導航:首頁 > 耗材問題 > 環氧樹脂014u

環氧樹脂014u

發布時間:2023-05-11 01:24:46

Ⅰ 環氧樹脂固化劑CYD-128,cyd-011,cyd-014u是危險品嗎

CYD-128、CYD-011、CYD-014都是巴陵石化生產的環氧樹脂即E-51、E-20、E-12環氧樹脂,都不屬於危險品

Ⅱ 環氧樹脂標准

環氧樹脂是泛指分子中含有兩個或兩個以上環氧基團的有機高分子化合物,除個別外,它們的相對分子質量都不高。

環氧樹脂的分子結構是以分子鏈中含有活潑的環氧基團為其特徵,環氧基團可以位於分子鏈的末端、中間或成環狀結構。由於分子結構中含有活潑的環氧基團,使它們可與多種類型的固化劑發生交聯反應而形成不溶、不熔的具有三向網狀結構的高聚物。

凡分子結構中含有環氧基團的高分子化合物統稱為環氧樹脂。固化後的環氧樹脂具有良好的物理化學性能,它對金屬和非金屬材料的表面具有優異的粘接強度,介電性能良好,變定收縮率小,製品尺寸穩定性好,硬度高,柔韌性較好,對鹼及大部分溶劑穩定,因而廣泛應用於國防、國民經濟各部門,作澆注、浸漬、層壓料、粘接劑、塗料等用途。[1]

中國自1958年開始對環氧樹脂進行了研究,並以很快的速度投入了工業生產,至今已在全國各地蓬勃發展,除生產普通的雙酚A-環氧氯丙烷型環氧樹脂外,尚生產各種類型的新型環氧樹脂,以滿足國防建設及國發經濟各部門的急需。

材料特點概括:固化方便,附著力強,收縮性低,化學性穩定,耐黴菌。工藝簡單,無需施加過高的壓力,具有良好的絕緣性,耐化學腐蝕,具有較好的耐油性和耐溶劑性。

貯存使用注意事項:存放在陰涼通風處; 必須與固化劑配套使用。

《2013-2018年中國環氧樹脂市場全景調查及未來發展趨勢報告》中資料顯示,環氧樹脂的生產主要集中在中、日、歐三個地區,其他還有韓國、美國、台灣地區、泰國、南非和委內瑞拉等。中國大陸的生產能力約佔世界總生產能力的60%。

盡管如此,巨大的市場潛力仍為國內企業提供了生存和發展空間。預計未來中國環氧樹脂產能還將進一步增長。未來5-10年,中國環氧樹脂行業將會進一步規范化,生產成本過高、環保不合格、產品檔次低的企業將被淘汰。同時,國內支柱產業加快發展給環氧樹脂行業帶來無限商機,如汽車領域,信息產業,能源、交通運輸、建築產業,這些發展方興未艾的支柱產業都是應用環氧樹脂的生力領域,會對環氧樹脂帶來巨大的市場需求。

Ⅲ 水性環氧的生產工藝,以及配方,注意事項

環氧樹脂具有優良的物理、機械、電絕緣性能及對各種材料的粘接性能,廣泛應用於塗料、復合材料、澆鑄料、膠粘劑、模壓材料和注射成型材料等領域¨ 。隨著工業的發展及社會的進步,人們的環保意識逐漸增強,不含揮發性有機化合物(VOC)或少含VOC、以及不含有害空氣污染物(HAP)的體系已成為新型材料的研究方向 。近年來,以水為溶劑或分散介質的水性環氧樹脂越來越受到重視。水性環氧樹脂通常是指以微粒或液滴形式分散在以水為連續相的分散介質中而配製的穩定分散體系。一般可分為水乳型環氧樹脂膠液(環氧樹脂水乳液)以及水溶性環氧樹脂膠液(環氧樹脂水溶液)兩類,既保持了溶劑型環氧樹脂的優點,還具有合理的固化時間並
有著很高的交聯度和很大的粘度可調范圍,操作性能好,施工工具可直接用水清洗,可與其它水性聚合物體系混合使用,以及價廉、無氣味、VOC含量低、不燃,儲存、運輸和使用過程中安全性高等特點 。
隨著生產技術的不斷成熟和發展,水性環氧樹脂的應用前景良好。國內外已研究和開發了很多新的品種,並將其不斷地推廣到各個相關領域 l。
1 水性環氧樹脂的制備
水性環氧樹脂制備方法主要有以下幾種:
1.1 直接乳化法
直接乳化法又稱機械法、直接法,通過球磨機、膠體磨、超聲波振盪、高速攪拌,均質機乳化等手段將環氧樹脂磨碎,在乳化劑水溶液的作用下,再通過機械攪拌將粒子分散於水中;或將環氧樹脂和乳化劑混合,加熱到適當的溫度,在激烈的攪拌下逐漸加入水而形成乳液。可採用的乳化劑有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自製活性乳化劑 】。
機械法制備水性環氧樹脂乳液的優點是工藝簡單,所需乳化劑的用量較少,但乳液中環氧樹脂分散相微粒的尺寸較大,約50/tm左右,粒子形狀不規則且粒度分布較寬,所配得的乳液穩定性差,時間一長乳液就會分層,並且乳液的成膜性能也不是很好。
1.2 相反轉法
相反轉原指多組分體系中的連續相在一定條件下相互轉化的過程,如在油/水/乳化劑體系中,當連續相由水相向油相(或從油相向水相)轉變時,在連續相轉變區,體系的界面張力最低,因而分散相的尺寸最小。通過相反轉法將高分子樹脂乳化為乳液,其分散相的平均粒徑一般為1~2 ILm。
相反轉法是一種制備高分子樹脂乳液較為有效的方法,幾乎可將所有的高分子樹脂藉助於外加乳化劑的作用並通過物理乳化的方法製得相應的乳液。用相反轉法制備水性環氧樹脂乳液的具體過程是在高速剪切作用下先將乳化劑和環氧樹脂混合均勻,隨後在一定的剪切條件下緩慢地向體系中加入蒸餾水,隨著加水量的增加,整個體系逐步由油包水向水包油轉變,形成均勻穩定的水可稀釋體系。在這一過程中,水性環氧樹脂乳液的許多性質會發生突變,如體系的粘度、導電性和表面張力等,通過測定體系乳化過程中的電導率和粘度的變化就可判斷相反轉是否完全。該乳化過程可在室溫環境下進行,對於固體環氧樹脂,則需要藉助於少量有機溶劑或進行加熱來降低環氧樹脂的本體粘度,然後再進行乳化 -8l。
有研究按一定比例將環氧樹脂和表面活性劑通過加熱及過硫酸鉀溶液催化,製得反應型環氧樹脂乳化劑溶液,大大改善了乳化劑與環氧樹脂的相容性。然後將雙酚A型環氧樹脂的乙二醇單乙醚溶液和反應型環氧樹脂乳化劑按一定比例攪拌混合均勻,滴加蒸餾水至體系的粘度突然下降,此時體系的連續相由環氧樹脂溶液相轉變為水相,發生了相反轉,繼續高速攪拌一段U?I司後加入適量蒸餾水稀釋到一定的濃度,製得水性環氧樹脂乳液 l。
1.3 自乳化法
自乳化法,又稱化學法,或化學改性法。在環氧樹脂中,環氧基的存在使其具有較好的反應活性,因為環氧環為三元環,張力大,C、0電負性的不同使該三元環具有極性,容易受到親核試劑或親電試劑進攻而發生開環反應;分子骨架上所懸掛的羥基雖然具有一定反應活性,但由於空間位阻,其反應程度較差 。。。因此可在環氧樹脂分子骨架中引入一定量的強親水性基團,如磺酸基、羧酸基等酸性基團;胺基等鹼性基團,聚醚等非離子基團。這些親水性基團能幫助環氧樹脂在水中分散,使改性樹脂具有親水親油的兩親性能,當這種改性聚合物加水進行乳化時,疏水性高聚物分子鏈就會聚集成微粒,離子基團或極性基團分布在這些微粒的表面,由於帶有同種電荷而相互排斥,只要滿足一定的動力學條件,就可形成穩定的水性環氧樹脂乳液,從而使所得的改性環氧樹脂不用外加乳化劑即可自分散於水中形成乳液。所需親水基團的最低數量與親水基團的極性大小,樹脂的結構以及平均相對分子質量有關。樹脂的相對分子質量小,相對分子質量分布寬時,其水溶性較好。因為高相對分子質量的分子在水中的擴散速度慢,且其溶液的粘度也大,增加了分子運動的阻力。而分子間的互溶效應則可使相對分子質量分布寬時的溶液的水溶性得到改善。
如用相對分子質量為4 000~20 000的雙環氧端基乳化劑與環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基膦化氫為催化劑進行反應,可製得含親水性聚氧乙烯、聚氧丙烯鏈段的環氧樹脂,該樹脂不用#F;bu-~L化劑便可溶於水,且耐水性強⋯ 。
根據反應類型的不同,可將自乳化法分為以下幾類:
1.3.1 醚化反應型
由親核試劑直接進攻環氧環上的C原子即為醚化反應型。可用的方法有:將環氧樹脂和對位羥基苯甲酸甲酯反應,而後水解、中和;將環氧樹脂與巰基乙酸反應,而後水解、中和;將對位氨基苯甲酸與環氧樹脂反應,產物可穩定分散於合適的胺/水}昆合溶劑中[12l~
1.3.2 酯化反應型
酯化反應型與醚化反應型不同的是氫離子先將環氧環極化,酸根離子再進攻環氧環,使其開環。可行的方法有:用不飽和脂肪酸酯化環氧樹脂,再將所得產物與馬來酸酐反應,引入極性基;或者將不飽和脂肪酸先與馬來酸酐反應,所得中間產物與環氧樹脂發生酯化反應,然後中和產物上未反應的羧基。
在較激烈反應條件下,環氧樹脂可以和羧酸發生酯化反應,按化學計量加入二酸,可得到含一游離羧基的環氧酯,用有機胺中和即得穩定分散體:磷酸與環氧樹脂反應生成環氧磷酸酯,由於溶液有利於放熱反應進行,用環氧樹脂溶液反應可得最好結果,磷酸最好與水和醇一起逐步加入溶液中,反應極易製得二酯,二酯在醇作用下易解離成單磷酯,用胺中和,可得不易水解的較穩定水分散體。環氧樹脂與丙烯酸樹脂發生酯基轉移反應,或環氧樹脂與丙烯酸單體溶液反應,丙烯酸通過酯鍵接枝於環氧樹脂上,這兩種改性方法所得的水乳體系,大量用作罐頭內壁塗料。目前,環氧樹脂磺化水性化的報道較少,低相對分子質量的含環氧基有機物,在亞硫酸氫鈉作用下可以磺化,通過這種方法有可能將低相對分子質量的環氧樹脂改性,使其水性化。
酯化法的缺點是酯化產物的酯鍵會隨U?I司增加而水解,導致體系不穩定。為避免這一缺點,可將含羧基單體通過形成碳碳鍵接枝於高相對分子質量的環氧樹脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸單體與環氧樹脂在自由基引發劑(BPO)存在的條件下進行接枝聚合,將羧基引入環氧樹脂骨架中,製得水性環氧樹脂。並研究發現接枝位置為環氧分子鏈上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低於100% ,最後產物為未接枝的環氧樹脂、接枝的環氧樹脂和聚丙烯酸的混合物, 由於沒有酯鍵,用鹼中和,可得穩定的水乳液。引發劑用量至少為單體量的3%, 在自由基引發劑為單體量的3% ~15%范圍內,接枝率與引發劑用量呈線性關系,但過多的引發劑導致單體的自聚,或為鏈終止所消耗,接枝率不能保持原來的增加趨勢;用所得產物製得的乳液粒子的粒徑隨制備時引發劑用量的增加而變小。最後產物中未反應的環氧樹脂比原來的環氧樹脂平均相對分子質量要低,這是因為高相對分子質量的環氧樹脂有更
佳的接枝率,在高相對分子質量的環氧樹脂中(數均
相對分子質量約為10 000),大約有34個重復單元O H
l一(卜一CH廠CI{-_一CH廠0一, 則有34 x 5=170個氫原
子可被自由基離解而成為單體反應的起點,而如果使用的是低相對分子質量的環氧樹脂,如數均相對分子質量為1 000左右, 則在環氧骨架上約有2個0H一0一CH廠Cl_卜CH廠一0一單元,那麼只有1O個氫原子可作反應起點。由於這種接枝與通過酯鍵接枝於環氧骨架上不同,無需形成酯鍵,環氧官能基對其無影響,可用苯酚或苯甲酸將環氧官能基封端 。
1.3.4 開環接枝型
選羥基含量較高的環氧樹脂作骨架材料,用不飽和脂肪酸進行酯化製成環氧酯,再以不飽和二元羧酸(酐)與環氧酯的脂肪酸上的雙鍵進行自由基引發加成反應,以引進羧基。然後加鹼中和,直接加水稀釋即得水性環氧乳液。如可用亞麻油酸與環氧樹脂製成環氧酯後,與馬來酸酐進行自由基反應制備水性環氧樹脂 。
這種方法製得的粒子較細,通常為納米級,相反轉法以及直接乳化法製得的粒子較大,通常為微米級。從此意義上講,化學法雖然制備步驟多,不易操控,且成本高,但在某些方面仍具有實際意義。
1.4 固化劑乳化法
將多元胺固化劑進行擴鏈、接枝、成鹽,使其成為具有親環氧樹脂分子結構的水分散型固化劑,同時它作為陽離子型乳化劑對環氧樹脂進行乳化,兩組分混合後可製成穩定的乳液。雙酚A環氧樹脂和過量的二乙烯三胺反應,形成胺封端的環氧樹脂加成物,真空蒸餾除去多餘的二乙烯三胺,再加入單環氧基化合物將氨基上的伯氫反應掉,最後加入乙酸中和,製成酸中和的環氧樹脂固化劑。此固化劑可分散於水中,向其水溶液中直接加入環氧樹脂或環氧樹脂乳液,均可形成穩定的水乳化環氧一胺組合物,可配製水性常溫固化清漆 。
2 水性環氧樹脂體系的幾個重要參數「
2.1 粒子大小及其分布
粒子大小及其分布對分散體系的性質及塗層的性質是非常關鍵的。塗層的乾燥時間、塗層的透氣性等參量隨粒徑增大而提高;塗層的光澤、耐水性、硬度、乳液與顏料的結合力、乳液的粘度及穩定性等參量隨粒徑增大而減小。而粒子大小及分布主要取決於制備方法、設備、乳化劑類型及用量等因素。粒子越小,膜的硬化過程越慢,膜的最終硬度越大;相反,較大粒子會加速塗層的硬化過程,但最終硬度較小。所以,若調節體系的粒子大小,使其具有一定分布,不僅可以保證膜快速硬化,又能保證膜的最終硬度。由水性化體系的固化過程可知:粒子大,其表面的固化劑濃度高,導致快速固化;然而,隨著固化的進行,固化劑向微粒內部擴散的速度變慢,使粒子的內層來不及固化,導致固化不完全,降低了膜的最終硬度。相反,小粒子表面的固化劑濃度適中,固化速度慢,使固化劑有充分時間擴散到整個微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化劑濃度
乳化劑濃度對環氧樹脂微粒化水基化體系性質的影響也是非常顯著的,不僅影響粒子大小,而且也影響塗膜的性質,如膜的硬度。隨著乳化劑濃度的增加,粒子平均尺寸變小,但當乳化劑濃度較大時(如15PHR),進一步增加乳化劑濃度,平均粒子尺寸減小得不明顯。此外,乳化劑含量增加,塗層的硬度顯著降低。因為乳液成膜是一個由O/W變為W/0的相反轉過程,過多的乳化劑分散於塗膜中,導致膜的不均勻性;同時,乳化劑分散相起著增塑作用。
但可以想像,適量的乳化劑可以作為無機填料的表面處理劑,使無機填料與樹脂具有良好的相容性,從而提高塗膜性質。
2.3 其它重要參數 ¨
水性環氧樹脂乳液的穩定性也是一個重要參數。無論是外加乳化劑,還是自乳化環氧樹Ji~?L液,都處於熱力學不穩定狀態,尤其是外加乳化劑型乳液(包括外加反應性乳化劑所得的自乳化乳液),僅有一定的貯存期。首先,環氧分子能被水解成a一二醇,它不與胺固化劑反應;其次,大多用非離子表面活性劑乳化環氧樹脂,而由於非離子表面活性劑的濁點問題,一旦溫度升高,聚醚和水的吸附量減少,即水化層厚度降低,液滴趨向於聚結成較大粒子,最終導致兩相分離。通常環氧乳液在20℃時可貯存1年;而在40℃ ,3個月即發生相分離;6o℃時貯存,穩定期不到1個月。用固體或半固體狀環氧樹脂制
得的環氧乳液比用液體環氧樹脂製得的乳液穩定性要好,這是因為固體環氧樹脂可以製得粒徑較小的乳液。對於自乳化環氧樹脂乳液,溫度上升,乳液也會沉澱,但一旦溫度下降,經攪拌又可恢復原樣,穩定性較好。確保乳液長期貯存穩定的最好方法是選擇適宜的乳化劑(復合型乳化劑),避免極端溫度(如低於0℃ ,或高於40℃)。乳液液滴的粒徑和分布對乳液的穩定性也極為重要,小粒徑和窄分布會大大增加乳液的穩定性。
此外,乳液流變特性的研究有助於指導施工過程。比較水基體系與有機溶劑體系的粘度與固含量的關系可見:水基體系的粘度更大,尤其是在高固含量時更是如此。這是因為水基體系中微粒表層的乳化劑與水形成強相互作用,導致體系的粘彈性增加所致。

1 水性環氧樹脂乳液的制備
眾所周知,環氧樹脂的親水親油平衡值(HI B)在3左右,是一種不溶於水也難於乳化的親油性聚合物。為使其乳
化形成穩定乳液,目前國內外最常用的方法可歸結為外加乳化劑法及自乳化法。
1 1 外加乳化劑法
這是一種藉外加乳化劑使環氧樹脂乳化而形成水包油型(O/W)乳液的方法。其最主要的實施方法包括直接乳化
法及相反轉法。
(1)直接乳化法Ⅲ 又稱機械法 可用球磨機、膠體磨或均
化器等先將環氧樹脂磨碎成粉末,然後加入乳化劑水溶液,繼而再通過強烈機械攪拌將樹脂粒子分散於水中而成。也可將環氧樹脂和乳化劑混合後加熱到適當溫度,在施以激烈機械攪拌後逐漸加入水而形成乳液。乳化劑通常採用較多的有聚氧化乙烯烷基醚(HI B值為10.8-16.5)及聚氧化乙烯烷基酯(HLB值為9.0-16.5)。目前國內外陸續有許多新的乳化劑被開拓應用,如利用雙酚A環氧樹脂在路易斯酸催化下與聚乙二醇的反應產物,環氧樹脂,聚乙二醇與多元胺作用的加成產物等。直接乳化法最大特點就是工藝簡單,乳化劑用量也較少,但所得乳液中作為分散相的環氧樹脂微粒粒徑較大(約50 m)且粒徑分布較寬,形狀也不規則,乳液穩定性及成膜性相對較差。影響這~ 方法的因素頗多,除乳化劑的選擇外,高效攪拌及分散時溫度控制都是十分重要的。
(2)相反轉法 這是一種有效制備高聚物水乳液的方法,包括從油包水(W/O)到水包油(O/W )的相轉變過程,
在此過程中乳液的黏度、導電性及表面張力等諸多性質均會發生突變。在室溫高速剪切作用下先將液態環氧樹脂與乳化劑均勻混合,然後繼續在一定剪切作用下緩慢地逐步向其中加入蒸餾水,增加到一定水量後,即出現整個體系逐步由油包水型向水包油型的轉變,而形成均勻穩定並可由水稀釋的乳液。若選用高分子質量固體環氧樹脂,則需要加少量有機溶劑並加熱以降低其本黏度,繼而再行轉換和乳化。這一方法的影響因素也較多,除必須有高效的高速剪切分散的設備外,乳化劑的類型、分子質量大小、使用濃度及操作溫度等,實際上都對相反轉過程、粒徑控制及分散乳化效果有著直接影響。近來有人 對其相反轉過程流變行為及相態發展進行了研究,在相反轉點附近,體系油水相的界面張力最
小,此時產生的乳液具有最小分散相尺寸。
1.2 自乳化法
又稱化學修飾法,這是利用環氧樹脂活性基團的反應活
性將親水性基團或鏈段引入到環氧樹脂分子上而進行化學修飾改性的方法。這種具有疏水及親水兩性的環氧樹脂,有著良好的表面活性,無需添加乳化劑而具有自乳化作用,自行分散於水中形成穩定乳液。親水性基團及鏈段的引入主要是充分利用了環氧樹脂分子中活性環氧基及活潑的次甲基上氫原子進行的。當然對高分子質量環氧樹脂而言,還有仲羥基,但其反應活性相對要低得多。
(1)與環氧基的反應_8 因環氧基有較大張力及極性,很易與親核試劑及親電試劑作用而開環,方便地引入親
水性基團及鏈段。例如選用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物與環氧樹脂反應,則氨基使環氧基開環得到相應含羧基、磺酸基的環氧樹脂,再經與氨水等鹼性化合行分散於水中,也可用此產物使純環氧
樹脂進行乳化。也有用羥基苯甲酸甲酯、巰基乙酸酯等小分子化合與環氧基反應,然後再進行酯基水解和中和而引入親水基團的。有人將丙烯酸齊聚物與環氧樹脂作用,藉羧基使環氧基開環而引入含多羧基基團的環氧樹脂再繼而用氨水中和成鹽,分散於水中形成穩定乳液。這類反應因使環氧基消失,一般需加入三聚氰胺或氮基樹脂等以利固化成膜。也有人選用端環氧基聚氧化乙烯或端環氧基聚氧化丙烯乳化劑及雙酚A與雙酚A環氧樹脂在三苯基膦化氫催化下反應.巧妙得到分別含親水性聚氧化乙烯及聚氧化丙烯鏈段並含有環氧基的改性環氧樹脂,不僅具有很好水分散性,且成膜後具有良好耐水性。也有以端羥基聚氧化乙烯或端羥基聚氧化丙烯代替上述雙環氧乳化劑與之反應的報道。
(2)與次甲基上氫的反應 」 有人將環氧樹脂溶於溶劑,加入引發劑及親水性單體如丙烯酸或甲基丙烯酸,加
熱使引發劑分解產生初級游離基,並進攻環氧樹脂次甲基使其活化而產生碳游離基成為新的活性中心,它引發單體進行聚合而使環氧樹脂成為含多羧基基團親水鏈的產物,用氨水中和得到了良好分散於水的穩定乳液。在游離基反應中一般對環氧基影響不大,但也有人將環氧基先用苯酚或苯甲酸或磷酸等予以保護,反應完後再予以還原。當然保護基的選擇應符合易於引入,形成的中間結構能經受所處後繼反應條件,並能在反應結束後不損及分子其他結構的條件下除去。
研究表明,這類接枝環氧樹脂中丙烯酸鏈段含量對乳液穩定性影響很大。
(3)與羥基的反應 對於分子質量較大的環氧樹脂中的仲羥基,雖然反應活性不及前者,但仍可以通過其反應而引入親水基團或鏈段。如有人使用磷酸與其反應形成單、雙或三磷酸酯環氧,用氨水中和成鹽而具親水性。也有酸酐與之反應形脂肪酸環氧,也有將不飽和脂肪酸與之反應形成不飽和脂肪酸環氧酯,再通過雙鍵作用與順丁烯二酸酐反應而製成水性脂肪酸環氧的報道。
1 3 改性固化劑乳化法[. ]
除上述方法外還可採用改性固化劑乳化法,它不需要先
將環氧樹脂改性和乳化,而在配製使用前與改性固化劑混合乳化,這種固化劑一般由多元胺固化劑進行加成擴鏈、接枝、成鹽而製得,非極性及具有表面活性的基團和鏈段的引入,不僅改善了與其環氧樹脂的相容性,而且對低分子質量液體樹脂有良好乳化作用,因而同時兼有乳化及交聯固化功能。
如將多乙烯多胺與單環氧或多環氧化物加成使大部分伯胺氫封閉,再用雙酚A環氧樹脂與之加成,達適當親水親油平衡值後與甲醛作用使伯胺氫羥甲基化。或將過量的多烯多胺與環氧樹脂加成後,用脂肪族或芳香族單環氧化合物封閉其伯胺氫,以水(或水溶性有機溶劑)稀釋後,以醋酸中和部分伯胺氫。封端的作用主要在於制約伯胺基上的氫的活性。
制備中控制好HLB值可保證其良好水分散性。
2 水性環氧樹脂的固化機理[18,1 9j 1 、 、
水性環氧樹脂乳液在配製時根據組成及成膜後性質的
不同要求,需調節環氧與固化劑 的摩爾比,當使用分子質量較大的固體環氧時,尚需加入乙二醇醚一類的成膜助劑。顏填料則可分別添加在環氧及固化劑內,最好質量相近。由於這是一種以溶有固化劑的水為連續相,環氧樹脂為分散相的多相體系,塗裝後水分在適當蒸汽壓條件下會逐漸揮發。有人認為隨水分大部分揮發,環氧顆粒相互接觸形成球體緊密堆積而聚結,而含固化劑的剩餘水分則填充於其間,繼而固化劑不斷擴散人環氧,二者相互作用而交聯固化成膜,殘余水分及其他添加助劑則擴散到膜表面揮發。但隨著交聯固化的進行,環氧顆粒內質量增大,黏度及玻璃化轉變溫度升高,會大大影響固化劑向內部擴散的速度,但速度過快並不利於成膜過程的進行,透射電鏡測試也顯示了其相應的兩相
結構,初步成膜後其固化反應實際上繼續進行,到完全固化需要持續一定時間。
由水的揮發,顆粒聚結,固化劑。擴散及交聯固化成膜的反應機制充分說明,水分的揮發及固化劑擴散速度是極重要的技術關鍵,環氧分散相的粒徑愈小,固化劑與環氧的相容性愈好,少量成膜助劑的使用及合適的水蒸發的控制手段都將直接影響成膜的過程及性質。陳聲銳指出 水分的蒸發分2個階段,先是流體狀態時其蒸發速率恆定,二是成膜後水分需從內部擴散到表面蒸發速率較慢,並指出固化成膜時的溫度、膜厚度及環境相對濕度皆制約著水分的蒸發。
3 有待改善的問題
以水性環氧樹脂為基礎的水性塗料具有環境污染小,對
許多基材包括潮濕基材都有良好附著力 可與水 泥砂漿或水性聚合物配合使用,操作方便,有很好的應用前景,但實踐中還是有不少問題需要予以改善。
(1)由於水的蒸汽壓及蒸發潛熱皆比有機溶劑高,作為
塗料塗裝後水的蒸發較慢,在低溫及潮濕環境下更甚,微量水分的殘留常造成塗膜表干時間延長,塗膜起泡或凹陷。
(2)由於水的冰點低,作為水性塗料,其凍融穩定性較溶
劑型為差。
(3)由於水的表面張力較大,作為水性塗料大大影響了
其對基材及添加的顏填料的潤濕及附著。
(4)由於水的電導率高及乳化劑存在,易使塗裝金屬受
到一定腐蝕。

Ⅳ 環氧樹脂膠衣與環氧樹脂有什麼區別

膠衣抄: 是指不飽和聚酯(UP)中加入顏料和觸變劑等分散而成的玻璃鋼(FRP)及檯面面漆用來開發的著色觸變性產品。
環氧樹脂: 是指含有兩個或多個環氧基團的樹脂的總稱。
明白這兩個概念就可以了,環氧樹脂膠衣是指用環氧樹脂做的膠衣產品,而其他樹脂也是可以做膠衣。

Ⅳ 環氧樹脂復合物EP-U是什麼意思

環氧樹脂復合物EP-U

未增塑的(野祥和unplasticized)環氧樹脂,業宴茄內也有譯為:無頌盯填料的環氧樹脂的。

Ⅵ 請問有哪種環氧樹脂可以耐高溫,並且可以粘接密封銅管和塑料的間隙

環氧樹脂粘接劑不耐高溫,最高150度,

不知你在冰箱里做什麼用,承受壓力情況,粘接面情況,溫度以及溫度變化情況,這對被選膠的性能指標很重要。

現在耐高溫的膠只有有機硅膠可以達到250度以上,但其粘接力差,粘接面大而且不承受太大外力可以選用。

所以你的應用選擇還要具體分析,如果是承受較大的外力而溫度不會超過100度,可以考慮選用環氧膠。

如果只是瞬時高溫,你可以用環氧型密封膠做一下實驗,看粘接力會不會受影響,環氧膠瞬時耐溫沒有明確規定,

至於粘接後在整形我覺得對粘接或者叫灌封很不利,根據你提供的粘接情況,其粘接接觸面並不大「估計也就2平方厘米」,而且你的整形屬於對粘接面的扯離,膠體應該是無法承受你的整形力。

你為什麼不考慮先整形、焊接,再灌封呢?

Ⅶ 液體環氧樹脂就是聚氯乙烯PVC糊樹脂嗎

液體環氧樹脂不是聚氯乙烯糊樹脂。
液體環氧樹脂是雙酚A和環氧氯丙烷為原料合回成的,分子中含答有環氧基團的小分子樹脂,因為含有大量的環氧基團,環氧基團非常活潑,可以採用胺類固化劑、多元酸類固化劑進行固化,用於生產高端的產品。聚氯乙烯糊樹脂是採用聚氯乙烯作為原料,添加了大量的增塑劑進行增塑,加熱後塑化得到製品。二者是完全不同的,環氧樹脂是熱固性樹脂,硬度高,耐磨,耐化學腐蝕,PVC糊樹脂是熱塑性樹脂,很軟,常用來做皮革,防滑墊,拖鞋等。

Ⅷ 水性環氧水泥砂漿流動性很差怎麼解決

水性環氧水泥砂漿是由水性環氧樹脂H123A、水性環氧固化劑H123B、水、水泥、砂子、細石子組成,砂子石子無需烘乾、一次性可以做厚。採用水性環氧樹脂乳液對水泥砂漿進行改性,分析了其對水泥砂漿流變性、抗壓和抗折強度、黏結強度以及收縮特性的影響,並結合 SEM 微結構分析,探討了水性環氧樹脂的改性機理。結果表明:摻入水性環氧樹脂乳液後,能顯著增強水泥顆粒的分散,大幅度提高水泥砂漿的流動性能;水泥砂漿的 7 、 28d 抗折與抗壓強度均有所提高,當聚灰比為 3%~9%時存在峰值;經過改性之後水泥砂漿試件的折壓比呈現增加趨勢,水泥砂漿的韌性有所增加;隨著聚灰比的不斷增加,黏結強度也不斷增加,當聚灰比為 12% 時,黏結強度出現最大值;隨著聚灰比的增大收縮率下降幅度越大,當摻量增大到 12% 以後,基本不再減小;摻入水性環氧樹脂乳液後氫氧化鈣晶體數量明顯減少,水化產物得以細化,內部結構密實度顯著提高。關鍵詞:水泥砂漿;水性環氧樹脂;路用性能;微觀結構;改性機理收稿日期:2017-03-20基金項目:「十二五」國家科技支撐計劃項目(編號:2011BAE27B04 )作者簡介:程毅,男,高級工程師 . 普通水泥基復合材料因具有收縮顯著、脆性明顯和抗腐蝕性能差等缺陷而給結構物耐久性帶來極大影響。尤其是在道路工程領域,隨著大型多軸重型載重交通量的日益增長,結構物所受到的高速高頻沖擊越來越嚴重,往往導致斷板、開裂等早期病害的產生。隨著化學工業的發展,聚合物改性水泥砂漿和混凝土由於其優異的物理、力學性能和耐久性而成為道路工程結構物的修補材料被推廣應用。目前,常用的水泥基復合材料改性聚合物一般有 4 種:乳液型聚合物、水溶性聚合物、液體聚合物及可再分散的粉料型聚合物。國內外大量研究表明:經過聚合物改性後,水泥基復合材料的抗彎拉強度、耐磨性、韌性和黏性等特徵均有明顯提升,相同的流動性條件下其斷裂能是普通水泥基復合材料的 2 倍以上。此外,改性之後的水泥基復合材料抗氯離子滲透、抗碳化和抗凍性能等均有顯著提升。水性環氧樹脂溶於水後能在室溫條件下和高鹼性環境中發生聚合反應而固化,固化後形成的三維網狀結構穿插於水泥基體中,大幅提升復合材料的強度,同時還耐水、耐酸鹼和耐大多數化學葯品。因此,目前已發展成一種重要的水泥基復合材料改性聚合物。前人研究發現,雖然關於聚合物對水泥基復合材料性能的改善已達成共識,但是關於在不同摻加量的條件下水性環氧樹脂乳液對水泥基材料各種性能的影響規律一直存在爭議,並且其改性作用機理仍有待進一步研究。鑒於此,該文採用一種新型的水性環氧樹脂乳液對水泥砂漿進行改性,對其作為道路加固修補材料的路用性能進行分析,並結合微結構測試對其改性機理進行探討。1 試驗1.1 原材料水泥(C ): 42.5R 普通硅酸鹽水泥;砂( S ):潔凈河砂,細度模數 2.32 ;減水劑( SP ):聚羧酸類高效減水劑,棕黃色,固含量為 30% ,減水率為 25% ;聚合物改性劑(P ):上海雙酚 A 型水性環氧樹脂乳液 A 、 B 雙組分,其性能指標見表 1 ,拌和用水:自來水。1.2 試驗方法通過前期研究確定此次試驗的對照組即普通水泥砂漿的基準配比,並根據所設置的基準配比,通過改變環氧樹脂乳液的摻加量,分別設置了各改性組的配比,以此研究環氧樹脂乳液在不同摻加量下對水泥基材料各種路用性能的影響,如表 2 所示。拌和過程中,首先將稱量好的水性環氧樹脂和固化劑混合均勻後備用,將水泥和砂干拌 30s ,然後加入混合好的聚合物攪拌60s ,再加入水和減水劑攪拌 120s 。5 1 2第 37 卷 第 5 期2017 年 10 月中 外 公 路 網路出版時間:2017-10-24 15:12:52網路出版地址:http://kns.cnki.net/kcms/detail/43.1363.U.20171024.1512.047.html 表 1 水性環氧樹脂及固化劑性能指標材料分類 外觀密度(25℃ )/(g · cm-3 )固含量/%配比A 組分 - 水性環氧樹脂乳白色黏稠液體1.04~1.16 57±2A∶B=1∶2B 組分 - 固化劑黃色透明黏稠液體1.01~1.12 57±2表 2 試驗配合比組別 ( P / C )/ %W / C( SP / C )/ %C∶SP-0 0 0.38 0.8 1∶2.72P-1 3 0.38 0.8 1∶2.72P-2 6 0.38 0.8 1∶2.72P-3 9 0.38 0.8 1∶2.72P-4 12 0.38 0.8 1∶2.72P-5 15 0.38 0.8 1∶2.72每組砂漿攪拌均勻後按 GB / T2419-2005 《水泥膠砂流動度測定方法》的規定對其流變性進行評價。根據 GB50728-2011 《聚合物改性水泥砂漿試驗規程》規定,成型 40mm×40mm×160mm 稜柱體試件後標准養護,然後分別測試其 7 、28d 的抗折與抗壓強度以及不同齡期的收縮率。採用黏結抗折強度試驗來評價水泥砂漿的黏結性能:首先成型 40mm×40mm×160mm 普通水泥砂漿稜柱體試件養護至 28d 齡期後用石材切割機從中分線切斷,用砂紙對斷面打毛;使用前將切斷後的普通水泥砂漿試件放在水池中浸泡 5h ,拿出後用毛巾擦掉浮水,將半塊試件放在三聯模一端,用改性水泥砂漿把三聯模的另外一端填滿,即製成新老砂漿的黏結試件。當達到規定的齡期後進行抗折強度試驗,將所測出的強度試驗結果視為黏結強度,來間接評價水泥砂漿的黏結性能。在試件斷裂面上取試樣,所取試樣的表面要盡可能平整,起伏不能過大。然後放入無水乙醇中終止其水化,再噴金處理,採用 HitachiS-4800 場發射掃描電鏡(SEM )分析環氧樹脂的加入對水泥砂漿內部微結構的影響,探討其對水泥砂漿的改性機理。2 結果與討論2.1 改性砂漿流變性各組配比下砂漿的流變性測試結果如圖 1 所示。從圖 1 可以看出:水性環氧樹脂乳液同其他類型 1801501209060300流動度 /mm18 15 12 9 6 3 0聚灰比 /%圖 1 水性環氧乳液對流變性的影響的聚合物材料有類似的功能,加入到水泥砂漿之後同樣可以大幅度改善水泥砂漿的流動度。即在相同流動度條件下,加入水性環氧樹脂乳液會減少拌和用水量,說明其具有減水作用。分析以上原因主要是由於環氧樹脂加入後在攪拌過程中易引入氣泡,產生「滾珠」效應。並且,由於環氧樹脂顆粒有一定的表面活性劑作用,當其附著在水泥微粒的表面後,會使水泥微粒也具有一定的極性,能顯著增強水泥微粒的分散作用。隨著環氧樹脂乳液添加量的增加,其對水泥微粒的分散性進一步提高,將水泥微粒絮凝狀結構打開,其內部水分變為自由水,所以改性水泥砂漿的流動性得到增加。2.2 改性砂漿力學性能各組配比的 7 、 28d 力學性能測試結果如圖 2~4所示。可以看出:水性環氧樹脂的摻入對水泥砂漿的抗壓和抗折強度都有一定的改善。 7 、28d 齡期的改性水泥砂漿試件的抗壓強度隨聚灰比改變其變化規律類似,在一定聚灰比范圍內,在水泥砂漿中加入環氧樹脂乳液進行改性之後會增加其抗壓強度。當聚灰比為3%~9% 時,水泥砂漿經過環氧樹脂乳液改性之後其抗壓強度存在峰值,當齡期為 7d 時提高幅度為 6%~13% ,當齡期為 28d 時提高幅度為 12%~15% 。圖 3 顯示,摻入環氧樹脂乳液改性之後的水泥砂漿與對照組的普通水泥砂漿相比,其抗折強度均有所提高。在 7 、28d 齡期時,水泥砂漿抗折強度變化規律基本一致。當聚灰比為 9% 時,水泥砂漿經過環氧樹脂乳液改性之後其抗折強度達到最大,7d 齡期時較對照組的抗折強度增加了約 23% , 28d 齡期時增加了約 29% 。之後隨聚灰比的增大,改性水泥砂漿的抗折抗折強度測試結果 0.300.250.200.150.100.050折壓比18 15 12 9 6 3 0聚灰比 /%7 d28 d圖 4 折壓比測試結果強度開始下降。折壓比在一定程度上可反映材料的韌性特徵。由圖 4 可以看出:摻加環氧樹脂乳液後,經過改性之後的水泥砂漿試件的折壓比與對照組相比都有所增加,即加入環氧樹脂乳液後,水泥砂漿試件的韌性有所提高。因此,水泥砂漿經過環氧樹脂乳液改性之後可以改善其脆性破壞特徵。2.3 改性砂漿黏結性能在進行結構修補的過程中,結構物能否得到良好的修補主要是由新老水泥基材料之間的黏結強度決定的。因此,黏結強度是聚合物改性水泥砂漿的一項重要性能指標。各組 配比下的 黏結 強 度 測 試 結 果 見圖 5 。從圖 5 可以看出:水泥砂漿經過環氧樹脂乳液改性之後其黏結強度隨聚灰比的增大顯著變化。當聚灰比為 0 時,即不摻加水性環氧樹脂乳液時,普通水泥基材料黏結強度很小,約為 0.8MPa 。隨著聚灰比的不 黏結強度 /MPa54321018 15 12 9 6 3 0聚灰比 /%圖 5 黏結強度測試結果斷增加,改性之後的水泥基材料抗折黏結強度也不斷增加,當聚灰比為 12% 時,改性之後的水泥基材料抗折黏結強度出現最大值。當繼續加大聚灰比時,其抗折黏結強度則呈現出降低的趨勢。出現上述變化的原因是當摻加環氧樹脂乳液時,乳液和水泥的水化生成物兩者間由於化學鍵如范德華力和氫鍵的共同作用,使水泥砂漿內部水泥基相與分散基相(骨料)之間的界面過渡區(ITZ )更加緊密,提高了水泥砂漿內部水泥基相與分散基相之間的黏結,使水泥砂漿的微裂紋更難產生。當聚灰比超過一定范圍時,經過改性之後的水泥基材料抗折黏結強度下降的原因主要是聚灰比太大,在經過環氧樹脂乳液改性之後的水泥砂漿內部,環氧樹脂乳液成為首要的骨架,水泥水化後的生成物所佔的比例反而很少,成為次要部分,由於環氧樹脂乳液在硬化之後的彈性模量遠小於水泥砂漿。因此,當聚灰比太大時,經過環氧樹脂乳液改性之後的水泥砂漿抗折黏結強度表現出下降的趨勢。該研究進行的抗折黏結強度試驗過程中,水泥砂漿試件發生斷裂的部位主要是新老砂漿的黏結區域,說明新老砂漿之間的界面過渡區是砂漿較為薄弱的部位,這是因為界面過渡區存在的缺陷要素難以掌控,使新老砂漿之間的黏結力降低。在聚合物改性水泥砂漿中,砂子經過攪拌機攪拌後被水泥漿體裹附。但是,在新老砂漿之間的界面黏結處,砂子被機器振搗後被碾壓在兩者的界面處,導致砂子和新老砂漿界面之間形成「點接觸」,使得老砂漿的黏結面出現較多的孔隙,使改性水泥漿體不能大量進入老砂漿界面孔隙中,無法將硬化後的水泥石潤濕。而且,改性水泥砂漿也因此失去大量水泥漿體,使得改性水泥砂漿黏結強度降低,無法與修補界面牢固地黏結在一起。同時,砂子會大量出現在新老砂漿之間的界面處,使兩者的界面處各種缺陷更加容易產生,使新老砂漿之間的黏結強度再次減弱。范德華力和機械黏著力是改性水泥砂漿產生黏結強度的主要原因,不像剛成型的水泥砂漿那樣完7 1 22017 年 第 5 期 程毅,等:水性環氧改性水泥砂漿路用性能與機理研究 整地連接起來,因此黏結強度要遠低於抗折強度。2.4 改性砂漿收縮性能水泥砂漿在硬化過程中不可避免會產生體積收縮,當收縮應力超過砂漿的抗拉強度時就會產生裂縫,不僅會影響到其與結構物的黏結性能,而且會對修補結構的耐久性帶來較大影響。因此,該研究對改性水泥砂漿的收縮性能進行了測試,結果如圖 6 所示。 收縮率 /%0.100.080.060.040.02035 28 21 14 7 0齡期 /dP-0P-1P-2P-3P-4P-5圖 6 收縮性能測試結果從圖 6 可以看出:隨著養護時間的延長,各組砂漿的收縮率都緩慢增長。但是加入水性環氧樹脂後,收縮率迅速下降,隨著摻量的增大,收縮率下降幅度越大。當摻量增大到 12% 以後,收縮率基本不再減小,在 28d 齡期時 P-4 的收縮率要比 P-0 小約 32% 。因此,摻入水性環氧樹脂後能大幅改善水泥砂漿的收縮特性,減小其出現收縮開裂的傾向。其主要原因在於水性環氧樹脂顆粒能在水中均勻分散,其在固化過程中能夠較好地成膜,填充了水泥基體內部的空隙,使其結構變得密實,限制了收縮的產生。同時,水性環氧樹脂乳液有一定的引氣作用,其所引入氣體產生的微珠能夠有效分擔水泥砂漿內部的毛細孔壓力,使結構受力均勻,所以減小了收縮。2.5 微結構分析試驗選取了 3 種聚灰比的改性水泥砂漿試樣( P-0 、 P-1 和 P-3 ),分別將其放大到 5000 倍後的SEM 圖片如圖 7 所示。從圖 7 ( a )可以看出:普通水泥砂漿的結構較為疏鬆,可以觀察到大量的空隙,且含有較多的片狀氫氧化鈣及針狀的鈣礬石。相比之下,用環氧樹脂乳液改性後的水泥砂漿結構較為密集,而且砂漿空隙率較小,其內部的大量空隙被聚合物所填充,環氧樹脂固化後與水化產物交織形成了連續的空間網狀結構,氫氧化鈣含量明顯減少,未經水化的水泥顆粒數量增加,如圖 7(b )所示。從圖 7 ( c )可以看出:當聚灰比為 9% 時,水化產物相互搭接生長,空隙被填充,基體內部結構更為密實,微裂紋數量減少,所以 P-3 的各項力學性能更優異。由於環氧樹脂對水泥砂漿的各種空隙有一定的填充效果,且和水泥水化的生成物和集料之間具有良好的黏結作用使改性水泥砂漿的力學性能較為優異。另外,由於環氧樹脂聚合物填充了水泥砂漿的空隙,也會將內部空隙和外部之間的通道堵塞住,在阻止水泥砂漿內部水分揮發的同時,也會防止外界有害物質如二氧化碳、氯離子等進入水泥砂漿內部。因此,加入環氧樹脂乳液改性之後,水泥砂漿的干縮大幅度降低,同時水泥砂漿的耐久性如抗氯離子滲透性能和抗碳化性能顯著改善。(a) P-0 微結構 (b) P-1 微結構 (c) P-3 微結構圖 7 微觀分析結果3 結論(1 )水性環氧樹脂乳液同其他種類的聚合物乳液類似,在加入水泥砂漿後,能顯著增強水泥顆粒的分散性。環氧樹脂乳液會大幅度提高水泥砂漿的流動性能,即在相同流動度條件下,加入環氧樹脂乳液會減少拌和用水量,具有減水作用。(2 )摻入水性環氧樹脂乳液後水泥砂漿的 7 、 28d抗折與抗壓強度均有所提高,當聚灰比為 3%~9% 時存在峰值;當聚灰比大於 9% 時,其強度開始衰減。經過改性之後水泥砂漿試件的折壓比與普通水泥砂漿相比整體呈現增加趨勢,即加入環氧樹脂乳液後,水泥砂漿試件的韌性有所增加。(3 )摻入水性環氧樹脂乳液改性後水泥砂漿的抗折黏結強度較改性前得到顯著提升,而且隨著聚灰比的不斷增加,抗折黏結強度也不斷增加,當聚灰比為12% 時,抗折黏結強度出現最大值。(4 )各組砂漿的收縮率隨著養護時間的延長都緩慢增長,但是加入水性環氧樹脂乳液後,收縮率迅速下降,隨著摻量的增大,收縮率下降幅度越大。當摻量增大到 12% 以後,收縮率基本不再減小。綜合力學性能與收縮特性並結合工程實際,建議水性環氧樹脂乳液的最佳摻量為 6%~9% 。

Ⅸ 環氧樹脂601U有什麼用途

環氧樹脂是指分子中含有兩個以上環氧基團的一類聚合物的總稱。它是環氧氯丙烷與雙酚A或多元醇的縮聚產物。由於環氧基的化學活性,可用多種含有活潑氫的化合物使其開環,固化交聯生成網狀結構,因此它是一種熱固性樹脂。雙酚A 型環氧樹脂不僅產量最大,品種最全,而且新的改性品種仍在不斷增加,質量正在不斷提高。
環氧樹脂優良的物理機械和電絕緣性能、與各種材料的粘接性能、以及其使用工藝的靈活性是其他熱固性塑料所不具備的。因此它能製成塗料、復合材料、澆鑄料、膠粘劑、模壓材料和注射成型材料,在國民經濟的各個領域中得到廣泛的應用。
環氧樹脂在塗料中的應用占較大的比例,它能製成各具特色、用途各異的品種。其共性:
1.耐化學品性優良,尤其是耐鹼性。 2.漆膜附著力強,特別是對金屬。
3.具有較好的耐熱性和電絕緣性。
4.漆膜保色性較好。
但是雙酚A型環氧樹脂塗料的耐候性差,漆膜在戶外易粉化失光又欠豐滿,不宜作戶外用塗料及高裝飾性塗料之用。因此環氧樹脂塗料主要用作防腐蝕漆、金屬底漆、絕緣漆,但雜環及脂環族環氧樹脂製成的塗料可以用於戶外。

Ⅹ 臭氧與酚醛環氧樹脂漆反應嗎

論環氧樹脂產品結構調整的必要改革開放以來,我國社會主義建設取得長足的進步。環氧樹脂作為一種重要的基本材料,在國民經濟各部門中得到越來越多的應用,特別是電子、電器、交通運輸、建築等工業領域大量採用高科技手段,應用新型材料,促使環氧樹脂的用量成倍的增長。1980年全國環氧樹脂用量僅為6千噸/年,而今它的用量已超過14萬噸/年,可見其用量增長之快,發展勢頭之猛,不得不引起眾人的關注。

眾所周知,近年來國外環氧樹脂大量湧入中國市場,眾多鄉鎮企業紛紛進軍環氧行業,使環氧樹脂市場競爭十分激烈。面對這樣的形勢一些廠迎難而上,發展了本廠特色的產品,如迪愛生環氧有限公司的高純度環氧樹脂幾乎供不應求;安徽省黃山市環氧硬樹脂在市場中所佔的份額越來越大,這些廠目前正在蒸蒸日上。而有些廠商命運就沒有這么好了,倒閉的有之,退出的有之,更多數的還在拚命掙扎,他們目前的日子是可想而知的了。

前幾年大家都知道去發展「適銷對路」、「市場需要」的產品,一聽到環氧樹脂緊缺,就紛紛上馬環氧樹脂,殊不知環氧樹脂中品種也很多。結果雙酚A型的6101或E-44環氧樹脂鋪天蓋地地出現,價格一降再降,搞得大家日子都不好過。如果將這種責任都叫企業家去承擔,我覺得他們很冤枉。其實工程技術人員應負主要責任,我看到一些用戶的圖紙就存在這樣的問題:例如變壓器制備圖上技術要求只指明用環氧樹脂澆注,用一般的環氧樹脂澆行嗎?又如建築圖上只指明地坪採用環氧樹脂,而不同功能的地坪應採用不同的環氧樹脂設計人員知道嗎?為什麼不在圖上註明?有些在室外使用的設置也只指明用環氧樹脂灌封,其實這些環氧樹脂都有特殊的要求。在這里應該指出的是,一些工程技術人員也並不錯。他們的設計圖是參考國外的形式而出的,只是他們不明白國內外環氧行業的差別。這就是「環氧樹脂」與「環氧系統」的不同。國外通用型的環氧樹脂一般是指828、331、850等基礎樹脂,而國內則以6101、E-44為主。國外已將專門用途的環氧樹脂與固化劑、活性稀釋劑、助劑、填料等配套成專用的「環氧系統」,統稱為:「Epoxy system」。而國內「環氧系統」尚未形成氣候,仍處在「Epoxy resin」階段,這是兩個不同的概念。為此我認為環氧樹脂必需進行產品結構調整以適應與國際接軌的形勢需要。

從環氧樹脂的應用行業發展來看,如汽車製造工業、建築業、化學工業以及家用電器製品的迅速發展,對塗料 、層壓料、粘接劑、澆注料的用量越來越大。其中使用環氧樹脂較多的行業是覆銅板生產行業。無論是汽車、家電、計算機的線路板都要用覆銅板,而全國引進覆銅板生產線之多,再加上國內原有的生產線之廣,在該方面環氧樹脂近兩年的年用量在4萬噸左右,主要使用的環氧樹脂牌號為EX-23-A80、EX-48-T60、DER521-A80、DER512-A80、EPN1138A-85、EPN8011A-75等。其次是粉末塗料行業使用環氧樹脂量也很大,全國有大大小小制粉廠近600多家,引進生產線超過60條,每年用在這方面的環氧樹脂達2萬噸以上,主要使用的樹脂牌號為EPO1004、DER663U、YD-014、E-12T、0194等。另外無溶劑、少溶劑、水基塗料近年來發展也較快,特別是汽車用的電泳塗料、集裝箱用的重防腐塗料、輸油氣管道的防腐塗料等使用的EPO828、DER331、E-51、850S等牌號的樹脂幾乎超過了原來用的固體環氧樹脂的量,在這方面近年來使用環氧樹脂近2萬噸/年。最近兩年乾式變壓器、互感器、絕緣子、高壓開關使用環氧樹脂的量以60%以上的速度在增長,全國共計有該類生產廠500多家,主要使用E-42、E-39D、CT-200、CY-225、EPO-834、YD-134、F、B、EPO828、DER-331、0164等牌號環氧樹脂,去年的年用量達2萬噸上下。再加上近期發展很快的粘接劑、電阻塗料、裝飾塗料、地坪塗料,汽車點火器、摩托車點火器、蓄電池、發光二極體及信號燈、電器線路密封料等近年的用量也有大幅度提高。這些行業的發展,所使用的環氧樹脂再也不是以6101或E-44環氧樹脂為主體了。而我國現有140多家環氧樹脂生產廠,大多以生產6101、E-44產品為主,這怎麼跟得上形勢發展呢?從這個角度說環氧樹脂也必需進行產品結構調整。

我國環氧樹脂生產廠之多,可謂世界第一!這不是個好現象。且不說其量小面廣造成污染源多,資源浪費大,生產效率低,成本高等缺點。主要的是這不符合可持續發展的戰略方針,長此下去必是死路一條,許多小化工廠關閉的事實也已證明了這點。那何不在現有的產品基礎上進行結構調整呢?以求在激烈的市場競爭中立於不敗之地。相信很多精明的企業家都想到了這一點,也想在實際中做到這一點,只不過受到某些條件的限制而沒來得及做。我不是企業家,但是我明白一條道理:「事在人為」。要有人去做工作,要講清利弊關系,要爭取各方面的理解。只要有利於國家、有利於人民,各級政府是會支持的,人民是會擁護的,最大的困難也是能克服的。

閱讀全文

與環氧樹脂014u相關的資料

熱點內容
凈水器選多少容量的 瀏覽:757
污水處理服務費交什麼印花稅 瀏覽:520
廢水除氟新方法 瀏覽:777
亂倒廚余污水怎麼處罰 瀏覽:788
污水處理鹽度是什麼 瀏覽:4
綜合執法以什麼憑據收污水 瀏覽:115
舉報偷排污水是什麼行為 瀏覽:850
高效高性能超濾膜應用 瀏覽:977
電廠的廢水 瀏覽:193
大孔樹脂吸附處理廢水流程 瀏覽:266
安吉爾凈水器好不好多少錢1台 瀏覽:678
賽歐2空調濾芯怎麼裝 瀏覽:512
哪些液體普通蒸餾 瀏覽:192
汽車空氣濾芯真假如何鑒別 瀏覽:97
什麼叫ro反滲透濾芯 瀏覽:401
浙江新雅樹脂 瀏覽:922
九州凈水機多少錢一台 瀏覽:3
萊克吉米凈化器濾網怎麼清洗 瀏覽:35
69元凈水機多少錢 瀏覽:438
弱鹼性離子交換樹脂 瀏覽:496