① 大孔吸附樹脂的一搬使用方法是什麼
大孔吸附樹脂使用方法:
1、裝柱(採用濕法裝柱)
A 實驗室
量取:將一定量的樹脂與去離子水在燒杯中進行混合,然後將混合的樹脂水溶液倒入量筒中,使樹脂充分沉降,通過補加和移取,使樹脂床層與相應刻度持平,即完成樹脂的量取。
裝填:關閉離子交換柱下端的出口閥門,用水將量筒中的樹脂全部導入離子交換柱中,然後打開交換柱出口閥門,使樹脂在柱內沉降壓實,然後關閉交換柱出口閥門,待用。(注意:須保留液面高於樹脂床層1-2cm,避免干柱。)
B 工業化
新樹脂裝柱前,應該使用清水和鹼液對樹脂交換柱相關管道進行清洗,清理出焊渣等固體廢料和附著在柱壁和管壁上的塵土與其他雜質。然後,向柱內注入 1/3 體積的水,取少量樹脂,將樹脂從交換柱頂部人孔處裝入柱內。關閉人孔,向柱內注水,同時打開交換柱下部排水閥門,用≥80 目篩網在排水口攔截,觀察是否有樹脂泄露,如果有個別小顆粒,屬於正常現象;如果有大顆粒樹脂出現,且量比較多,說明交換柱下濾板有問題,應把樹脂和水放出,檢查下濾板焊縫和水帽,查找原因,進行檢修。檢修完畢後,再按照上面的方法檢測,直至確定符合要求,然後再將剩餘的樹脂加入交換柱內。
2、樹脂預處理
藍曉科技大孔吸附樹脂的預處理,主要是為了清除樹脂孔道內殘留的有機分子、致孔劑等,一般可採取水洗、鹼洗的方式(過柱清洗或浸泡處理),至清洗出口液或浸泡液無渾濁、無味,待用。(具體方式選擇,可視具體工藝工況而定。)
3、樹脂再生
一般根據吸附物質的物化特性,並結合具體工藝工況,綜合考慮後選擇合適的再生方式,溶劑、酸、鹼、蒸汽都可作為樹脂再生的方式。
注意事項:
(1)使用中應盡量避免反復對樹脂進行裝卸,防止樹脂床層不均勻導致偏流。
(2)焦油對樹脂的污染具有不可逆性,應避免。
(3)避免因無機鹽結晶導致樹脂孔道堵塞,影響樹脂處理效果。
(4)避免使用溫度過高或過低,該樹脂在5-100℃環境下可以長期使用。
儲存方法:
(1)保持樹脂的內、外包裝完整,防止樹脂受污與失水。
(2)防止樹脂受凍與受熱,樹脂一般要求室溫避光保存。
(3)避免與有異味、有毒、氧化性物質混雜堆放。
② 大孔吸附樹脂法的特點或優點
大孔吸附樹脂的特點:
大孔吸附樹脂具有舒適穩定性好可再生重復利用,節約開支;吸附效果好,解析後解析物可以重復利用,特別是重金屬;工藝簡單,操作方便,費用低:適用范圍廣受外界條件影響小,對天然產物的分離和提取,吸附樹脂進行分離,水煮液直接上柱,不必濃縮,吸附完畢後用稀醇洗脫,洗脫液經濃縮、乾燥後,即可得純度高、不吸潮的產品;同時,吸附技術還有設備簡單、操作方便、生產周期短、能耗和成本低、不加輔料可以成型等優點,特點是容易再生,可以反復使用。
③ 第二次用的大孔樹脂就出現吸附能力下降將近一半是怎麼回事
出現你描述的問題建議從以下幾方面入手:
第一:乙醇解析是否徹底,如果解析不徹底,樹脂衰減較快,後面每一周期使用均會差於上一周期。可嘗試其他解析劑,比如甲縮醛、甲醇分子量更小的有機溶劑,也可提高配套的再生酸鹼濃度,提高酸鹼溫度,同樣會帶來更佳的解析效果
第二:你做的是純化實驗,本身對於流量較為敏感,所以處理量變小的情況,很有可能與你第二周期加快流速有關,可降低至第一周期同等流速進行實驗
第三:確認兩周期進樣的成分濃度含量一致,濃度越高,越容易泄露的
第四:樹脂使用過程中,一定保證樹脂柱豎直,不能幹柱,不能有氣泡,否則產生的偏流現象會嚴重影響到吸附效果
第五:確認兩周期實驗均在相同環境下進行,比如溫度、濃度、PH等
暫時想到這么多,希望對你有幫助
④ 大孔樹脂吸附技術的基本原理
當然,根據葯液成分的不同,提取的物質不同,選擇不同型號的樹脂。吸附樹脂,內特別是非極性吸附容樹脂在吸附葯液中的成分,主要是物理結構(如比表面、孔徑等)起作用,如用於甜菊糖提取,常用AB—8型,而中葯分離提取以及抗生素的提純常用X-5型,不同的樹脂有不同的針對性。
其操作的基本程序是:中葯提取液→通過大孔樹脂吸附上有效成分的樹脂→洗脫液→回收溶液→葯液→乾燥→半成品。該技術已較廣應用於中葯新葯的開發和中成葯的生產中。主要用於分離和提純過程。
⑤ 大孔樹脂的吸附條件
吸附條件和解吸附條件的選擇直接影響著大孔吸附樹脂吸附工藝的好壞,因而在整個工藝過程中專應綜合考慮各屬種因素,確定最佳吸附解吸條件。影響樹脂吸附的因素很多,主要有被分離成分性質(極性和分子大小等) 、上樣溶劑的性質(溶劑對成分的溶解性、鹽濃度和PH 值) 、上樣液濃度及吸附水流速等。通常,極性較大分子適用中極性樹脂上分離,極性小的分子適用非極性樹脂上分離;體積較大化合物選擇較大孔徑樹脂;上樣液中加入適量無機鹽可以增大樹脂吸附量;酸性化合物在酸性液中易於吸附,鹼性化合物在鹼性液中易於吸附,中性化合物在中性液中吸附;一般上樣液濃度越低越利於吸附;對於滴速的選擇,則應保證樹脂可以與上樣液充分接觸吸附為佳。影響解吸條件的因素有洗脫劑的種類、濃度、pH值、流速等。洗脫劑可用甲醇、乙醇、丙酮、乙酸乙酯等,應根據不同物質在樹脂上吸附力的強弱,選擇不同的洗脫劑和不同的洗脫劑濃度進行洗脫;通過改變洗脫劑的pH 值可使吸附物改變分子形態,易於洗脫下來; 洗脫流速一般控制在0. 5 ~5mL/ min。
⑥ 大孔樹脂靜態吸附和動態吸附的區別
靜態吸附是為了考察最佳大孔樹脂、最佳洗脫劑及濃度以及PH等對樣品吸附的影響,這內些用靜態吸附我想容應該是為了節約大孔樹脂用量吧...而動態吸附包括泄露曲線和洗脫曲線的考察,前者是為了確定最大上液體積,後者是為了確定洗脫液用量,但是動態吸附試驗必須在靜態基礎上才能完成.....
⑦ 大孔吸收樹脂在現代中葯生產中的應用
大孔吸收樹脂在現代中葯生產中的應用
大孔吸附樹脂是近代發展起來的一類有機高聚物吸附劑,70年代末開始將其應用於中草葯成分的提取分離。中國醫學科學院葯物研究所植化室試用大孔吸附樹脂對糖、生物鹼、黃酮等進行吸附,並在此基礎上用於天麻、赤勺、靈芝和照山白等中草葯的提取分離,結果表明大孔吸附樹脂是分離中草葯水溶性成分的一種有效方法。用此法從甘草中可提取分離出甘草甜素結晶。以含生物鹼、黃酮、水溶性酚性化合物和無機礦物質的4種中葯有效部位的單味葯材(黃連、葛根、丹參、石膏)水提液為樣本,在LD605型樹脂上進行動態吸附研究,比較其吸附特性參數。結果表明除無機礦物質外,其它中葯有效部位均可不同程度的被樹脂吸附純化。不同結構的大孔吸附樹脂對親水性酚類衍生物的吸附作用研究表明不同類型大孔吸附樹脂均能從極稀水溶液中富集微量親水性酚類衍生物,且易洗脫,吸附作用隨吸附物質的結構不同而有所不同,同類吸附物質在各種樹脂上的吸附容量均與其極性水溶性有關。用D型非極性樹脂提取了絞股藍皂甙,總皂甙收率在2.15%左右。用D1300大孔樹脂精製「右歸煎液」,其干浸膏得率在4~5%之間,所得干浸膏不易吸潮,貯藏方便,其吸附回收率以5-羥甲基糖醛計,為83.3%。用D-101型非極性樹脂提取了甜菊總甙,粗品收率8%左右,精品收率在3%左右。用大孔吸附樹脂提取精製三七總皂甙,所得產品純度高,質量穩定,成本低。將大孔吸附樹脂用於銀杏葉的提取,提取物中銀杏黃酮含量穩定在26%以上。江蘇色可賽思樹脂有限公司整理用大孔吸附樹脂分離出的川芎總提物中川芎嗪和阿魏酸的含量約為25%~29%,收率為0.6%。另外大孔吸附樹脂還可用於含量測定前樣品的預分離。
黃酮精製純化
張紀興等對地錦草的提取工藝進行了研究,旨在提高總黃酮的收率,選用D101型大孔樹脂,以地錦草總黃酮含量為考察指標,採用L9(34)正交試驗表,以直接影響地錦草總黃酮收率的上柱量、吸附時間及洗脫液的濃度為實驗因素,每個因素取3個水平。結果10ml樣品液(每1ml75%乙醇液含地錦草干浸膏0.5g)上柱、靜置吸附時間30min、用95%乙醇洗脫地錦草總黃酮為最佳工藝;洗脫液乾燥後的總固體物中的地錦草總黃酮含量大於16%,高於醇提干浸膏的7.61%,且洗脫率大於93%。高紅寧等採用紫外分光光度法測定苦參中總黃酮的含量,使用AB-8型大孔吸附樹脂對苦參總黃酮的吸附性能及原液濃度、pH值、流速、洗脫劑的種類對吸附性能的影響進行了研究,結果AB-8型樹脂對苦參總黃酮的適宜吸附條件為原液濃度0.285mg/ml、pH值4、流速每小時3倍樹脂體積、洗脫劑用50%乙醇時,解吸效果較好,表明AB-8型樹脂精製苦參總黃酮是可行的。麻秀萍等用不同型號的大孔吸附樹脂研究了中葯銀杏葉的提取物銀杏葉黃酮的分離,發現S-8型樹脂吸附量為126.7mg/g,洗脫溶劑的乙醇濃度90%,解吸率52.9%,AB-8型樹脂吸附量102.8mg/g,用溶劑為90%的乙醇解吸,解吸率是97.9%,表明不同型號的樹脂對同一成分的吸附量、解吸率不同。崔成九等用大孔樹脂分離葛根中的總黃酮,將用70%乙醇提取的葛根濃縮液加到大孔樹脂柱上,先用水洗脫,再用70%乙醇洗脫至薄層色譜(TLC)檢查無葛根素斑點為止,結果葛根總黃酮收率為9.92%(占生葯總黃酮的84.58%),高於正丁醇法的5.42%。兩種方法的主要成分基本一致,但用大孔樹脂法分離葛根總黃酮具有收率高、成本低、操作簡便等優點,可供大生產使用。
皂苷精製純化
赤芍為中葯,其主要成分為芍葯苷、羥基芍葯苷、芍葯苷內酯等化合物,簡稱赤芍總苷。姜換榮等用大孔吸附樹脂分離赤芍總苷,芍葯以70%的乙醇迴流提取,減壓濃縮,過大孔吸附樹脂柱,分別用水、20%乙醇洗脫,收集20%乙醇洗脫液,減壓濃縮得赤芍總苷,並用高效液相色譜法(HPLC)對所得赤芍總苷中的芍葯苷含量進行測定,赤芍總苷的收率為5.4%,其中芍葯苷的含量為75%。本法操作簡便,得率穩定,產品質量穩定。金芳等用D101型大孔吸附樹脂吸附含芍葯中葯復方提取液,以排除其他成分的干擾,並將50%乙醇洗脫液用HPLC法測定,結果可以快速准確地測定復方中葯制劑中的芍葯苷含量,且重現性好,回收率較高。臧琛等以中葯抗感冒顆粒中芍葯苷含量為指標,比較了醇沉、超濾及大孔吸附樹脂精製3種方法,結果芍葯苷的含量大小依次為醇沉、大孔樹脂、超濾法。醇沉法含量雖高,但工藝較為復雜,耗時長。陳延清採用HPLC法測定丹參素、芍葯苷的含量,選用7種不同類型的大孔吸附樹脂(X-5,AB-8,NK-2,NKA-2,NK-9,D3520,D101,WLD),精製後提取物的含固率顯著降低,丹參素的損失都很大,X-5,AB-8,WLD3種樹脂對芍葯苷的保留率都在80%以上。7種大孔樹脂在樂脈膠囊的精製中對丹參素保留率都很低,因而對丹參葯材不宜採用;部分類型樹脂對精製芍葯苷類成分可以採用。苟奎斌等採用大孔吸附樹脂,用HPLC法測定肝得寧片中的連翹苷的含量,用DA-101型樹脂吸附樣品,以水洗脫干擾成分,將70%乙醇洗脫液用於含量測定。利用HPLC法檢測大孔樹脂柱處理過的樣品液,操作步驟少,色譜性污染小,柱壓低,具有分離度高、專屬性強及重現性好、靈敏度高等特點。蔡雄等研究D101型大孔吸附樹脂富集、純化人參總皂苷的工藝條件及參數。人參提取液45ml(5.88mg/ml)上大孔樹脂柱(15mm×90mm,乾重2.52g),用蒸餾水100ml、50%乙醇100ml依次洗脫,人參總皂苷富集於50%乙醇洗脫液中,且該法除雜質能力強;通過大孔吸附樹脂富集與純化後,人參總皂苷洗脫率在90%以上,50%乙醇洗脫液乾燥後總固物中人參總皂苷純度可達60.1%。劉中秋等研究了大孔樹脂吸附法富集保和丸中有效成分的工藝條件及參數,以保和丸中的陳皮的主要成分橙皮苷和總固物為評價指標。結果保和丸提取液(500mg/ml)5ml上D101型大孔樹脂柱(15mm×10mm),吸附30min後,先用100ml蒸餾水洗脫除去雜質,然後用100ml50%乙醇洗脫橙皮苷為最佳工藝條件;通過大孔樹脂富集後橙皮苷洗脫率在95%以上,50%乙醇洗脫液乾燥後總固物約為處方量的4%。劉中秋等將D101型大孔樹脂用於分離三七皂苷,結果吸附量為174.5mg/g,用50%乙醇解吸,解吸率達80%,產品純度71%。金京玲用D101型樹脂提取分離蒺藜總皂苷,結果吸附量為6mg/g,用濃度為80%的乙醇解吸,解吸率為96%。劉中秋等研究了中葯毛冬青中的有效成分毛冬青總皂苷的提取分離工藝,選用D101型大孔吸附樹脂,結果吸附量為120mg/g,用50%乙醇解吸,解吸率為95%,產品純度71%。上述結果表明同一型號的樹脂對不同成分的吸附量不同。杜江等將D3520型大孔吸附樹脂用於黃褐毛忍冬總皂苷的提取分離,並與原工藝有機溶劑提取法進行比較,結果總皂苷的純度、得率均明顯高於原法,且工藝簡化、成本降低。
生物鹼精製純化
傳統方法一般用陰離子交換樹脂分離純化生物鹼,解吸時需要用酸、鹼或鹽類洗脫劑,會引入雜質,給後來的分離帶來不便,換用吸附樹脂則可避免此類問題。劉俊紅等將3種大孔吸附樹脂(D101,DA-201,WLD-3)應用於延胡索生物鹼的提取分離,方法是讓延胡索水提取液通過已處理過的樹脂柱,用水洗至流出液無色,然後分別用30%,40%,50%,60%,70%,80%,90%,95%乙醇依次洗脫,收集各段洗脫液,進行薄層鑒別。結果從樹脂上洗脫的延胡索乙素占總生葯量D101型為0.069%,WLD-3型為0.072%,DA-201型為0.053%。樹脂柱用40%乙醇洗脫後除去了干擾性成分,便於用HPLC法測定,保護了色譜柱,且經過大孔吸附樹脂提取分離的延胡索生物鹼成品體積小,相對含量高,產品質量穩定,具有良好的生理活性。羅集鵬等將大孔吸附樹脂用於小檗鹼的富集與定量分析,把黃連粉末以70%甲醇超聲提取30min,加到已處理的大孔樹脂小柱上,用pH值為10~11的水洗脫,再用含0.5%硫酸的50%甲醇80ml洗脫,洗脫液用10%氫氧化鈉調至鹼性後,於水浴上揮去大部分溶劑,並轉移至10ml量瓶中,用水稀釋至刻度,以HPLC法測定,結果小檗鹼與其他生物鹼能很好地分離。表明大孔吸附樹脂對醛式或醇式小檗鹼具有良好的吸附性能,且不易被弱鹼性水解吸,可用於黃連及其制劑尤其是含糖制劑中小檗鹼的富集和水溶性雜質的去除。楊樺等採用大孔吸附樹脂比較並篩選烏頭類生物鹼的提取分離最佳工藝條件,將川烏水提取液制備成8ml/g濃縮液,上柱,測定總生物鹼的含量,結果該方法可分離出樣品中85%以上的烏頭類生物鹼,同時可除去浸膏中總量為82%的水溶性固體雜質。
復方制劑精製純化
饒品昌等用大孔樹脂D1300,通過正交試驗探討了右歸煎液的精製工藝,結果影響精製的主要因素為右歸煎液濃度、流速和徑高比,樹脂最大吸附量為1.10g生葯/ml,吸附回收率為83.34%(以5-羥甲基糖醛計)。晏亦林等將四逆湯提取液上大孔樹脂,水洗後用70%乙醇洗脫,四逆湯精製樣品的TLC測試結果表明,經大孔樹脂處理後3味主要成分基本能檢出,樹脂處理前後樣品的HPLC圖譜峰位、峰形基本相似,但TLC及HPLC圖譜中烏頭鹼特徵峰不明顯。
使用方法
在運用大孔吸附樹脂進行分離精製工藝時,其大致操作步驟為:大孔吸附樹脂預處理——樹脂上柱——葯液上柱——大孔吸附樹脂的解吸——大孔吸附樹脂的清洗、再生。由於每一個操作單元都會影響到大孔吸附樹脂的分離效果,因此對大孔吸附樹脂的精製工藝和分離技術的要求就相對較高。
使用注意事項
該類樹脂在通常的儲存及使用條件下性質十分穩定,不溶於水、酸、鹼及有機溶劑,也不與它們發生化學反應。
搬運、裝卸操作應輕緩,堆放穩定、規則,勿猛烈摔打。如灑落會導致地面濕滑,要注意防止滑倒。
儲存此種材料的儲存溫度請勿高於90℃,最高使用溫度180℃。
濕態0℃以上保存。儲存狀態下請保持包裝密封完好,以防失水;如發生乾燥失水,應以乙醇浸泡干態樹脂約2小時,用清水洗干凈後再重新包裝或使用。
嚴防冬季將球體凍裂。如發現凍結現象,請於室溫下緩慢融化。
運輸或儲存過程中嚴防和有異味、有毒物品及強氧化劑混雜堆放。
前景
大孔吸附樹脂純化技術在中葯制葯工業中是有發展前景的實用新技術之一,盡管它在中葯有效成分的精製純化方面還存在著一些問題。隨著研究的深入以及相關標准、法規的進一步完善,一定會開發出高選擇性的樹脂,以進一步提高中葯有效成分的提取、分離、富集效率。
⑧ 大孔吸附樹脂吸附問題
第一個問題:
吸附抄1~3次,吸附量成直線增加,這是正常的。大孔吸附樹脂出廠前都會精製以洗脫致孔劑,但洗脫干凈程度直接關繫到成本,所以一般出廠不會洗脫特別干凈,就會有部分致孔劑佔用孔道影響吸附效果,而隨著使用次數增多,通過不斷的再生、解析等操作,殘留的致孔劑不斷被洗脫下來,相應孔道也被打開
一般新樹脂吸附曲線,開始緩慢上升,到一定程度達到峰值並趨於穩定,而後又緩慢下降
第二個問題
吸附量與溶液pH肯定有關系,大孔吸附樹脂吸附主要通過范德華力、氫鍵作用力、色散力等,所以要吸附的底物應該以分子態被吸附,若以離子態存在則將很難被吸附,所以你應根據你所要處理的物質調節溶液的PH,已達到最佳的吸附效果
希望對你有幫助,樹脂方面有問題,可隨時hi我~~~
⑨ 大孔樹脂吸附原理
大孔樹脂吸附原理:
大孔樹脂吸附作用是依靠它和被吸附的分子(吸附質) 之間的范德華引力,通過它巨大的比表面進行物理吸附而工作,使有機化合物根據有吸附力及其分子量大小可以經一定溶劑洗脫分開而達到分離、純化、除雜、濃縮等不同目的。
大孔吸附樹脂為吸附性和篩選性原理相結合的分離材料。大孔吸附樹脂的吸附實質為一種物體高度分散或表面分子受作用力不均等而產生的表面吸附現象,這種吸附性能是由於范德華引力或生成氫鍵的結果。
同時由於大孔吸附樹脂的多孔性結構使其對分子大小不同的物質具有篩選作用。通過上述這種吸附和篩選原理,有機化合物根據吸附力的不同及分子量的大小,在大孔吸附樹脂上經一定的溶劑洗脫而達到分離的目的。
(9)大孔樹脂樣品吸附擴展閱讀:
大孔樹脂吸附的用途:
大孔吸附樹脂吸附技術最早用於廢水處理、醫葯工業、化學工業、分析化學、臨床檢定和治療等領域,近年來在我國已廣泛用於中草葯有效成分的提取、分離、純化工作中。
與中葯制劑傳統工藝比較,應用大孔吸附樹脂技術所得提取物體積小、不吸潮、易製成外型美觀的各種劑型,特別適用於顆粒劑、膠囊劑和片劑,改變了傳統中葯制劑的粗、黑、大現象,有利於中葯制劑劑型的升級換代,促進了中葯現代化研究的發展。
國家中醫葯管理局等單位聯合發布的2002~2010《醫葯科學技術政策》明確提出:研製開發中葯動態逆流提取、超臨界萃取、中葯飲片浸潤、大孔樹脂分離等技術。
⑩ 如何應用大孔樹脂實現成分的吸附分離
大孔吸附樹脂是一類不含離子交換基團
,具有大孔結構的
高分子吸附劑。理化性質穩定
,不溶於酸、
鹼及有機溶媒
,對有
機物有濃縮、
分離的作用
,且不受無機鹽類及強離子、
低分子化
合物的干擾。根據樹脂的表面性質
,大孔吸附樹脂可以分為非
極性、
中極性和極性
3
類。非極性吸附樹脂是由偶極距很小的
單體聚合而得
,不含任何功能基團
,孔表的疏水性較強
,可通過
與小分子內的疏水部分的作用吸附溶液中的有機物
,最適用於
從極性溶劑(如水)中吸附非極性物質。
中極性吸附樹脂含有酯
基
,
其表面兼有疏水和親水部分
,
既可由極性溶劑中吸附非極
性物質
,也可以從非極性溶劑中吸附極性物質。極性樹脂含有
醯胺基、
氰基、
酚羥基等含氮、
氧、
硫極性功能基
,它們通過靜電
相互作用吸附極性物質
[3
]
。根據樹脂孔徑、
比表面積、
樹脂結
構、
極性差異
,大孔吸附樹脂又分為許多類型。
大孔吸附樹脂是吸附和篩選原理相結合的分離材料。
它的
吸附性是由於范德華引力或生成氫鍵的結果。
篩選原理是由於
其本身多孔性結構所決定。由於吸附和篩選原理
,有機化合物
根據吸附力的不同及分子量的大小
,在大孔吸附樹脂上經一定
的溶劑洗脫而分開。
這使得有機化合物尤其是水溶性化合物的
提純得以大大簡化。
但大孔吸附樹脂分離效果受以下等眾多因
素制約。