肥經濟較行處理處置式適合力推廣;隨著經濟實力與技術水平提高焚燒適用於別特殊點同析政府補貼污泥處理處置效益影響
關鍵詞:城市污泥;處理處置本;填埋;焚燒;堆肥
圖類號:X703 文獻標識碼:A 文章編號:1672-2175(2006)02-0234-05
城市污泥污水處理副產物含水率97%計算體積占處理污水0.3%~0.5%[1]深度處理產泥量增加50%~100%目前我每排放干污泥約1.3×106 t並約10%速率增加
北京市全區域規劃污水排放量330×104 m3/d其2003市區污水排放量約230×104 m3/d[2]規劃建設14座污水處理廠2015污水處理能力預計超320×104 m3/d處理率超90%2008北京市新增9座水處理廠深度處理能力由目前1×104 m3/d提高47.6×104 m3/d屆每產含水率 80% 城市污泥超80×104 m3北京市污水處理廠——高碑店污水處理廠污泥外運運輸費用佔全廠運行費用1/3[3]
城市污泥量產已引起益嚴峻二污染並城市污水處理行業瓶頸污泥處理處置率低其非重要原投資運行本面限制目前止未見關於同污泥處理處置案經濟析導致同單位設計員案選擇存較盲目性本文北京例幾種典型城市污泥處理處置式進行經濟析便城市污泥處理處置技術選擇提供參考依據
1 城市污泥處理處置本估算
1.1 估算
1 t干污泥(DS)計算基準綜合本=運行本+設備折價本運行本目前較熟處理處置式進行估算
北京市污泥機械脫水效通80%左右各案本估算涉及或包括焚燒、運輸、填埋等3流程;設備折價本取15 a使用限折舊7%社利率10%即折價17%設備工作數8000 h計設備折價=設備價格×指數×0.17/8000
1.2 估算細則
(1)單位本
填埋:垃圾衛填埋本約60~70 ¥/t污泥填埋按照壓實垃圾∶土∶污泥容重比0.8∶1∶1污泥填埋本48~56 ¥/t取52¥/t
干化:乾燥能耗與脫水量比燃氣加熱效率85%、鍋爐熱效率70%、程熱損失5%水蒸發能耗150 (kW?h)/t每除1 t水設備投資180×104¥[4]
焚燒:目前採用流化床技術每h焚燒1 t干化污泥設備本528×104¥污泥按干質量減量60%焚燒運行費用24¥/t煙氣處理消耗NaOH量約37 kg/t折價約128¥/t [5]
電價:北京市工業電價高峰期、平段區、低谷期別0.278、0.488、0.725¥/(kW?h)按同補貼案電價設定0.30、0.60¥/(kW?h)
運費:北京市運輸價格0.45~0.65¥/(t?km)間污泥特殊固體廢物需特殊箱式貨車運送價格處於高端另外近運輸價格漲趨勢運費取0.65 ¥/(t?km)
外干化及焚燒均按設備本添加30%物耗工管理費及土建配套費
(2)污泥含水率
污泥機質水含量較高填埋存系列問題前主要關土力性能含水率高於68% 需按m(土)∶m(污泥)=0.4~0.6比例混入土 [6-8]含水率降低污泥性狀存突變填埋脫水目標設定80%、30%
含水率污泥焚燒處理關鍵素機質含量高、含水率低利於維持自燃降低污泥含水率降低污泥焚燒設備及處理費用至關重要般污泥含水率降至與揮發物含量比於3.5形自燃[9]北京市污泥機物含量45% 使污泥維持自燃焚燒水含量應於61.2%朱南文總結幾種外污泥熱乾燥技術污泥乾燥至10%含水率[10]污泥焚燒綜合本隨乾燥程度態變化干化程度越高幹化能耗升高焚燒設備及運行費用隨降簡化起見本文污泥保持熱量平衡燃燒估算前提再進行高水加入重油本估算污泥焚燒干化目標定:60%10%
表1 北京市填埋場概況[11]及離污水處理廠近距離
Table 1 Description of landfill sites and wastewater treatment plants
填埋場 填埋場位置 處理規模/(t?d-1) 預計關閉間 近污水處理廠 近直線距離/km 1)
北神樹 通縣渠鄉 980 2006 高碑店 20
安定 興區安定鄉 700 2006 紅門 36
六屯 海淀區永豐屯鄉 1500 2017 清河 15
高安屯 朝陽區樓梓庄鄉 1000 2018 高碑店 15
阿蘇衛 昌平區湯山鄉 2000 2012 清河、北河 40
焦家坡 門溝區永定鎮 600 2011 盧溝橋 15
1) 近距離數據作者實測
綜所述污泥處理處置式計:堆肥別乾燥至含水80%、30% 填埋乾燥至含水
60%、10%焚燒
1.3 填埋本
填埋本=能耗本+運輸本+填埋場本+設備折價本
能耗本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
運輸本=0.65×L /(1-ηe)
填埋場本=βPf /(1-ηe)
設備折價=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其η0、ηe別處理處置始、末含水率;Pele電價¥/(kW?h);L運輸距離km;α土建及工配套費指數1.3;β體積系數含水率≥68%1.4~1.6間取1.5含水率<68%取1;Pf填埋場填埋價格40~60¥/t取52¥/t
污泥填埋運輸距離:北京市現填埋場容量足滿足垃圾處置需求即使規劃填埋場建富餘填埋能力限污泥填埋需另外覓新建填埋場隨著城市發展及填埋場質條件要求運輸距離越越遠參照表1污泥
填埋運輸距離40 km估算今填埋本別取50、100 km作近期及遠期填埋場運輸距離
1.4 堆肥本及收益
城市污泥經堆肥害化處理進行土利用際普遍採用處理處置式強制通風靜態垛堆肥處理泥堆肥主流技術其處理本與污泥初始含水率、處理規模、堆肥廠與污水處理廠間距離及設備原產等素相關堆肥廠宜建污水處理廠周圍運輸本計0堆肥本主要由鼓風、烘乾、篩能耗調理劑及設備折價本組目前堆肥產品市場銷售價格350~500¥/t扣除15%含水率取500¥/t DS
利用CTB堆肥自控制系統[12,13]進行強制通風靜態垛堆肥河南省漯河市城市污泥堆肥廠應用結表明污泥含水率高於80%鼓風能耗40~60 (kW?h)/t DS間取60 (kW?h)/t DSCTB調理劑價格300 ¥/t損耗率般5% [14]經10~14 d堆肥污泥干物質減量30%含水45%採用熱乾燥技術烘乾至含水15%脫水負荷0.45 t/t DS;調理劑烘乾前篩自晾乾需篩能耗;篩負荷共9.3 t/t DS篩能力1 t/h功率3 kW全程能耗95 (kW?h)/t DS考慮未知能耗取100 (kW?h)/t DS
設備折價:處理干污泥能力 0.3×104 t/a污泥堆肥廠設備投資約700萬¥設備折價182 ¥/t DS(含占本)取200¥/t DS
1.5 焚燒本
考慮焚燒廢氣排放等問題外運30 km焚燒佳取30 km;焚燒按干物質減量60%燒余物需運至填埋場填埋運輸距離取50 km參考表3知乾燥至10%焚燒本較乾燥至60%低乾燥程度越高焚燒廠占面積越焚燒前干化至10%宜
1.6 干化農用本
未經穩定化處理污泥存施用安全危險考慮干化穩定效較差安全性限再估算
2 討論與析
2.1 處理本經濟效益
表2 處理處置1 t城市污泥(干質量)所需本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 運輸 填埋 綜合本/¥
目標 能耗/¥ 設備折價/¥ 距離/km 運費/¥ 填土比例 費用/¥
80% 0 0 50 163 50% 390 5531)5532)
30% 2091)4182) 178 50 46 0 74 5071)7162)
80% 0 0 100 325 50% 390 7151)7152)
30% 2091)4182) 178 100 93 0 74 5541)7632)
焚燒
干化 焚 燒 燒余物 綜合本/¥
目標 能耗/¥ 設備折價/¥ 運行/¥ 設備折價/¥ NaOH/¥ 運費/¥ 填埋/¥
60% 1461)2932) 124 60 365 128 13 20 8561)10022)
10% 2281)4552) 193 27 162 128 13 20 7711)9982)
堆 肥
能耗/¥ 設備折價/¥ 調理劑損耗/¥ 總本/¥ 銷售/¥ 總效益/¥
391)782) 200 75 3141)3532) 410 961)572)
1) 電價取0.30 ¥/(kW?h);2) 電價取0.60 ¥/(kW?h)
各種處理式處理本估算程及結表2所示由表2知污泥處理處置堆肥式本
低約300~350¥/t DS;填埋式約500~760¥/t DS焚燒式本高約800~1000¥/t DS堆肥本低於填埋式顯著低於焚燒式隨運輸距離增加填埋本顯著高於堆肥本外污泥焚燒處理性投資運行維護費用高
各種處理式污泥填埋沒資源收效益零;考慮污泥熱值水平收焚燒熱能能性較低凈效益影響;污泥干化起脫水效穩定化效限加干化程容易產爆炸肥效緩慢等問題宜提倡;產品銷售良情況按電價同堆肥處理盈利50~100¥/t DS
2.2 各種處理處置技術優缺點
現部填埋場設計建造標准低、缺乏污染控制措施存穩定性差等問題導致散發氣體臭味污染水能保證填埋垃圾安全延緩污染沒終消除污染些家述問題降低程度制定待處理污泥物理特性低標准使污泥填埋處理本增加例德要求填埋污泥干基含量低於35%避免污泥機物解造水污染1992德發布《城市廢棄物控制處置技術綱要》要求2005起任何填埋處理物質其機物含量超5% [15]意味著污泥即便經乾燥滿足填埋要求污泥填埋面臨填埋場、公眾及規等重壓力填埋本逐步升高近外污泥填埋處理式比例越越[6]
否推廣堆肥處理城市污泥首先應切實評估施用污泥堆肥潛環境風險杜兵等[16]研究表明同外相比北京市某典型污水處理廠酚類、酞酸酯類、環芳烴類均處於污染程度較低水平堆肥處理持續高溫確保殺滅病菌保證污泥農用安全陳同斌等[17]城市污泥重金屬含量及其變化趨勢研究結表明我城市污泥平均含量普遍較低金屬含量基本未超農用標准[18]且呈現逐漸降趨勢近相關研究證明:科合理進行城市污泥農用造土壤農產品重金屬污染問題[19]我城市污泥土利用重金屬環境風險並像想像嚴重
焚燒減量顯著含水80%污泥焚燒減容率超90%污泥含種機物焚燒產量害物質二惡英、二氧化硫、鹽酸等受內焚燒技術限制二惡英污染問題尚未解決重金屬煙霧與燃燒灰燼能造二污染外焚燒浪費污泥營養物質比三種處理處置式污泥焚燒占面積綜合本高設備維護要求高環保風險較些利處都限制污泥焚燒技術廣泛應用
綜所述堆肥處理實現污泥資源化利用科合理施用保證衛安全及重金屬安全同較經濟行污泥處理處置技術主要發展向市場銷售角度看污泥堆肥產品銷售渠道待改善各種處理式優缺點概括於表3(頁)
2.3 電價影響及政府補貼
電價影響污泥處理處置本電價0.60¥/(kW?h)降低0.30 ¥/(kW?h)各種處理式綜合本別降低40~230 ¥/t DS電價取至用電低谷期電價或者更低本進步降低
表3 各種處理處置技術優缺點比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
處理處置式 收支平衡/(¥?t-1) 1) 技術難度 場要求 能否資源化 害化程度
填埋 -507~ -763 簡單 能 延緩污染, 沒終消除污染風險
堆肥 57~96 較簡單 較 能 重金屬低於農用標准達害化要求
焚燒 -771~ -1000 技術設備要求高 能 尾氣能帶二污染
1) 運輸距離100 km、電價0.60 ¥/(kw?h), 80%含水率填埋本略低於30%含水率填埋, 其占者5.25倍, 綜合考慮採取30%填埋
污泥含水80%及60%填埋占別30%填埋5.25倍、1.75倍政府通補貼降低電價等調控手段污水處理投入合理配其污泥處理單元降低污泥處理單元焚燒本、填埋占降低堆肥本政府補貼發揮經濟杠桿作用調控污泥處理行業投入產狀況利於污泥處理處置行業健康發展總污泥處理處置應該適宜政府補貼
3 結論
(1)污泥堆肥本隨電價變化約300~350 ¥/t DS堆肥銷售補償部處理本使污泥堆肥達微利水平合理施用堆肥提供養機質污泥處理處置技術重要向
(2)污泥填埋操作簡單其本約500~760 ¥/t DS高於堆肥處理考慮土資源益稀缺及二污染問題且發達家經驗看污泥填埋逐步受限制其應用比例應逐漸減少
(3)污泥焚燒減量效明顯其初始投資及運行費用高綜合本約771~1000 ¥/t DS其設備維護復雜尾氣處理造二污染
參考文獻:
[1] Edward S R, Cliff I D. 工程與環境引論[M]. 北京: 清華版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凱軍, 田寧寧. 北京市城市污水污泥處理處置問題研究[J]. 沼氣, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭曉峰, 陳劍波, 陶濤, 等. 污泥特性及相關熱物理研究向[J]. 科基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵. 污水廠污泥綜合利用與消納行性途徑析[J]. 環境衛工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 鄧曉林, 王華, 任鶴雲. 海城市污水處理廠污泥處置途徑探討[J]. 給水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 家建設部. CJ 3025 城市污水處理廠污水污泥排放標准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 家建設部. CJJ 17城市垃圾衛填埋技術規范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 趙樂軍, 戴樹桂, 辜顯華. 污泥填埋技術應用進展[J]. 給水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水處理手冊[M]. 北京: 高教版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐華偉. 外污泥熱乾燥技術[J]. 給水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 劉建, 聶永豐. 京城垃圾處置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陳同斌, 高定, 黃啟飛. 種用於堆肥自控制裝置: , 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: , 0112522.9[P].
[13] 高定, 黃啟飛, 陳同斌. 新型堆肥調理劑吸水特性及應用[J]. 環境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自測控系統及其豬糞堆肥應用[D]. 北京: 科院理科與資源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李民, 王志, 等. 發展我污泥流化床焚燒技術[J]. 勞安全與健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 張彭義, 張祖麟, 等. 北京市某典型污水處理廠內泌干擾物初步調查[J]. 環境科, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陳同斌, 黃啟飛, 高定, 等. 城市污泥重金屬含量及其變化趨勢[J]. 環境科報, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 家環境保護總局. 城鎮污水處理廠污染物排放標准: , 18918-2002[S]. 北京: 環境版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田寧寧, 王凱軍, 柯健明. 剩餘污泥氧堆肥產機復混肥肥及效益析[J]. 城市環境與城市態, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.
C. 城市污水處理廠剩餘的污泥有哪些處理途經
目前,我國污泥的處置方法主要有填埋場、海洋處理、焚燒等,但這些方法不能滿足環境保護和可持續發展的要求。
1 填埋處理
污泥填埋場目前是中國應用最廣泛的地區。中國污泥處理的大部分垃圾填埋場都是生活垃圾填埋場。污泥本身含水量過高,質地鬆散,容易造成垃圾滲濾液產生,垃圾填埋場土壤不穩定。埋層破裂的可能性增加。在我國城市污水處理廠產生的污泥機械脫水後,大部分污泥的含水率只能達到80%左右,不能滿足污泥填埋標準的要求。隨著中國的土地資源日益緊張,很難開辟新的垃圾填埋場。垃圾填埋處理不再是污泥的最佳出路。
2 海洋處理
海洋污泥處理是簡單可行的,但這種方法並沒有對污泥進行預處理,只利用海洋吸收污染物。這種處理方法容易造成海洋污染,威脅海洋生態系統和人類食物鏈,存在較大的隱患。世界各國正在逐步廢除這種處理方法,以避免將來對海洋環境造成更大的危害。
3 污泥焚燒
污泥焚燒可以最大限度地實現污泥減量處理。與填埋和海洋處理相比,早期投資較大,後期運行管理要求較高,但焚燒法能最快、最徹底地實現污泥減量化。且處理後殘渣較少,便於後續處理。但焚燒的缺點也是顯而易見的,可能會有尾氣污染,產生有毒氣體,不是一種環保的處理方法。
4. 污泥資源化處置
除傳統的處理方法外,污泥在其他行業的應用研究也逐漸增多,如制備蛋白質滅火劑、建築磚等。這些研究為實現污泥資源化和減量化指明了方向。環境保護和可持續發展的理念已經實現。
5. 制備污泥蛋白
剩餘污泥中含有較多的蛋白質,可被酸、鹼水解,制備水解蛋白(肽)。水解蛋白具有發泡性能,攪拌後通風可產生大量泡沫(具有滅火特性),如添加穩定劑、防腐劑、防凍劑等,可製成蛋白泡沫滅火劑。與傳統的化學泡沫滅火劑、乾粉滅火劑和動植物蛋白水解液滅火劑相比,該滅火劑具有制備成本低、無二次污染等優點。因此,發展剩餘污泥減量、無害化、資源化技術具有重要的現實意義。
6.制備建築用磚
污泥含有大量的無機物質,也可以作為處理後的建築材料的原料。污泥磚製造有兩種方法,一種是用干污泥直接制磚;另一種是用污泥焚燒灰磚。當直接從乾燥污泥制磚時,應適當調整污泥的組成,使組成等於制磚粘土的化學成分。制磚粘土所需的化學成分為SiO2:56.8%~88.7%; Al2O3:4.0%~20.6%; Fe2O3:2.0%~6.6%; CaO:3%~13.1%; MgO:0.1%~0.6%;其他0至6.0%。污泥用於焚燒灰磚,焚燒灰的化學成分與制磚粘土的化學成分相當接近。在坯料中加入適量的粘土和硅砂。最合適的投配比是關於焚燒灰:粘土:硅砂= 100:50:(15-20)。由於污泥焚燒過程增加,成本增加,操作和管理難度增加。因此,通常使用乾燥後的污泥。
制備PHA
聚羥基烷酸(PHA)是由某些細菌在非平衡生長條件下(如氮、磷缺乏)合成的一種細胞內儲能儲碳材料,可由純微生物或混合微生物合成。PHA具有完全生物降解性、生物相容性和壓電性等優良性能,是傳統不降解塑料的理想替代品。剩餘活性污泥通過向污泥中注入土源性PHA合成菌的方法產生PHA。採用生物浸出法去除污泥中的重金屬,降低了污泥的致病性。污泥適合農田應用,實現剩餘活性污泥的充分利用,避免二次污染,具有廣闊的發展前景。
製造活性炭
"萬洪雲"用活性污泥處理廢水過程中產生的好氧污泥和厭氧污泥製成活性碳。選擇了最佳工藝條件,並對產品性能進行了進一步測試。實驗結果表明,利用殘留活性污泥制備活性炭的方法是可行的,在最佳條件下活性炭的吸附性能是令人滿意的。
此外,也有關於污泥用於污泥燃燒、發電和水泥生產的文獻研究,這些方法對於實現污泥資源化、減量化具有很好的作用。
D. 污水處理廠的污泥在我國一般是怎麼處理的
污水處理的過程中處理單元繁多,每個環節都會產生固體分離物,這些固體一般應該如何處理呢?事實上,不同的污水水源,不同的污水處理工藝,不同的污水處理單元提純出來的污泥是不一樣的,因此,這些污泥的處理方法也不盡相同。不過目前可行的污泥處置方式基本上就是以下幾種,根據不同的污水處理系統的污泥成分不同選擇不同的方式。
填埋:衛生填埋方法操作相對簡單,處理費用不高,將脫水污泥直接運到垃圾填埋場進行衛生填埋曾是我國大多數污水處理廠選擇的污泥處置方式。但是在實際運行過程中發現,脫水泥餅直接填埋本身是對資源的嚴重浪費,此外,還可能對填埋場形成諸多困難。
考慮到污泥是一種資源,一些國家開始限制污泥的直接填埋,填埋成本的上升,引發了人們深度處理污泥、減量和資源化的市場需求。這些限制包括:污泥填埋的含水率必須小於40%;有機質含量低於30%。為滿足上述要求,一般需對脫水污泥再進行以污泥干化為主要技術手段的後續處理。在我國綜合考慮各種處置方法的成本、對環境可能產生的影響及目前我國的實際情況,對污泥進行填埋處置可能是未來一段時期我國污泥處置的一種方法。
土地利用:城市污水廠污泥肥效對比典型的農家廄肥有明顯優勢。污泥中農作物生長所必須的氮、磷、鉀等元素都遠高於農家廄肥,有機成分也較之高。。
施用有機肥的主要優點有:改良土壤,提高耕地生產能力;提高化肥利用率;提高農作物產量,改善農作物品質;增強微生物活性。但是,由於有機肥肥效釋放慢,養分含量低,施用數量大,且當年利用率低,在作物生長旺盛、需肥多的時期,往往不能及時滿足作物的需求,所以需要與無機肥料配合施用。制備有機無機復合肥料是解決以上矛盾的最佳有效途徑。
堆肥技術是污泥農用的主要手段。由於好氧堆肥具有發酵周期短、無害化程度高、衛生條件好、易於機械化操作等特點,故國內外用垃圾、污泥、人畜糞尿等有機廢棄物制肥的工廠,絕大多數都採用好氧堆肥。好氧堆肥過程是通過好氧性微生物的生物代謝作用,使污泥中有機物轉化成富含植物營養物的腐殖質,反應的最終代謝物是CO,、H,0和熱量,大量的熱量使物料維持持續高溫,降低物料的含水率,有效地去除病原體、寄生蟲卯和雜草種子,使污泥達到減量化、穩定化、無害化、資源化目的。
用於建築:污泥含有大量無機質,在處理後也可以作為建材的原料。這種資源化利用方案還在不斷嘗試中。污泥建築材料利用方式主要有制磚、制水泥、制纖維板等。目前應用較多的是制磚。
焚燒:污泥的焚燒必須首先進行干化或半干化,在引燃時添加少量輔助燃料,其後可以達到自燃。採用先進的熱交換系統,可以依靠污泥焚燒所產生的熱能進行干化,其熱量可以滿足大部分甚至全部干化的需要。未經干化或半干化處理的污泥焚燒由於過多的水份將難以點燃,其熱量平衡為負數,即必須添加燃料才能維持焚燒。以焚燒為核心的處理方法是最徹底的污泥處理方法,它能使有機物全部碳化,殺死病原體,最大程度地減少污泥體積。
參考資料:http://www.nmgjlscl.com/Item/Show.asp?m=1d=3039
E. 生活污水處理廠污泥可以焚燒處理嗎
可以焚燒處理,但是也存在很多問題。
污泥是污水處理廠和污水處理的必然產物。未經恰當處理處置的污泥進入環境後,直接給水體和大氣帶來二次污染,不但降低了污水處理系統的有效處理能力,而且對生態環境和人類的活動構成了嚴重的威脅。存在的主要環境問題如下:
(1)污泥含水率高。未脫水污泥含水率大於90%,初步脫水污泥含水率也高達80%,造成運輸成本高、堆放面積大,擠壓垃圾填埋場庫容,堵塞垃圾滲濾液管等問題;
(2)細菌滋生。不僅造成視覺污染,而且為其他有害生物的滋生提供了場所;
(3)大氣污染。污泥堆放在露天散發出臭氣和異味,日曬風刮,污染物顆粒會造成大氣污染;
(4)污染水體。經水浸泡、溶解,污染物伴隨污水流入河道,會污染地表水,進入地下水;
(5)含有重金屬。如不加以控制,則可能污染土地。
將流態的原生、濃縮或消化污泥脫除水分,轉化為半固態或固態泥塊的一種污泥處理方法。經過脫水後,污泥含水率可降低到55~80%,視污泥和沉渣的性質和脫水設備的效能而定。污泥的進一步脫水則稱污泥干化,干化污泥的含水率低於10%。脫水的方法,主要有自然干化法、機械脫水法和造粒法。自然干化法和機械脫水法適用於污水污泥。造粒法適用於混凝沉澱的污泥。
目前,我國城市污水處理廠普遍採用污泥脫水機進行脫水,形成含水率80~75%的脫水污泥,目前的市污水處理廠脫水污泥處置方法中,污泥農用佔44.8%、陸地填埋佔31%、其他處理約10.5%、沒有處理約13.7%。
F. 污水處理廠的污泥處置費用問題
城市污泥不同處理處置方式的成本和效益分析
——以北京市為例
張義安,高 定,陳同斌*,鄭國砥,李艷霞
中國科學院地理科學與資源研究所環境修復中心,北京 100101
摘要:以北京市為例,估算不同電價及運輸距離下填埋、焚燒及堆肥等方式的城市污泥處理處置成本,在此基礎上討論各種處理處置方案的前景,展望北京市污泥處理處置出路。污泥填埋在一定時期內還將是主要處理處置方式,但所佔比例將逐漸下降;堆肥是經濟上較為可行的處理處置方式,適合大力推廣;隨著經濟實力與技術水平提高,焚燒法可以適用於個別特殊地點。同時,分析了政府補貼對污泥處理處置效益的影響。
關鍵詞:城市污泥;處理處置成本;填埋;焚燒;堆肥
中圖分類號:X703 文獻標識碼:A 文章編號:1672-2175(2006)02-0234-05
城市污泥是污水處理的副產物,以含水率97%計算,體積占處理污水的0.3%~0.5%[1],深度處理產泥量還將增加50%~100%。目前我國每年排放的干污泥大約1.3×106 t,並以大約10%的速率在增加。
北京市全區域規劃污水排放量為330×104 m3/d,其中2003年市區污水排放量約為230×104 m3/d[2]。規劃建設14座污水處理廠,2015年污水處理能力預計將超過320×104 m3/d,處理率將超過90%。到2008年,北京市將新增9座中水處理廠,深度處理能力將由目前的1×104 m3/d提高到47.6×104 m3/d,屆時每年產生含水率 80% 城市污泥超過80×104 m3。北京市最大的污水處理廠——高碑店污水處理廠污泥外運運輸費用佔到全廠運行費用的1/3[3]。
城市污泥的大量產生,已引起日益嚴峻的二次污染,並成為城市污水處理行業瓶頸。污泥處理處置率低,其中非常重要的一個原因就是投資和運行成本方面的限制。但到目前為止,還未見關於不同污泥處理處置方案的經濟分析,導致不同單位和設計人員在方案的選擇上存在較大的盲目性。本文以北京為例,對幾種典型的城市污泥處理處置方式進行經濟分析,以便為城市污泥處理處置技術的選擇提供參考依據。
1 城市污泥處理處置成本估算
1.1 估算方法
以1 t干污泥(DS)為計算基準,綜合成本=運行成本+設備折價成本。運行成本以目前較為成熟的處理處置方式進行估算。
北京市污泥機械脫水效果通常在80%左右。各方案中的成本估算涉及或包括焚燒、運輸、填埋等3個流程;設備折價成本取15 a使用年限,年折舊7%,社會利率10%,即年折價17%,設備年工作時數以8000 h計。因此,設備折價=設備價格×指數×0.17/8000。
1.2 估算細則
(1)單位成本
填埋:生活垃圾衛生填埋的成本約60~70 ¥/t,污泥填埋時按照壓實生活垃圾∶土∶污泥容重比為0.8∶1∶1,污泥填埋成本為48~56 ¥/t,取52¥/t。
干化:乾燥能耗與脫水量成正比。燃氣加熱效率85%、鍋爐熱效率70%、過程熱損失5%時,水的蒸發能耗為150 (kW•h)/t,每小時去除1 t水的設備投資為180×104¥[4]。
焚燒:目前多採用流化床技術,每h焚燒1 t干化污泥的設備成本為528×104¥,污泥按干質量減量60%。焚燒的運行費用24¥/t,煙氣處理消耗NaOH量約為37 kg/t,折價約128¥/t [5]。
電價:北京市工業電價高峰期、平段區、低谷期分別為0.278、0.488、0.725¥/(kW•h)。按不同補貼方案,將電價設定為0.30、0.60¥/(kW•h)。
運費:北京市運輸價格在0.45~0.65¥/(t•km)之間,污泥為特殊固體廢物,需特殊箱式貨車運送,價格處於高端。另外,近年運輸價格有上漲趨勢。因此,運費取0.65 ¥/(t•km)。
此外,干化及焚燒均按設備成本添加30%物耗人工管理費及土建配套費。
(2)污泥含水率
污泥的有機質和水分含量較高,填埋存在一系列問題,當前主要關心的是土力學性能,當含水率高於68% 時需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低時污泥性狀存在突變,因此填埋脫水目標設定為80%、30%。
含水率是污泥焚燒處理中的一個關鍵因素。有機質含量高、含水率低利於維持自燃,降低污泥含水率對降低污泥焚燒設備及處理費用至關重要。一般將污泥含水率降至與揮發物含量之比小於3.5時,可形成自燃[9]。北京市污泥有機物含量在45% 以下,因此使污泥維持自燃焚燒的水分含量應小於61.2%。朱南文總結了幾種國外污泥熱乾燥技術,可以將污泥乾燥至10%含水率[10]。污泥焚燒綜合成本隨乾燥程度動態變化,干化程度越高,干化能耗升高,焚燒設備及運行費用隨之下降。簡化起見,本文以污泥保持熱量平衡燃燒為估算前提,不再進行高水分下加入重油的成本估算。因此污泥焚燒的干化目標定為:60%和10%。
表1 北京市填埋場概況[11]及離污水處理廠的最近距離
Table 1 Description of landfill sites and wastewater treatment plants
填埋場 填埋場位置 處理規模/(t•d-1) 預計關閉時間 最近的污水處理廠 最近直線距離/km 1)
北神樹 通縣次渠鄉 980 2006 高碑店 20
安定 大興區安定鄉 700 2006 小紅門 36
六里屯 海淀區永豐屯鄉 1500 2017 清河 15
高安屯 朝陽區樓梓庄鄉 1000 2018 高碑店 15
阿蘇衛 昌平區小湯山鄉 2000 2012 清河、北小河 40
焦家坡 門頭溝區永定鎮 600 2011 盧溝橋 15
1) 最近距離數據為作者實測
綜上所述,污泥的處理處置方式計有:堆肥,分別乾燥至含水80%、30% 時填埋,乾燥至含水
60%、10%時焚燒。
1.3 填埋成本
填埋成本=能耗成本+運輸成本+填埋場成本+設備折價成本
能耗成本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
運輸成本=0.65×L /(1-ηe)
填埋場成本=βPf /(1-ηe)
設備折價=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其中,η0、ηe分別為處理處置始、末的含水率;Pele為電價,¥/(kW•h);L為運輸距離,km;α為土建及人工配套費指數,1.3;β為體積系數,含水率≥68%時在1.4~1.6之間,取1.5,含水率<68%時取1;Pf為填埋場填埋價格,40~60¥/t,取52¥/t。
污泥填埋運輸距離:北京市現有填埋場容量不足以滿足生活垃圾處置需求,即使規劃中的填埋場建成之後,富餘填埋能力也很有限,污泥填埋需另外覓地新建填埋場。隨著城市發展及填埋場地質條件要求,運輸距離也將越來越遠,參照表1,污泥
填埋的運輸距離將在40 km以上,因此在估算今後的填埋成本時,分別取50、100 km作為近期及遠期填埋場運輸距離。
1.4 堆肥成本及收益
城市污泥經過堆肥無害化處理之後進行土地利用,是國際上普遍採用的處理處置方式。強制通風靜態垛堆肥處理是泥堆肥主流技術,其處理成本與污泥初始含水率、處理規模、堆肥廠與污水處理廠之間距離以及設備原產地等因素相關。堆肥廠宜建在污水處理廠周圍,運輸成本計為0,堆肥成本主要由鼓風、烘乾、篩分能耗,調理劑及設備折價成本組成。目前,堆肥產品的市場銷售價格為350~500¥/t,扣除15%含水率後取500¥/t DS。
利用CTB堆肥自動控制系統[12,13]進行強制通風靜態垛堆肥在河南省漯河市城市污泥堆肥廠的應用結果表明,當污泥含水率不高於80%時,鼓風能耗在40~60 (kW•h)/t DS之間,取60 (kW•h)/t DS。CTB調理劑價格為300 ¥/t,損耗率一般為5% [14]。經過10~14 d堆肥,污泥干物質減量30%,含水45%。採用熱乾燥技術烘乾至含水15%,脫水負荷0.45 t/t DS;調理劑在烘乾前篩分後自然晾乾,需篩分能耗;篩分負荷共9.3 t/t DS,篩分能力1 t/h,功率3 kW。全程能耗95 (kW•h)/t DS,考慮到未知能耗,取100 (kW•h)/t DS。
設備折價:處理干污泥能力為 0.3×104 t/a的污泥堆肥廠設備投資約700萬¥,設備折價182 ¥/t DS(含佔地成本),取200¥/t DS。
1.5 焚燒成本
考慮到焚燒廢氣排放等問題,外運30 km以上焚燒為佳,取30 km;焚燒按干物質減量60%,燒余物需運至填埋場填埋,運輸距離取50 km。參考表3可知,乾燥至10%焚燒成本較乾燥至60%低。乾燥程度越高,焚燒廠佔地面積也越小,因此焚燒前以干化至10%為宜。
1.6 干化農用成本
未經穩定化處理污泥存在施用安全危險,考慮到干化的穩定效果較差,安全性有限,不再估算。
2 討論與分析
2.1 處理成本和經濟效益
表2 處理處置1 t城市污泥(干質量)所需的成本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 運輸 填埋 綜合成本/¥
目標 能耗/¥ 設備折價/¥ 距離/km 運費/¥ 填土比例 費用/¥
80% 0 0 50 163 50% 390 5531),5532)
30% 2091),4182) 178 50 46 0 74 5071),7162)
80% 0 0 100 325 50% 390 7151),7152)
30% 2091),4182) 178 100 93 0 74 5541),7632)
焚燒
干化 焚 燒 燒余物 綜合成本/¥
目標 能耗/¥ 設備折價/¥ 運行/¥ 設備折價/¥ NaOH/¥ 運費/¥ 填埋/¥
60% 1461),2932) 124 60 365 128 13 20 8561),10022)
10% 2281),4552) 193 27 162 128 13 20 7711),9982)
堆 肥
能耗/¥ 設備折價/¥ 調理劑損耗/¥ 總成本/¥ 銷售/¥ 總效益/¥
391),782) 200 75 3141),3532) 410 961),572)
1) 電價取0.30 ¥/(kW·h);2) 電價取0.60 ¥/(kW·h)
各種處理方式處理成本估算過程及結果如表2所示。由表2可知,污泥處理處置以堆肥方式成本
最低,約300~350¥/t DS;填埋方式約500~760¥/t DS。焚燒方式成本最高,約800~1000¥/t DS。堆肥成本低於填埋方式,顯著低於焚燒方式,隨運輸距離增加填埋成本顯著高於堆肥成本。此外,污泥焚燒處理一次性投資大,運行維護費用最高。
各種處理方式中,污泥填埋沒有資源回收,效益為零;考慮到污泥熱值水平,回收焚燒熱能可能性較低,對凈效益影響不大;污泥干化可以起到脫水的效果,但穩定化的效果有限,加之干化過程中容易產生爆炸和肥效緩慢等問題,不宜提倡;在產品銷售良好情況下,按電價不同,堆肥處理可以盈利50~100¥/t DS。
2.2 各種處理處置技術的優缺點
現有的大部分填埋場設計建造標准低、缺乏污染控制措施,存在穩定性差等問題,導致散發氣體和臭味,污染地下水,不能保證填埋垃圾的安全,只是延緩污染但沒有最終消除污染。一些國家為了把上述問題降低到最小程度,制定了待處理污泥物理特性的最低標准,使污泥填埋的處理成本大大增加。例如德國要求填埋污泥干基含量不低於35%。為避免污泥中有機物分解造成的地下水污染,1992年德國發布了《城市廢棄物控制和處置技術綱要》,要求從2005年起,任何被填埋處理的物質其有機物含量不超過5% [15],這意味著污泥即便是經過乾燥也不滿足填埋的要求。污泥填埋面臨填埋場地、公眾及法規等多重壓力,填埋成本將逐步升高,近年來國外污泥填埋處理方式比例越來越小[6]。
是否推廣堆肥處理城市污泥,首先應切實評估施用污泥堆肥的潛在環境風險。杜兵等[16]研究表明,同國外相比北京市某典型污水處理廠酚類、酞酸酯類、多環芳烴類均處於污染程度較低的水平。堆肥處理的持續高溫可以確保殺滅病菌,保證污泥的農用安全。陳同斌等[17]對中國城市污泥的重金屬含量及其變化趨勢的研究結果表明,我國城市污泥中平均含量普遍較低,金屬含量基本未超過農用標准[18],且呈現逐漸下降的趨勢。近年相關研究也證明:科學合理地進行城市污泥農用不會造成土壤和農產品的重金屬污染問題[19]。我國城市污泥的土地利用重金屬環境風險並不像人們想像的那樣嚴重。
焚燒減量最為顯著,含水80%的污泥焚燒後減容率超過90%。然而,污泥含有多種有機物,焚燒時會產生大量有害物質,如二惡英、二氧化硫、鹽酸等,受國內焚燒技術的限制,二惡英污染問題尚未很好解決,重金屬煙霧與燃燒灰燼也可能造成二次污染。此外,焚燒浪費了污泥中的營養物質。對比三種處理處置方式,污泥焚燒佔地面積最小,但綜合成本最高,設備維護要求高,環保風險較大,這些不利之處都限制了污泥焚燒技術的廣泛應用。
綜上所述,堆肥處理實現污泥的資源化利用,科學合理施用下可以保證衛生安全及重金屬安全,同時較為經濟可行,是污泥處理處置技術的主要發展方向。但是,從市場銷售的角度來看,污泥堆肥產品的銷售渠道有待改善。各種處理方式優缺點概括於表3(下頁)。
2.3 電價影響及政府補貼
電價影響到污泥處理處置成本。電價從0.60¥/(kW•h)降低到0.30 ¥/(kW•h),各種處理方式的綜合成本分別降低40~230 ¥/t DS。如電價取至用電低谷期電價或者更低,成本可以進一步降低。
表3 各種處理處置技術優缺點對比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
處理處置方式 收支平衡/(¥•t-1) 1) 技術難度 場地要求 能否資源化 無害化程度
填埋 -507~ -763 簡單 大 不能 延緩污染, 沒有最終消除污染風險
堆肥 57~96 較簡單 較小 能 重金屬低於農用標准時可以達到無害化要求
焚燒 -771~ -1000 技術設備要求高 小 不能 尾氣可能帶來二次污染
1) 運輸距離100 km、電價0.60 ¥/(kw•h)時, 以80%含水率填埋成本略低於30%含水率填埋, 但其佔地為後者5.25倍, 綜合考慮採取30%填埋
污泥含水80%及60%下填埋佔地分別為30%下填埋的5.25倍、1.75倍。政府通過補貼如降低電價等調控手段,將污水處理投入合理分配到其中的污泥處理單元,可以降低污泥處理單元的焚燒成本、填埋佔地,降低堆肥成本。政府補貼可以發揮經濟杠桿作用,調控污泥處理行業投入產出狀況,有利於污泥處理處置行業的健康發展。總之,污泥處理處置應該有適宜的政府補貼。
3 結論
(1)污泥堆肥成本隨電價變化約300~350 ¥/t DS,堆肥銷售可以補償部分處理成本,使污泥堆肥達到微利水平。合理施用堆肥可以提供養分和有機質,是污泥處理處置技術的重要方向。
(2)污泥填埋操作簡單,但其成本約500~760 ¥/t DS,高於堆肥處理。考慮到土地資源日益稀缺及二次污染問題,且從發達國家的經驗來看污泥填埋將逐步受到限制,因此其應用比例應逐漸減少。
(3)污泥焚燒減量效果最明顯,但其初始投資及運行費用最高,綜合成本約771~1000 ¥/t DS。其設備維護復雜,如果對尾氣處理不當會造成二次污染。
參考文獻:
[1] Edward S R, Cliff I D. 工程與環境引論[M]. 北京: 清華大學出版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凱軍, 田寧寧. 北京市城市污水污泥的處理和處置問題研究[J]. 中國沼氣, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭曉峰, 陳劍波, 陶濤, 等. 污泥特性及相關熱物理研究方向[J]. 中國科學基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵年. 污水廠污泥綜合利用與消納的可行性途徑分析[J]. 環境衛生工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 鄧曉林, 王國華, 任鶴雲. 上海城市污水處理廠的污泥處置途徑探討[J]. 中國給水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 國家建設部. CJ 3025 城市污水處理廠污水污泥排放標准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 國家建設部. CJJ 17城市生活垃圾衛生填埋技術規范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 趙樂軍, 戴樹桂, 辜顯華. 污泥填埋技術應用進展[J]. 中國給水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水處理手冊[M]. 北京: 高教出版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐華偉. 國外污泥熱乾燥技術[J]. 給水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 劉建國, 聶永豐. 京城垃圾處置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陳同斌, 高定, 黃啟飛. 一種用於堆肥的自動控制裝置: 中國, 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: 中國, 0112522.9[P].
[13] 高定, 黃啟飛, 陳同斌. 新型堆肥調理劑的吸水特性及應用[J]. 環境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自動測控系統及其在豬糞堆肥中的應用[D]. 北京: 中國科學院地理科學與資源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李愛民, 王志, 等. 發展我國污泥流化床焚燒技術[J]. 勞動安全與健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 張彭義, 張祖麟, 等. 北京市某典型污水處理廠中內分泌干擾物的初步調查[J]. 環境科學, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陳同斌, 黃啟飛, 高定, 等. 中國城市污泥的重金屬含量及其變化趨勢[J]. 環境科學學報, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 國家環境保護總局. 城鎮污水處理廠污染物排放標准: 中國, 18918-2002[S]. 北京: 中國環境出版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田寧寧, 王凱軍, 柯健明. 剩餘污泥好氧堆肥生產有機復混肥的肥分及效益分析[J]. 城市環境與城市生態, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.
G. 目前,一污泥發電廠在南昌投入運行,它是將收集到的污水處理廠的污泥,在熱電廠與煤摻燒發電,經測算,在
完全燃燒來1.4t煙煤產生的熱源量(完全燃燒10t污泥產生的熱量): m=1.4t=1.4×10 3 kg, Q 放 =mq=1.4×10 3 kg×2.9×10 7 J/kg=4.06×10 10 J, 完全燃燒500t污泥產生的熱量: Q 放 ′=Q 放 ×50=4.06×10 10 J×50=2.03×10 12 J. 故答案為:2.03×10 12 . |
H. 污水處理廠的干化污泥燃燒1t能產生多少廢氣。
污泥塊的成分不同,如果想確定種類和參數需要做第三方檢測,一般來說鍋爐的風量就是廢氣量。
山東傲峰環保為您解答。
I. 污水處理廠污泥未能及時處置怎麼處置
1、污泥特點:污泥中含有大量病原菌、寄生蟲(卵)、以及鉻、汞等重金屬和多氯聯苯、二惡英、放射性核素等難降解的有毒有害物。一般來說,污泥要作土地處置必須經無毒無害化處理,否則,污泥中的有毒有害物質會導致土壤或水體的二次污染。因此各國對土地利用的污泥標准要求越來越嚴格。
2、常用的污泥處置方法有:焚燒、污泥農用、土地衛生填埋、製作建材、海洋處置等幾種方法。污泥焚燒是最徹底的處理方法,基本上可以達到減容化、無害化和資源化的目的。一般污泥經焚燒處理後,其體積可以減少85%~95%,質量減少70%~80%。高溫焚燒還可以消滅污泥中的有害病菌和有害物質。
3、污泥焚燒主要可分為兩大類:一類是將脫水污泥直接用焚燒爐焚燒;另一類是將脫水污泥先干化再焚燒。
污泥焚燒要求污泥有較高的熱值,因此污泥一般不進行消化處理。一般當污泥不符合衛生要求,有毒物質含量高,不能作為農副業利用時,或污泥自身的燃燒熱值高,可以自燃並可利用燃燒熱量發電時,可考慮採用污泥焚燒。焚燒所需熱量,主要靠污泥含有的有機物燃燒,如污泥所含有的有機物燃燒所產生的熱能。焚燒最大優點是可以迅速和較大程度地使污泥減容,並且在惡劣的天氣條件下不需存儲設備,能夠滿足越來越嚴格的環境要求和充分地處理不適宜於資源化利用的部分污泥。污泥的焚燒處置不僅是一種有效降低污泥體積的方法,設計良好的焚燒爐不但能夠自動運行,還能夠提供多餘的能量和電力,因此幾乎所有的發達國家均期望通過焚燒處置污泥來解決日益增長的污泥量和以前通過填理處置的部分污泥。
4、污泥農用必須做到以下幾點:首先,嚴格控制污水廠污泥的有毒有害物質及病原微生物,使其達到國家標准;其次,應特別注意污泥中重金屬的含量,根據其土壤背景值等情況,嚴格按照計算得到的污泥施用量進行施用;再次,一般來說農田使用污泥數量都有一定限度,當達到這一限度時,污泥的農用就應停止一段時間再繼續進行;最後,農田利用應在安全施用量之下控制使用,同時整個利用區需要建立嚴密的使用、管理、監測和監控體系,還必須時刻關注區域內的土壤、地下水、地表水、作物等相關因子的狀態和變化,並根據發生的變化做出相應的調整,以保持污泥農用的安全性,保持農業的可持續發展。因此, 污泥中含有豐富的各種微量元素,施用於農田能夠改良土壤結構、增加土壤肥力、促進作物的生長。