Ⅰ 水性樹脂的合成工藝是什麼啊
水性樹脂是相對於油溶性的樹脂而言的有機高分子材料。通常有水性丙烯酸樹專脂、水性屬醇酸樹脂、水性環氧樹脂、水性有機硅樹脂、水性聚氨酯樹脂、水性氟碳樹脂等。近年來,隨著高分子材料的發展,配套工藝的提高,高分子互穿網路理論的成熟,各種改性的水性樹脂層出不窮,如有機硅改性聚氨酯樹脂,丙烯酸、環氧改性聚氨酯樹脂等,這使水性塗料、水性樹脂產品越來越豐富,性能越來越完善,應用面越來越廣,已成為我國塗料工業發展的高亮點之一。
水性PU樹脂分散狀態可分為水溶型、水乳型和膠體分散型,僅離子類別又可分為陽離子型、陰離子型和非離子型。目前所研究的主要是陰離子型水乳液。
水性PU樹脂的制備方法有兩種。一是用乳化劑強制乳化的外乳化法;二是不用乳化劑,在分子內部引入親水基因的內乳化法。外乳化對設備要求更高,且工藝復雜。目前選用的是內乳化法,即在聚氨酯大分子鏈中引入親OK基因,將樹脂分子鏈上的羧基中和成鹽,使之具有親水性,然後在高速狀態下加水乳化成穩定的乳液。
Ⅱ 水性漆樹脂有哪些分類介紹以及特點說明
水性樹脂漆有哪些?我們應該如何選擇呢?今天為大家推薦的就是五御孫種不同分類的水性樹脂漆以及各自的優點和缺點,比如說常見的可能是醇酸類水性樹脂漆,它們乾性較差,保光線不好,但是流動性和豐滿度相對更勝一籌,而且具有良好的滲透性,另外一個方面也有可能是具有代表性的丙烯酸樹脂漆,那麼它們有什麼特色呢?具體可以參考下文進行了解、結合實際進行分類,這樣的話就可以盡可能的在預定的范圍內篩選出最為靠譜的一款水性樹脂漆了。
一、水性漆樹脂有哪些
1醇酸類
水性醇酸樹脂的成膜機理類似於傳統溶劑型醇酸樹脂的乾燥成膜,其組分中的不飽和脂肪酸通過氧化固化成膜。因此水性醇酸樹脂漆無須添加助溶劑(成膜助劑),使揮發性有機化合物(VOC)有可能減為零。目前採用的水性醇酸樹脂已非傳統單一的醇酸體系,一般為自乳化型且經過丙烯酸或聚氨酯改性。水性醇酸樹脂具有良好的滲透性(因其相對分子質量較小)、流動性和豐滿度,多用於生產色漆,特別是裝飾性漆。但由於其乾性較差,保光性不好,所以現在許多公司正在開發新型絡合催干劑,以改善其乾性並用丙烯酸或脂肪族聚氨酯乳液提高其保光性。
2.丙烯酸類
該類包括苯乙烯一丙烯酸共聚樹脂類,因其成本低,玻璃化溫度高,硬度高,這類產品多唯拆納用作打磨底漆,也用於要求不高的裝飾性塗料或臨時保護塗料。目前,在水性丙烯酸樹脂合成中常用的技術已由傳統的單相聚合法發展為多種成熟的技術,包括單相/多相(嵌段型)、自交聯型、無皂聚合物型及含一OH的雙組分丙烯酸類等。通過改變樹脂的粒子結構,為漆膜提供了更好的性能,有效降低了成膜助劑的用量;提高硬度和抗粘性;提高對底材的附著力。當然用於木器漆的普通丙烯酸乳液,仍需一定量的成膜助劑,有的還需要添加增塑劑,這樣體系的VOC很難降低。成膜助劑會影響到漆膜的耐水性,初期抗粘性也較不適合連續的工業化生產。不過從綜合性能考慮,對於工業化生產可以通過調整設備和工藝條件加以改善,但作為民用裝飾漆在較低溫度條件下施工,上述問題則較棘手。自干型丙烯酸乳液屬熱塑性樹脂,成膜溫度較高,低溫下漆膜較脆,且硬度較差,特別是初期抗粘連性差,不適合配製高品質木器漆。而採用常溫自交聯乳液,在提高乾燥速度及抗粘性等方面都有突破性的進展。目前,NeoResins公司已經開發出一種無表面活性劑的核一殼丙烯酸乳液(NeoerylXK一14),其VOC接近「0」,但卻有很好的成膜性。由於該乳液沒有使用表面活性劑,為解決制漆及施工時出現的氣泡問題提供了一種捷徑。
3水性聚氨酯類
聚氨指沒酯分散體是一類分散在水中溶脹的聚氨酯粒子,其聚氨酯的水性化主要是通過乳化劑或在聚合物的主鏈上引入親水基團,生成的聚合物主鏈上含有一NH—c—o一的多重結構單元。水性聚氨酯的粒徑大多為0.01~5m,較丙烯酸類乳液的粒徑小。水性聚氨酯分散體為單組分,且無游離的異氰酸酯,無毒,室溫成膜,可使體系中的共溶劑降為「0。」雖然其相對分子質量很高,但粘度較低,易加工,施工方便,其機械性能可與溶劑型媲美。選擇不同種類的單體及合成工藝可以製得從軟到硬不同特性的產品。如使用TMXDI(CYTEC公司)合成的聚酯/醚類水性分散體,其硬度可達3H,但仍具有很好的柔韌性,且可在低溫下成膜,用於地板漆中具有很好的抗粘性能及耐黑鞋印性。但相對成本較高,一般用於性能要求較高的塗料體系。
20世紀70年代,水性聚氨酯分散液開發成功並商品化以來,全世界已有很多公司掌握並發展了這項技術。目前,商品化的聚氨酯分散液有陰離子型、陽離子型和非離子型3類,其中陽離子型是最早開發成功的,由於其較好的滲透性,多用於皮革及紡織工業;塗料工業中大多使用陰離子型聚氨酯分散體。在聚氨酯合成過程中引入不飽和脂肪酸,再在成膜過程中加入金屬類催干劑(鈷、錳、鋅、鈣鹽),即可製得自交聯聚氨酯分散體,如Reichhold公司的SpensolF97。但這類白交聯分散體的催干劑在調漆時才能加入,很不方便,而且也不易控制。如果在聚氨酯合成中就將催干劑預先加入,可大大方便制漆工藝,而且產品的質量更加穩定。如NeoResins公司的NeRezR9403(芳香族)、NeRezR2001(脂肪族)就屬於這種類型。
另外一種提高水性聚氨酯分散體的物化性能的方法是在施工前加入諸如氮丙啶、碳化二亞胺、三聚氰胺等外交聯劑。成膜後強度增大,耐溶劑性明顯提高。但這類交聯劑只適合於工業塗裝,其主要原因是交聯劑本身的反應性較強等。如NeoResins的CrossLinkerCX一100屬於三官能團的氮丙啶,廣泛用於水性丙烯酸聚氨酯等含有一cOO基的水性體系中,可明顯提高漆膜的物化性能。雖然水性聚氨酯分散體具有很好的物化性能,但因其成本較高,限制了它的推廣和使用,所以通常用其與相對成本較低的丙烯酸乳液復配。但應指出的是,多數水性聚氨酯分散體只能與有限的丙烯酸乳液相溶,塗料配方師在使用混合技術時要慎重且反復實驗。
4聚氨酯一丙烯酸共聚樹脂
雖然水性聚氨酯分散體具有突出的耐磨性、耐化但用於木器漆還受到很多限制:首先是成本高;其次它對木材的潤濕性、對顏料的分散性較差,且芳香族聚氨酯的耐候性也不盡人意。丙烯酸樹脂有優異的耐候性,對底材和顏料良好的潤濕性,將其與聚氨酯樹脂共混(也稱為冷拼的方法),雖取得了一定進展,但效果並不十分明顯。20世紀80年代末,利用核一殼聚合技術將丙烯酸接枝到(芳香族)聚氨酯鏈上,合成了一種新型水性聚氨酯一丙烯共聚樹脂(如NeoResins公司的NeoPacEl06),其機械性能超出共混體系而接近聚氨酯樹脂,耐溶劑(如醇)性超出共混體系,耐化學性能與亞醯胺交聯劑固化的體系相當,且成本與共混體系相當。在此基礎上,NeoResins公司又開發出白交聯型聚氨酯一丙烯酸共聚樹脂NeoPouE125,其共溶劑大大降低,VOC減少,且增強了耐化學品性、耐沾污性和耐溶劑性。
5雙組分水性聚氨酯
雙組分水性聚氨酯塗料中,一組分為含羥基水性分散體,另一組分為水可分散的多異氰酸酯聚合物,兩組分混合後,含羥基的組分與異氰酸酯發生反應,同時還有水和其他羥基與異氰酸酯的競爭反應發生,但水與異氰酸酯的反應要在1~2h後才發生。施工後水及助溶劑開始揮發,使粒子緊密接觸,異氰酸酯與羥基的反應大大增強,同時由於水也參與反應,生成CO而導致大量氣泡,這種氣泡在成膜前逸出。苯乙烯有利於漆膜硬度的早期形成,而且固化乾燥加快,所以含羥基的丙烯酸乳液中常常引入苯乙烯成分(即苯乙烯一丙烯酸乳液)。另外,小粒徑的丙烯酸粒子有利於提高漆膜的硬度和外觀,而且可以使反應速度加快,從而提高羥基的利用率。與雙組分溶劑型聚氨酯塗料相比,水性雙組分聚氨酯木器漆的VOC可減少70%~90%,且其乾燥速度、光澤、物化性能和適用期都可適應工業化的要求。水性雙組分聚氨酯木器漆的一NCO/一OH比通常為1~1.5,過多的一NCO會使塗料的適用期太短。理論上,一NC0/一OH為1時,塗層性能與溶劑型雙組分體系相當,但實際操作時,考慮到有一部分一NcO要和水及其它一OH反應,需增大一NCO的比例。
水性雙組分聚氨酯中的表面活性劑、羥基組分均會導致漆膜對水的敏感性。水相本身及空氣中的水汽會在成膜過程中產生CO,導致漆膜起泡、縮孔、失光等,所以目前雙組分水性聚氨酯木器漆尚未達到商品化的水平,尚需一定的時間去改進和調整。
通過上文的舉例可以得知,實際上水性樹脂漆指代的並不是一種單一的油漆塗料,它可能是由好多個部分組合而成的,對應的分類也十分豐富,上文小編為大家推薦的就是五種不同類別的水性樹脂漆,包括醇酸類水性樹脂漆,丙烯酸類水性樹脂漆,居然之類水性樹脂漆以及,雙組份水性聚氨脂樹脂漆等等,適合的場所以及對應的適用人群也是完全不一樣的。而且在後期的安裝和維修保養的操作過程中,我們應該分類入手,對診下葯,這樣子才會達到滿意的效果,具體可以參考上文進行了解和分析。
土巴兔在線免費為大家提供「各家裝修報價、1-4家本地裝修公司、3套裝修設計方案」,還有裝修避坑攻略!點擊此鏈接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo__m_jiare&wb】,就能免費領取哦~
Ⅲ 聚氨酯的合成
聚氨酯樹脂作為一種具有高強度、抗撕裂、耐磨等特性的高分子材料,在日常生活、工農業生產、醫學等領域廣泛應用。用來制備聚醚型聚氨酯。聚合方法隨材料性質而不同。合成彈性體時先制備低分子量二元醇,再與過量芳族異氰酸酯反應,生成異氰酸酯為端基的預聚物,再同丁二醇擴鏈,得到熱塑彈性體;若用芳族二胺擴鏈並進一步交聯,得到澆鑄型彈性體。
Ⅳ 水性聚氨酯的產品技術分析
大多數水性PU主要是由自乳化法制備,以含親水性基團的PU為主要固化成分,塗膜乾燥時若親水成分不能有效的進入交聯網路中,乾燥形成的塗膜遇水易溶脹。另外其缺少像雙組分溶劑型PU塗膜所能得到的交聯密度和高相對分子質量,因而這些水分散體塗膜的耐水性、耐溶劑性、耐熱性和光澤性較差,嚴重地限制了其使用的范圍。因此,常採用提高塗膜的交聯密度來改善乳液塗膜的耐水性。常用的交聯方法有兩種:一種是在合成PU預聚物時,加入官能度大於2的多羥基化合物,直接生成交聯PU預聚物,將上述預聚物很好地分散在水中,並擴鏈形成大分子,最後形成乳液。
這種方法也叫前交聯法,缺點是易使預聚物黏度增大,較難分散在水中,影響乳液的穩定性。新型交聯劑和多官能團擴鏈劑的篩選與合成的研究相當活躍,已成為提高水性PU物理機械性能和耐水性能的主要途徑之一。另一種方法為外交聯法,採用帶羧的陰離子PU乳液進行交聯,交聯反應發生在PU分子的羧基上,有氮丙啶、碳化亞胺以及金屬鹽類化合物,在室溫條件下進行交聯。這類交聯劑一般在使用PU乳液時加入,因其交聯反應速率很快,短時間內產生凝膠而破乳。外交聯法可成功解決PU乳液塗膜的親水性問題,但因外加交聯劑,組成雙組分塗飾劑給施工帶來不便,此方法使用較少。 國內外對水性聚氨酯的研究都聚焦在對其改性使其功能化,通過改性增加材料的耐水性、耐溶劑性等性能指標。改性主要通過物理和化學兩種手段,通過接枝、嵌段、內、外交聯其它聚合物材料,共混或形成互穿聚合物網路等方法進行改性。常用的改性有以下幾種:
1 丙烯酸酯改性聚丙烯酸酯類產品優點在於耐候、耐水、耐溶劑、保光性比聚氨酯樹脂突出,在物理機械性能、彈性及粘接性能等方面又遜色於聚氨酯樹脂。因此兩者具有很好的互補性。將丙烯酸酯用於水性聚氨酯乳液的改性,是聚氨酯的發展趨勢之一。較為流行的有共混交聯反應法、乳液共聚法和復合乳液聚合法。
復合乳液聚合法有兩種工藝:
⑴互穿聚合網路(Interpentrating Polymer Network)。體系中至少有一組分為交聯結構,在分子水平上發生作用,如以丙烯酸酯單體作為合成聚氨酯預聚體的有機溶劑,然後再在聚氨酯乳液中進行聚合即製得丙烯酸酯改性聚氨酯的互穿網路型乳液。
⑵在水性聚氨酯乳液中加入丙烯酸酯不飽和單體進行自由基聚合, 形成所謂核-殼型丙烯酸酯改性水性聚氨酯的復合乳液。陳義芳採用丙烯酸酯單體作為聚氨酯溶劑製得IPN 結構的丙烯酸酯改性的聚氨酯乳液,研究表明其塗膜具有良好的耐水性及耐污染性。楊建文等將具有羥基側基的丙烯酸樹脂與含有殘留異氰酸酯基的聚氨酯丙烯酸酯進行接枝反應,經胺中和後,用水分散形成自乳化水性體系。研究表明當接枝樹脂中聚氨酯含量在30%~50%時,光固化塗層具有較好的硬度、耐溶劑性和耐水性。
2 有機硅改性有機硅化合物屬於半有機、半無機結構的高分子化合物具有耐熱、耐水性、耐候性及透氣性,其中兩個最顯著的特點是耐氧化性和低表面能, 有機硅聚合物還能賦予塗層傑出的柔順性和爽滑絲綢感;因表面能差異而存在微相分離的Si-O-Si 分子鏈會遷移到膜的表面提高塗膜的綜合性能。
對含有氨基的有機硅改性主要有兩種方法:
⑴在合成預聚體的過程中將含有氨基的有機硅引入聚氨酯鏈段中,由於氨基突出的反應活性以及有機硅與聚氨酯溶解度的差異, 所以聚合反應都需在溶劑下進行,這樣不僅溶劑抽提困難,還會造成環境污染,使它們的應用受到限制。
⑵在預聚體乳化的過程中擴鏈引入含有氨基的有機硅。研究表明,硅氧烷在膠膜表面富集,對聚氨酯材料有明顯的表面改性作用,且膠膜耐水性提高。卿寧等用有機硅化合物對水性聚氨酯進行改性,通過紅外和核磁等手段證明有機硅鏈段成功接在水性聚氨酯鏈段上;有機硅化合物用量增大,乳膠膜吸水率降低,表面接觸角增大,使膜的耐水性、穩定性、柔韌性、耐老化性能得到了顯著提高。
3 環氧樹脂改性環氧樹脂結構中含有羥基,該化合物具有粘結能力強,模量和強度高和熱穩定性好等特性。與水性聚氨酯可直接發生合成反應。環氧樹脂改性可以改善聚氨酯的耐水、耐溶劑、耐熱蠕變性及抗張強度,同時可以增加樹脂對基材的剝離強度。在改性反應中將支化點引入聚氨酯主鏈,使得主鏈部分形成網狀結構,該反應中既有環氧基和羥基參與反應,也存在氨基甲酸酯與環氧基的開環反應。改性聚氨酯乳液外觀隨著環氧樹脂環氧值降低,從半透明變化到不透明,改性聚氨酯乳液的薄膜硬度和拉伸強度增大,貯存穩定性和斷裂伸長率下降,乳膠膜耐水性增強。因為環氧值降低,分子量增大,羧基含量增大,導致水性聚氨酯的交聯結構和水性聚氨酯分子鏈上剛性苯環的含量增大, 乳膠膜的硬度、拉伸強度和耐水性得到提高,同時降低了乳膠膜的彈性和斷裂伸長率。環氧樹脂分子量增大後,導致質量增大,在同等情況下聚氨酯的親水性、水性聚氨酯乳液的透明度和貯存穩定性都降低。郭俊傑等合成了用於粘結復合薄膜的環氧樹脂改性水性聚氨酯膠粘劑,改性後的膠粘劑對多種復合薄膜都表現出較強的粘結性能,剝離強度進一步提高,外觀、貯存穩定性良好。且固體質量分數下降30%後仍然具有較強的粘結性能。
4 交聯改性交聯改性是將線形的聚氨酯大分子通過化學鍵的形式將其接合在一起,製得具有網狀結構的聚氨酯樹脂。經過交聯改性後的水性聚氨酯塗膜具有良好的耐水性、耐溶劑及力學性能。成熟的交聯改性技術製得的水性聚氨酯在很多性能上達到甚至超過溶劑型聚氨酯樹脂。交聯改性根據交聯方法的不同可分為內交聯法和外交聯法。內交聯法製得的聚氨酯乳液是單組分體系,外交聯法製得的聚氨酯乳液雙組分體系。在內交聯法反應體系裡面,內交聯劑乳液體系中的其它組分與內交聯劑能共存且保持穩定。交聯時不論採用哪種交聯方式,都要嚴格控制交聯劑的用量。雖然隨著交聯劑用量的增加,膜的拉伸強度、耐水性、耐溶劑性均增大,但是用量過大,會使膜的伸長率下降太多,同時會使乳液顆粒粒徑變大,成膜時融合性差,反而使膜的強度下降。
5 納米改性納米材料是指組成相或晶粒結構中至少有一維的尺寸在100 nm 以下的材料。由於納米材料與高聚物分子間的界面面積非常大,加之納米材料的上述相關性質, 二者界面存在很大的相互作用,具有很好的粘結性能,較好的消除了無機材料與有機聚合物間的熱膨脹系數不匹配的現象,使二者能夠較容易的結合在一起而成為具有優異性能的復合材料,如:強大的表面結合能;與聚合物復合後所具有的強粘結性;改善流動性,提高表面硬度和耐磨性。
6 其他改性方法利用天然高分子(如木質素、澱粉、樹皮等)以及脂肪族聚酯來改性或合成可生物降解聚氨酯,利用氯丙樹脂改性合成聚氨酯等以及三元復合體系,製得的新型聚氨酯材料具有高應力、高硬度和低應變的性能,其物理機械性能優於聚醚三元醇作羥基組分合成的聚氨酯材料。
Ⅳ 聚氨酯的合成
聚氨酯主要是由聚乙二醇(PEG)Mn=2000g/mol;二異氰酸酯甲苯(TDI);1,4-丁二醇(BDO);二丁專基錫二月桂酸酯(DBTDL)所合成。屬
但是按其所製得產品的物理形態可分為彈性體、泡沫、塗料、粘結劑等類。
主要合成工藝有:自乳化法和外乳化法、預聚體法、丙酮法、熔融分散法、二元胺直接擴鏈與酮亞胺—酮連氮法。
Ⅵ 水性聚氨酯灌漿 配方
1.聚氨酯灌漿材料概況 聚氨酯灌漿材料是由聚氨酯預聚體與添加劑(溶劑、催化劑、緩凝劑、表面活性劑、增塑劑等)組成的化學漿液。一般是單液型。其主要成分是過量二異氰酸酯(或多異氰酸酯)與聚醚多元醇反應而製得的端異氰酸酯基(NCO)預聚體。也可以是雙液型,即由預聚體與固化劑(及促進劑)組成。 在灌漿過程中,把聚氨酯灌漿材料注入縫隙或疏鬆多孔性地基中時,這種預聚體的端NCO基與縫隙表面或碎基材中的水分接觸,發生擴鏈交聯反應,最終在混凝土縫隙中或基材顆粒的孔隙間形成有一定強度的凝膠狀固結體。聚氨酯固化物中含有大量的氨基甲酸酯基、脲基、醚鍵等極性基團,與混凝土縫隙表面以及土壤、礦物顆粒有強的粘接力,從而形成整體結構,起到了堵水和提高地基強度等作用。並且,在相對封閉的灌漿體系中,反應放出的二氧化碳氣體會產生很大的內壓力,推動漿液向疏鬆地層的孔隙、裂縫深入擴散,使多孔性結構或裂縫完全被漿液所填充,增強了堵水效果。漿液膨脹受到限制越大,所形成的固結體越緊密,抗滲能力及壓縮強度越高。 聚氨酯化學灌漿材料可分為水溶性(親水性)和油溶性(疏水性)2大類。這2類聚氨酯預聚體材料雖然都能用於防水、堵漏、地基加固,但2者也有差別。 通常,油溶性聚氨酯灌漿材料的固結體強度大,抗滲性好,多用於加固地基、防水堵漏兼備的工程;水溶性聚氨酯灌漿材料親水性好,包水量大,適用於潮濕裂縫的灌漿堵漏、動水地層的堵涌水、潮濕土質表面層的防護等。根據施工需要,也可把水溶性聚氨酯灌漿材料與油溶性聚氨酯灌漿材料按合適的比例混合後進行灌漿施工。 2 水溶性聚氨酯灌漿材料 水溶性聚氨酯漿材的突出特點之一是易分散於水中,遇水自乳化,立即進行聚合反應。固結物具有良好的彈性、抗滲性、耐低溫性,對岩石、混凝土、土粒等具有良好的粘接性能,灌漿後對水質無污染;特點之二是固結物具有彈性止水和膨脹止水的雙重作用。 水溶性聚氨酯灌漿與水玻璃、丙凝等灌漿相比,主要有以下幾個優點:a.可在大量水存在的條件下與水反應,固化後形成不透水的固結層,可以封堵涌水;b.固化反應的同時產生二氧化碳氣體,封閉的灌漿體系中初期的氣體壓力把低黏度漿液進一步壓進細小裂縫深處以及疏鬆地層的孔隙中,使多孔性結構或地層充填密實,後期的氣泡包封在膠體中,形成體積龐大的彈性固化物;c.在含大量水的地層處理中,可選擇快速固化的漿液,它不會被水沖稀而流失;形成的彈性固結體,能充分適應裂縫和地基的變形;d.漿液黏度可調,可灌1mm左右的細縫;固化速度調節方便;e.施工設備簡單,投資費用少。 水溶性聚氨酯灌漿材料一般是單組分低黏度液體,其主要成分是端NCO基預聚體,它是由特種親水性聚醚多元醇與多異氰酸酯製成的預聚體為主劑,加入助劑(稀釋劑、增塑劑和其他助劑)配製而成的。為使聚氨酯漿材有良好的水分散性,一般選擇EO含量較高的EO/PO共聚醚。通過調節具有不同EO/PO比例的親水性聚醚,或EO聚醚與普通PPG型聚醚的混合比例,可以製得不同親水程度的灌漿材料。聚氨酯漿液的固化時間通過加入促凝劑(催化劑)或緩凝劑,可在幾秒鍾到十幾分鍾范圍內調節。國外某公司的水溶性聚氨酯漿材性能為:固含量77%~83%,黏度(21℃)600~1200mPas,相對密度1.04,固化物拉伸強度0.13~0.3MPa,伸長率150%~300%。3.油溶性聚氨酯化學灌漿材料 油溶性聚氨酯灌漿材料國內俗稱"氰凝",是由低分子質量聚氧化丙烯多元醇(如N303、N204)與多異氰酸酯(TDI、MDI、PAPI)反應製得的預聚體為基料,以有機溶劑為稀釋劑制備的溶劑型單組分或雙組分漿材。 一種氰凝漿液參考配方為:聚氧化丙烯三醇2TDI反應加成物(NCO28%)100份,溶劑10~20份,水溶性硅油1份,催化劑0.3~3份,增塑劑0~10份。漿液黏度一般在幾十到幾千mPas范圍。這類灌漿材料固結後形成堅固的彈性體,體積可膨脹數倍,氰凝的NCO含量高,所以固結物彈性差。 油溶性聚氨酯灌漿材料的性能值范圍也較大。氰凝還具有耐化學介質性能和耐高低溫性能,因此它不僅可用作堵漏,而且還可用於補強加固,還可用作塗層劑,具有較好的防滲防腐蝕性能. 國外一種聚氨酯灌漿材料的主要技術指標為:外觀淺琥珀色液體,固含量82%~88%,黏度(21℃)300~600mPas,相對密度1.15,拉伸強度0.55~0.62MPa,伸長率700%~800%,收縮率18%. 4 改性聚氨酯灌漿材料 為了獲得較低的黏度、較高的固結體強度,結合幾種聚合物的優點,灌漿材料也可採用混合體系。例如南京水科院研製的一種丙烯酸酯改性氰凝灌漿材料MU,是由丙烯酸酯、特種聚氨酯預聚體、復合固化劑等組成的一種低黏度液,採用丙烯酸酯作活性稀釋劑,漿液黏度很低(可達3mPas),改善聚氨酯漿料的可灌注性。漿料中不含溶劑,使用時無需加丙酮、二甲苯等溶劑,可防止因溶劑揮發而收縮。適用期可在1~6h調節,便於施工操作。其固結體的壓縮強度可高達60MPa,干縫灌漿粘接強度可達2.2~2.5MPa,濕縫可達1.5MPa。它兼有甲凝漿液的低黏度、環氧樹脂的高強度的特點。另外,環氧樹脂改性聚氨酯灌漿材料,可提高聚氨酯的強度。 5 聚氨酯灌漿材料的施工技術 用於裂縫修補的灌漿材料的黏度一般較低(最高300mPas),黏度越低,越利於微細縫隙的灌注。裂縫很小時,可用丙酮稀釋。但溶劑用量增加,固結物強度降低,所以需控制溶劑用量與可灌性的平衡。乾燥裂縫可加入適量的水或固化劑增進固化。 聚氨酯灌漿材料用於細裂縫的灌漿,特別是含水縫隙的施工,一般採用壓力灌漿技術。在防水堵漏施工中,可在漏水部位鑿毛、清理清潔,用快速固化型水泥預埋注漿管,用手撳注漿泵,將聚氨酯灌漿材料從注漿管中注入混凝土裂縫,直到壓不進(壓力約0.3MPa),隨即關閉閥門,每次注漿完畢,將注漿泵的料筒用丙酮、二甲苯或清水清洗干凈。 化學灌漿的技術性較強,需根據漏水點和裂縫大小、分布等情況安排灌漿孔、灌漿盒等位置,插入灌漿管,用快速水泥封堵,進行壓力灌漿.
Ⅶ 水性聚氨酯怎樣做到先親水再疏水的
1 概述
聚氨酯即由多異氰酸酯與多元醇反應而形成的以氨基甲酸酯重復的結構單元。聚氨酯樹脂具有軟硬度可調、耐磨、耐溶劑、耐低溫及與大多數材料有粘接性等特點,近年來發展相當迅速,而水性聚氨酯則兼具無毒、不易燃燒、對環境友好等優點,因而越來越受到人們的重視,開發並應用水性聚氨酯將成為今後聚氨酯工業的發展趨勢[1]。
本課題研究的是陰離子型水分散聚氨酯塗層,經該塗層處理的織物具有防水透濕的功能。
2 原理
由於聚氨酯樹脂疏水性很強,既不溶於水中,也很難分散於水中,而異氰酸酯基團與水的反應活性很大,所以直接制備水性聚氨酯很難實現。因此,要製取水性聚氨酯首先要在聚氨酯大分子鏈上引入親水基團(如羧酸基、磺酸基團),然後再將其分散於水中,製得水分散聚氨酯[2]。為了提高水性聚氨酯塗層的性能,可在上述體系中引入封閉劑,即封閉劑與預聚體中的部分異氰酸基(-NCO)反應生成氨酯鍵,而氨酯鍵在加熱的條件下又裂解生成異氰酸酯(解封閉),再與織物上的羥基反應生成聚氨酯[3]。這樣就增加了聚氨酯塗層與織物的結合力。
3 試驗
3.1 主要原材料
原料名稱與規格 生產單位
異氰酸酯 工業級 大連化工廠或進口
聚醚多元醇 工業級 天津化工三廠
擴鏈劑 化學純 宜興市第二化學試劑廠
親水劑 化學純 上海試劑一廠
中和劑 化學純 上海試劑一廠
丙酮 工業級 高橋化工二廠
3.2 工藝流程
3.3 制備方法
在不銹鋼反應釜中加入已經脫水處理的聚醚多元醇(異氰酸酯遇水反應生成脲,因此聚醚在使用前要作脫水處理),在攪拌下加入異氰酸酯和催化劑,升溫至一定溫度,保溫1個小時,製得預聚體。將預聚體用丙酮稀釋,加入擴鏈劑進行擴鏈並使聚氨酯大分子鏈上引入親水基團,中和後使其成為離子體,最後加水乳化,脫去溶劑後製得水性聚氨酯塗層。
4 產品性能
產品性能見表1。
表1 鐵錨111、112、113水分散聚氨酯塗層性能
5 應用
水性聚氨酯可廣泛用作尼絲紡、真絲、棉、帆布、滌棉等織物的塗層。經塗層整理後的織物具有防水透濕、表面柔軟、富有彈性的功能。該塗料適用於做滑雪衫、風雨衣、茄克衫等服裝面料及帳篷、防油布等工業用布,也可用於混紡織物仿毛整理,是一種高檔的整理劑。
6 結果與討論
6.1 -NCO/-OH值的確定
芳香族異氰酸酯的苯環結構與擴鏈劑組成了聚氨酯大分子鏈中的硬段,使材料具有剛性和強度。大分子量的聚醚多元醇具有柔軟性,有很低的玻璃化溫度,構成了聚氨酯大分子鏈中的軟段,使材料具有柔軟性。不同的異氰酸酯與羥基比可得到不同性能的材料,如-NCO/-OH值減小,柔軟性增加;-NCO/-OH值增大,剛性增大,提高材料的剛性和牢度。此外,透濕性與-NCO/-OH值有關,-NCO含量增多,擴鏈劑中的親水基團量增大,透濕率增大;但其過多,成膜後會手感發粘。當-NCO/-OH=1/2時,分子鏈兩端以-OH結尾,聚合度最小。當-NCO/-OH=2,分子鏈兩端以-NCO結尾,同樣聚合度也是最小。當-NCO/-OH=1時,無限度聚合,反應難於控制。-NCO/-OH對塗層質量的影響見表2。
表2 -NCO/-OH對塗層質量的影響
由上表可知,-NCO/-OH比值越接近於1,分子量越大,體現在塗層的性能上是耐水壓越高,但粘度增大,不利於反應的控制。
因此,選擇合適的-NCO/-OH值,可得到既富有彈性、手感柔軟、透濕性又好的水性PU塗層。
由實驗得出,水性聚氨酯塗層-NCO/-OH值以控制在1.20~1.80之間為好。
6.2 -NCO%含量的控制
我們在實際生產中,採用了中間控制預聚體中異氰酸根百分含量(-NCO%,m/m)的方法,以穩定生產工藝。
-NCO%含量的中間控制,在整個反應過程中顯得尤為重要,它不僅關繫到整個反應能否順利進行,而且還直接影響塗層的質量。
-NCO%含量增加,膜的拉伸強度增加,延伸率下降。從結構上分析,-NCO%含量增高,硬段(異氰酸酯)增加,軟段減少,因此膜的拉伸強度增加,同時硬脆性增加,延伸率下降(見表3)。
表3 -NCO%含量對反應過程的影響
因此,-NCO%含量(m/m)一般宜控制在2.00%~2.80%。
6.3 溫度對預聚反應的影響
由於催化劑的加入,大大地增加了異氰酸酯的反應活性。如果溫度過高,將有較多的副產物產生,導致凝聚,同時過高的反應溫度會導致異氰酸酯自聚。溫度過低,則反應不完全。表4為在實驗中測得的在一定配比、一定反應時間、不同溫度下-NCO%的含量,從而反映出反應的完全程度。
表4 反應溫度對預聚體的影響
由表4可見,反應溫度低於45℃時,反應不完全。溫度高於60℃,則反應難於控制,這主要是由於溫度過高時,預聚反應發生支鏈反應和異氰酸酯產生自聚。因此溫度應控制在50~60℃。
6.4 塗布工藝對耐水壓的影響
(1)不同基布對耐水壓的影響見表5。
表5 基布對耐水壓的影響
由此可見,織物的疏密程度直接影響耐水壓,密度高耐水壓高,密度低耐水壓低。
(2)上膠量對耐水壓的影響見表6。
表6 上膠量對耐水壓的影響
註:基布為尼絲紡(S2438)T=190根/厘米2
由表6可得出,耐水壓與上膠量有關,上膠量多耐水壓高,上膠量少耐水壓低。
7 結論
(1)-NCO/-OH(-NCO%)大小與塗層的性能有關,選擇范圍為:
-NCO/-OH=1.20~1.80
(2)-NCO%含量控制可作為在生產過程中中間控制的依據。
(3)溫度對預聚反應的影響較大,溫度過高產生支鏈反應,溫度過低反應不完全。溫度宜控制在50~60℃。
(4)塗布工藝影響塗層材料的耐水壓。
同一基布:上膠量大,耐水壓高;上膠量小,耐水壓低。
不同基布、相同上膠量:基布疏,耐水壓低;基布密,耐水壓高。
Ⅷ 水性聚氨酯的基本概念
聚氨酯樹脂的水性化已逐步取代溶劑型,成為聚氨酯工業發展的重要方向。水性聚氨酯可廣泛應用於塗料、膠粘劑、織物塗層與整理劑、皮革塗飾劑、紙張表面處理劑和纖維表面處理劑。
本項目經過國家自然科學基金資助研究及十多年的研發,已具有成熟的陰離子型自乳化聚氨酯乳液和陽離子型自乳化聚氨酯乳液合成改性的技術,可提供 1噸/天生產能力的水性聚氨酯生產的整套工藝和設備技術。本項目可根據用戶的需求,對水性聚氨酯進行配方設計與調整以滿足實際使用的要求,並可結合納米雜化技術制備高性能的水性聚氨酯。 按粒徑和外觀分可分為聚氨酯水溶液(粒徑<0.001微米,外觀透明)、聚氨酯水分散體(粒徑:0.001-0.1微米,外觀半透明)、聚氨酯乳液(粒徑>0.1微米,外觀白濁);
依親水性基團的電荷性質,水性聚氨酯可分為陰離子型水性聚氨酯、陽離子型水性聚氨酯和非離子型水性聚氨酯。其中陰離子型最為重要,分為羧酸型和磺酸型兩大類。
依合成單體不同水性聚氨酯可分為聚醚型、聚酯型和聚醚、聚酯混合型。依照選用的二異氰酸酯的不同,水性聚氨酯又可分為芳香族和脂肪族,或具體分為TDI型、HDI型等等。
依產品包裝形式水性聚氨酯可分為單組分水性聚氨酯和雙組分水性聚氨酯。
水性聚氨酯整個合成過程可分為兩個階段。第一階段為預逐步聚合,即由低聚物二醇、擴鏈劑、水性單體、二異氰酸酯通過溶液逐步聚合生成相對分子質量為l000量級的水性聚氨酯預聚體;第二階段為中和後預聚體在水中的分散。
水性PU因其具有環保作用,雖然歷史不長,但發展非常迅速。
水性聚氨酯包括聚氨酯水溶液、水分散液和水乳液三種,為二元膠態體系,聚氨酯(PU)粒子分散於連續的水相中,也有人稱水性PU或水基PU。 由於聚氨酯原料和配方的多樣性,水性聚氨酯開發40年左右的時間,人們已研究出許多種制備方法和制備配方。水性聚氨酯品種繁多,可以按多種方法分類。
⒈以外觀分
水性聚氨酯可分為聚氨酯乳液、聚氨酯分散液、聚氨酯水溶液。實際應用最多的是聚氨酯乳液及分散液,本書中統稱為水性聚氨酯或聚氨酯乳液。
⒉按使用形式分
水性聚氨酯膠粘劑按使用形式可分為單組分及雙組分兩類。可直接使用,或無需交聯劑即可得到所需使用性能的水性聚氨酯稱為單組分水性聚氨酯膠粘劑。若單獨使用不能獲得所需的性能,必須添加交聯劑;或者一般單組分水性聚氨酯添加交聯劑後能提高粘接性能,在這些情況中,水性聚氨酯主劑和交聯劑二者就組成雙組分體系。
⒊以親水性基團的性質分
根據聚氨酯分子側鏈或主鏈上是否含有離子基團,即是否屬離子鍵聚合物(離聚物),水性聚氨酯可分為陰離子型、陽離子型、非離子型。含陰、陽離子的水性聚氨酯又稱為離聚物型水性聚氨酯。
⑴陰離子型水性聚氨酯又可細分為磺酸型、羧酸型,以側鏈含離子基團的居多。大多數水性聚氨酯以含羧基擴鏈劑或含磺酸鹽擴鏈劑引人羧基離子及磺酸離子。
⑵陽離子型水性聚氨酯一般是指主鏈或側鏈上含有銨離子(一般為季銨離子)或鋶離子的水性聚氨酯,絕大多數情況是季銨陽離子。而主鏈含銨離子的水性聚氨酯的制備一般以採用含叔胺基團擴鏈劑為主,叔胺以及仲胺經酸或烷基化試劑的作用,形成親水的銨離子。還可通過含氨基的聚氨酯與環氧氯丙烷及酸反應而形成銨離子。
⑶非離子型水性聚氨酯,即分子中不含離子基團的水性聚氨酯。非離子型水性聚氨酯的制備方法有:①普通聚氨酯預聚體或聚氨酯有機溶液在乳化劑存在下進行高剪切力強制乳化;②製成分子中含有非離子型親水性鏈段或親水性基團,親水性鏈段一般是中低分子量聚氧化乙烯,親水性基團一般是羥甲基。⑷混合型 聚氨酯樹脂分子結構中同時具有離於型及非離子型親水基團或鏈段。
⒋以聚氨酯原料分
按主要低聚物多元醇類型可分為聚醚型、聚酯型及聚烯烴型等,分別指採用聚醚多元醇、聚酯多元醇、聚丁二烯二醇等作為低聚物多元醇而製成的水性聚氨酯。還有聚醚-聚酯、聚醚—聚丁二烯等混合 以聚氨酯的異氰酸酯原料分,可分為芳香族異氰酸酯型、脂肪族異氰酸酯型、脂環族異氰酸酯型。按具體原料還可細分,如TDI型、HDI型,等等。
⒌按聚氨酯樹脂的整體結構劃分
⑴按原料及結構可分為聚氨酯乳液、乙烯基聚氨酯乳液、多異氰酸酯乳液、封閉型聚氨酯乳液。聚氨酯乳液是指以低聚物多元醇、擴鏈劑、二異氰酸酯為原料,以通常方法制備的聚氨酯分散於水所形成的乳液。乙烯基聚氨酯乳液一般指在乙烯基樹脂水溶液或乳液中加入異氰酸酯而形成的乳液,是雙組分體系。多異氰酸酯乳液是指含親水基團多異氰酸酯乳化於水,或多異氰酸酯的有機溶液分散於含乳化劑的水而形成的乳液,也是雙組分即用即配體系,適用期較短。封閉型異氰酸酯乳液是指分子中含有被封閉的異氰酸酯基團的聚氨酯乳液,是一種穩定的單組分體系。在制備聚氨酯乳液時司引入封閉異氰酸酯基團,也可製成封閉異氰酸酯基團含量高的乳液,用於和其他乳液體系共混,起交聯作用,水分揮發後加熱交聯。
⑵聚氨酯乳液還可細分為聚氨酯乳液和聚氨酯-脲乳液,後者是指由聚氨酯預聚體在水中分散同時通過水或二胺擴鏈而形成的乳液,實質上生成了聚氨酯—脲,但由於由預聚體分散法制備較為普遍,習慣上稱為聚氨酯乳液者居多。
⑶按分子結構可分為線性分子聚氨酯乳液(熱塑性)和交聯型聚氨酯乳液(熱固性)。交聯型又可細分為內交聯和外交聯型。內交聯型聚氨酯乳液是在合成時形成一定程度的支化交聯分子結構,或引入可熱反應性基團,它是穩定的單組分體系。外交聯是在乳液中添加能與聚氨酯分子鏈中基團起反應的交聯劑,是雙組分體系。
⒍根據聚氨酯的水性化方法劃分
根據制備方法有多種分類。舉例如下。
⑴自乳化法和外乳化法
自乳化法又稱內乳化法,是指聚氨酯鏈段中含有親水性成分,因而無需乳化劑即可形成穩定乳液的方法。
外乳化法又稱為強制乳化法,若分子鏈中僅含少量不足以自乳化的親水性鏈段或基團,或完全不含親水性成分,此時必須添加乳化劑,才能得到乳液。
比較而言,外乳化法制備的乳液中,由於親水性小分子乳化劑的殘留,影響固化後聚氨酯膠膜的性能,而自乳化法消除了此弊病。水性聚氨酯的制備以離子型自乳化法為主。
⑵預聚體法、丙酮法、熔融分散法
自乳化法制水性聚氨酯最常用的方法有預聚體分散法和丙酮法。預聚體法即在預聚體中導人親水成分,得到一定粘度范圍的預聚體,在水中乳化同時進行鏈增長,制備穩定的水性聚氨酯(水性聚氨酯-脲)。
丙酮法屬於溶液法,是以有機溶劑稀釋或溶解聚氨酯(或預聚體),再進行乳化的方法。在溶劑存在下,預聚體與親水性擴鏈劑進行擴鏈反應,生成較高分子量的聚氨酯,反應過程可根據需要加人溶劑以降低聚氨酯溶液粘度,使之易於攪拌,然後加水進行分散,形成乳液,最後蒸去溶劑。溶劑以丙酮、甲乙酮居多,故稱為丙酮法。此法的優點是丙酮、甲乙酮的沸點低、與水互容、易於回收處理,整個體系均勻,操作方便,由於降低粘度同時也降低了濃度,有利於在乳化之前製得高分子量的預聚體或聚氨酯樹脂,所得乳液
的膜性能比單純預聚體法的好。而預聚體法由於粘度的限制,為了便於剪切分散,預聚體的分子量不能太高,可能會影響水性聚氨酯性能,例如粘度高則乳化困難,粒徑大,乳液穩定性差;預聚體分子量小則NCO基團含量高,乳化後形成的脲鍵多,膠膜硬,缺乏柔軟性。
丙酮法和預聚體法的主要區別是,在丙酮法中,聚氨酯先預聚成分子量較大的預聚體,由於分子量大的預聚體粘度大,必須稀釋降低粘度;而預聚體法中根據需要可加或不加少量丙酮等溶劑。這兩者的概念有所交*,有的乳化方法既屬丙酮法又屬預聚體法。熔融分散法又稱熔體分散法、預聚體分散甲醛擴鏈法。預先合成含叔胺基團(或離子基團)的端NCO基團預聚體,再與尿素(或氨水)在本體體系反應,形成聚氨酯雙縮二脲(或含離子基團的端脲基)低聚物,並加入氯代醯胺在高溫熔融狀態繼續反應,繼續季胺化。
聚氨酯雙縮二脲離聚物具有足夠的親水性,加酸的稀水溶液形成均相溶液,再與甲醛水溶液反應進行羥甲基化,含羥甲基的聚氨酯嚴縮二脲能在50—130℃用無限水稀釋,形成穩定乳液。當降低體系的pu值時,能在分散相中進行縮聚反應,形成高分子量聚氨酯。含離子基團的端NCO預聚體形成端脲基或縮二脲基聚氨酯低聚物後,則直接在熔融狀態乳化於水,再加甲醛水溶液進行羥甲基化及擴鏈反應。
⑶二元胺直接擴鏈與酮亞胺—酮連氮法
在預聚體分散法中,若採用溶於水的二元伯胺擴鏈劑擴鏈,由於一NCO與一NH2的反應速度快,不易得到微細而均勻的乳液,可採用酮亞胺或酮連氮法解決此問題。酮亞胺-酮連氮法是指預聚體與被酮保護了的二元胺(酮亞胺體系)或肼(酮連氮體系)混合後,再用水分散,分散過程中,酮亞胺、酮連氮以一定的速率水解,釋放出遊離的二元胺或肼與分散的聚合物微粒反應,得到的水性聚氨酯—脲具有良好的性能。 水性聚氨酯塗料是以水性聚氨酯樹脂為基料並以水為分散介質的一類塗料。通過交聯改性的水性聚氨酯塗料具有良好的貯存穩定性、塗膜機械性能、耐水性、耐溶劑性及耐老化性能,而且與傳統的溶劑型聚氨酯塗料的性能相近,是水性聚氨酯塗料的一個重要發展方向。品種主要包括熱固型聚氨酯塗料和含封閉異氰酸酯的水性聚氨酯塗料等幾個品種。
⑴熱固型聚氨酯塗料。交聯的聚氨酯能增加其耐溶劑性及水解穩定性。聚氨酯水分散體在應用時與少量外加交聯劑混合組成的體系叫熱固型水性聚氨酯塗料,也叫做外交聯水性聚氨酯塗料。使用的交聯劑主要有多官能團的氮丙啶、氨基樹脂(三聚氯胺樹脂)或專用的環氧樹脂等。採用氮丙啶,一般用量為聚氨酯質量的3%-5%,就有很好的交聯薄膜生成;
⑵含封閉異氨酸酯的水性聚氨酯塗料。該塗料的成膜原料由多異氰酸酯組分和含羥基組分兩部分組成。多異氰酸酯被苯酚或其它含單官能團的活潑氫原子的化合物所封閉,因此兩部分可以合裝而不反應,成為單組分塗料,並具有良好的貯藏穩定性。多異氰酸酯組分與苯酚、丙二酸酯、己內醯胺等封閉劑反應生成氨酯鍵,而氨酯鍵在加熱的情況下又裂解生成異氰酸酯,再與羥基組分反應生成聚氨酯。因此封閉型聚氨酯水性塗料的成膜就是利用不同結構的氨酯鍵的熱穩定性的差異,以較穩定的氨酯鍵來取代較弱的氨酯鍵。封閉劑的種類很多,但是芳香族異氰酸酯水性聚氨酯塗料主要用苯酚或甲酚。脂肪族水性聚氨酯漆則不用酚類,以免變色,可採用乳酸乙酯、己內醯胺、丙二酸二乙酯、乙醯丙酮、乙醯乙酸乙酯等;
⑶室溫固化水性聚氨酯塗料。對於某些熱敏基材和大型製件,不能採用加熱的方式交聯,必須採用室溫交聯的水性聚氨酯塗料。美國空氣產品和化學公司報道,通過與水分散性多異氰酸酯結合,可以改進水性端羥基聚氨酯預聚物/丙烯酸酯混合物,尤其是羥基丙烯酸酯混合物的性能。此類水性聚氨酯塗料,採用特製的多異氰酸酯交聯劑,即含(-NCO)端基的異氰酸酯預聚物,經親水處理後分散於各種含羥基聚合物中而形成的分散體,與多種含羥基聚合物水分散體組成能在室溫固化的聚氨酯水性塗料;
⑷光固化水性聚氨酯塗料。光固化水性聚氨酯塗料採用電子束輻射、紫外光輻射的高強度輻射引發低活性的聚物體系產生交聯固化,以紫外光固化形式為主。先用不飽和聚酯多元醇制備預聚物,然後用常規的方法引進粒子基團,經親水處理後製得在主鏈上帶雙鍵的聚氨酯水分散體,再與易溶的高活性三丙烯酸烷氧基酯單體、光敏劑等助劑混合得到光固化水性聚氨酯塗料;
⑸第三代水性聚氨酯塗料(PUA)。聚氨酯(PU)乳液和聚丙烯酸(PA)乳液同其溶劑型產品相比,具有價廉,安全,不燃燒,無毒,不污染環境等優點。純PA乳液存在耐磨性、耐水性和耐化學品性差的缺陷,單一的PU乳液也存在一些不足,如穩定性、白增稠性和膜的保光性差,固含量高,應用范圍不廣等。PU和PA在性質上具有互補作用。PUA復合乳液兼備了二者的優點,具有耐磨、耐腐蝕和光亮,柔軟有彈性,耐水性和機械力學性能好,耐候性佳等特性,因此被譽為第三代水性聚氨酯,成為當今塗料的一個發展趨勢。應用范圍
水性PU分散體已在通用溶劑型PU所覆蓋的領域大量使用,成功地應用於輕紡、皮革加工、塗料、木材加工、建材、造紙和膠粘劑等行業。
皮革工業加工中PU乳液塗飾後的皮革,具有光澤度高、手感好、耐磨耗、不易斷裂、彈性好、耐低溫性能和耐撓屈性能優良等特點,克服了丙烯酸類樹脂塗飾劑「熱粘冷脆」的缺陷。
此外,在紡織品塗層整理中有廣泛的應用。水性PU對紡織品的成膜性好、粘接強度高、能賦予織物柔軟、豐滿的手感,改善織物耐磨性、抗皺性、回彈性、通透性和耐熱性等。
水性PU比有機溶劑型PU應用成本低、無公害、易處理、粘合效果好,在膠粘劑及塗料行業有很好的發展前途。PU離子聚合物對天然和合成橡膠表面均具有很好粘接性,可用於鞋類的製造。
水性PU主要用做傢具漆、電泳漆、電沉積塗料、建築塗料、紙張處理塗料、玻璃纖維塗料等除此之外水性塗料還有一些特殊用途,如用作安全玻璃的中間塗膜,以製成不碎裂的安全玻璃,廣泛用於汽車、飛機、輪船或航天儀器。
水性分散體主要用作金屬塗料,如陽離子型電沉積塗料被廣泛用於汽車底漆,以提高車體的抗腐蝕性能。