導航:首頁 > 耗材問題 > 反滲透膜的研究進展

反滲透膜的研究進展

發布時間:2023-01-25 11:06:18

⑴ 陶氏反滲透膜的歷史發展

簡單說的話,最早是科研院所的技術研發,後來就是拿著技術出來成了了一個專公司,發展過程中屬遇到了問題,後來被陶氏收購,最後利用陶氏的品牌和渠道,陶氏膜牢牢占據國際市場。這個是上次陶氏金牌代理上海保茲過來培訓給我們講的,我覺得比較好記,碼了這么多字,記得採納。

⑵ 反滲透膜的發展趨勢怎麼樣

反滲透膜用處非常廣泛,很多行業都離不開它。最開始反滲透膜用處比較單一,但是隨著時間的發展,反滲透膜有更廣闊的發展空間。
反滲透膜是以脫鹽為目的開發的,對膜的要求也只是為分離無機鹽和水,隨著反滲透膜用途的擴大,目前已達到根據用途對膜的構造進行設計的階段。目前將傳統的中壓膜改為低壓膜或超低壓膜的動向非常活躍,其發展趨勢概括如下:
在脫鹽領域中,對於海水淡化由高壓(5-7 MPa)向超高壓(8-8.5 MPa)。對於鹹水淡化將向脫鹽(地下水、江河水)、廢水處理(工業廢水、城市污水)和超純水(電子工業用水、醫療用水)等三方面發展。對處理壓強將由中壓(3-4 MPa)向低壓(1-2 MPa)甚至超低壓(1 MPa以下)。同時在有用物質濃縮回收領域會有更大的發展。
目前,在海水淡化方面,利用復合膜成功的達到了高脫鹽率。在鹹水淡化方面,目前將傳統的中壓膜改為低壓膜或超低壓膜,並保持脫鹽率不變(或提高),可以說是時代的潮流。
反滲透膜工程應用的另一個發展方向是反滲透膜膜組器與超濾、微濾、納濾、EDI等組器的有機地組合應用,充分發揮各種膜分離技術的特性,形成一個完整的系統工程,達到濃縮、分離、提純的目的。
鑒於RO技術的最近進展,在不久的將來,該領域中可望有如下的發展:
一,將開發去除小的氯化物有機分子的聚合物膜。
二, 將開發分離烴混合物的無機RO膜
三,以動力膜為基礎,將開發出無機和有機混合材料膜。
四,採用更先進的物理方法獲悉膜的結構及膜中的液體的結構。
五,以控制聚合物體球粒的尺寸及球粒中聚合物的密度來控制膜的孔尺寸。
六,聚合物球粒的概念也將被用於復合膜的設計。
七,在膜孔尺寸和聚合物-溶液相互作用基礎上,將發展更精確的傳遞理論。
八,由控制膜孔尺寸和膜溶質相互作用,將開發能將混合溶質分級的膜。
九, 膜污染將被膜的設計及膜組件的設計所控制。
十,RO和其它分離過程的混合分離系統將日益增長的滲入化學工業和有關工業,越來越多的將化學和生物反應與膜分離技術相結合。

⑶ 安吉爾的長效反滲透膜真的能用5年嗎凈水效果會保持不變嗎

可以用5年,凈水效果不會有所下降的。

清華大學環境學院飲用水安全教研所副教授王小毛在出席安吉爾新品發布會上表示,與傳統RO反滲透膜相比,長效反滲透膜通過改變傳統膜水流向,減少污染物沉積,使用壽命提升50%,可長達5年,且濾水效果5年穩定在95%以上。

凈水效果、凈水速度、廢水比例等是凈水器用戶比較關注的幾大問題,安吉爾長效反滲透膜技術有效克服了傳統反滲透膜水通量低、脫鹽率低、使用壽命短、廢水比例高等常見問題,該技術目前已獲得8項國家專利和2項國際專利。其首創的獨特卷制技術,可保障濾水效果5年穩定在95%以上,獨創的螺旋式結構,使膜表面水流沖刷速度提升5倍,通過提升水流速度增加膜的抗污能力,從而將膜的使用壽命提升50%。此外,安吉爾長效反滲透膜將水的利用率提升至75%,遠超國家一級水效60%的標准,幫助用戶達到節約用水的目的。

除了過濾效果,水的口感也是消費者比較關注的問題。活性炭可以去除水中的有機物、余氯、異味等,使水質純凈,口感更好,然而如何讓活性炭長效抑菌一直是凈水界頭疼的問題。

2014年,安吉爾與西南交通大學高分子材料研究所達成戰略合作,共建水質實驗室,開展「復合催化抗菌抑菌,環境凈化材料及其技術應用」的課題研究,共同研發抑菌型凈水材料。同時這一課題也是國家高技術研究發展計劃(863計劃)的重要課題,其研究成果納米晶須材料已被作為唯一抗菌材料樣品入選「探月計劃」,為太空水處理提供安全飲用水保障。

安吉爾凈水器搭載納米晶須活性炭抑菌技術,是行業內首家將納米晶須技術應用到凈水器的品牌,讓每個家庭喝到航天級純凈好水。

正是這2大核心黑科技,保證了安吉爾凈水器卓越的凈水效果。

⑷ 反滲透的最新進展

國外已有日產水量10萬噸級的反滲透海水淡化裝置,目前正在運行的大型卷式膜海水淡化裝置的單機能力為日產水量6000噸。國內已建和在建的反滲透海水淡化裝置日產水量350-1000噸,國外單段反滲透海水淡化的水利用率最高達45%,國內多為35%,另外國內漁船上裝載的反滲透海水淡化膜多用直徑為2.5英寸的小型膜元件。目前國內批量生產海水淡化裝置的公司不超過10家,在河北建設的日產水量18000噸的「亞海水」脫鹽裝置是國內最大的使用海水淡化膜的反滲透裝置。今後國內海水淡化膜的應用將進入一個新時期,不久的將來,我國也會建設日產水萬噸級的海水淡化裝置。此外國內已開始商業生產海水淡化反滲透膜元件。

⑸ 目前先進的水處理技術

目前最先進的水處理技術為反滲透處理技術 反滲透技術是一種膜分離技術。反滲透技術是一種高效率、低能耗能、無污染的先進技術,主要應用於純水制備與海水淡化。反滲透技術是當今最先進和最節能有效的膜分離技術。反滲透膜、鈉濾設備、PP棉等其原理是在高於溶液滲透壓的作用下,依據其他物質不能透過半透膜而將這些物質和水分離開來。由於反滲透膜的膜孔徑非常小(僅為10A左右),因此能夠有效地去除水中的溶解鹽類、膠體、微生物、有機物等(去除率高達97-98%)。系統具有水質好、耗能低、無污染、工藝簡單、操作簡便等優點。本公司與日本日東電工美國HYDRANAUTICS(海德能)公司及陶氏FILMTEC公司合作,採用CAD計算機模擬設計,確保了系統的科學合理。
二級反滲透是以採用一級反滲透的產水作為原水,進行第二次反滲透的凈化,產水導電率≤0.5μs/cm。 各項指標均達到中國葯典2000版的要求,運行成本底、無污染、水質穩定,已為多間葯廠及飲料廠使用。在飲用純凈水方面已廣泛應用。反滲透技術常應用於預除鹽處理, 能夠使離子交換樹脂的負荷減輕90%以上,樹脂的再生劑用量也減少90%。因此不僅節約運行費用,而且還利於環境保護。反滲透獨特水處理技術是其他凈水方法如蒸餾、電滲析、離子交換等無法達到的。 RO(Reverse Osmosis)反滲透技術是利用壓力表差為動力的膜分離過濾技術,源於美國二十世紀六十年代宇航科技的研究,後逐漸轉化為民用,目前已廣泛運用於科研、醫葯、食品、飲料、海水淡化等領域。
RO反滲透膜孔徑小至納米級(1納米=10-9米),在一定的壓力下,H2O分子可以通過RO膜,而源水中的無機鹽、重金屬離子、有機物、膠體、細菌、病毒等雜質無法通過RO膜,從而使可以透過的純水和無法透過的濃縮水嚴格區分開來。 RO膜過濾後的純水電導率 5 s/cm, 符合國家實驗室三級用水標准。再經過原子級離子交換柱循環過濾,出水電阻率可以達到18.2M .cm,超過國家實驗室一級用水標准(GB682—92)。
反滲透是目前高純水制備中應用最廣泛的一種脫鹽技術,它的分離對象是溶液中的離子范圍和分子量幾百的有機物,反滲透(RO)、超過濾(UF)、微孔膜過濾(MF)和電滲析(ED)技術都屬於膜分離技術。
RO反滲透技術是近20年來廣泛應用的水處理技術,它對提高水資源的利用,緩解全球性水資源緊缺有實際意義。

RO反滲透膜介紹

膜的綜述: 一種最通用的廣義定義是「膜」為兩相之間的一個不連續區間。因而膜可為氣相、液相和固相,或是他們的組合。簡單的說,膜是分隔開兩種流體的一個薄的阻擋層。描述膜傳遞速率的膜性能是膜的滲透性。

滲透膜是一種介質,它是靠壓力使溶液中的溶劑(一般常指水)通過反滲透膜(一種半透膜)而分離出來與滲透方向相反,可使用大於滲透壓的反滲透法進行分離、提純和濃縮溶液。反滲透膜的主要分離對象是溶液中的離子范圍。反滲透,英文為Reverse Osmosis,是花費數億美元經過多年的精心研製而成的高科技水處理技術。這種薄膜分離技術,是依靠滲透膜在壓力下使溶液中的溶劑與溶質進行分離的程。

一、 反滲透基本原理
1. 反滲透過程
反滲透是利用反滲透膜選擇性的只能通過溶劑(通常是水)而截留離子物質的性質,以膜兩側靜壓差為推動力,克服溶劑的滲透壓,使溶劑通過反滲透膜而實現對液體混合物進行分離的膜過程。
反滲透同NF、UF一樣均屬於壓力驅動型膜分離技術,其操作壓差一般為1.5~10.5MPa,截留組分為(1~10)X10-10m小分子物質。除此之外,還可以從液體混合物中去處全部懸浮物、溶解物和膠體,例如從水溶液中將水分離出來,以達到分離、純化等目的。目前,隨著超低壓反滲透膜的開發,已可在小於1MPa壓力下進行部分脫鹽,適用於水的軟化和選擇性分離。
2. 分離機理
反滲透膜的選擇透過性與組分在膜中的溶解、吸附和擴散有關,因此除與膜孔的大小、結構有關外,還與膜的化學、物理性質有密切關系,即與組分和膜之間的相互作用密切相關。由此可見,反滲透分離過程中化學因素(膜及其表面特性)起主導作用。
3. 反滲透的應用
反滲透技術的大規模應用主要是苦鹹水和海水淡化,此外被大量地用於純水制備及生活用水處理,以及難於用其他方法分離地混合物。反滲透地工業應用包括:(1)海水脫鹽;(2)飲用水生產;(3)純水生產。

⑹ 污水處理膜技術的發展階段及現狀!需要相關資料!

膜分離技術的發展和現狀

膜分離是人們所掌握的最節能的物質分離(包括分級、純化、精製、濃縮)技術之一。近三十年來發展極其迅速,已從單純的海水與苦鹹水脫鹽、純水及超純水的制備、工業用水的回用,逐步拓展到環保、化工、醫葯、食品、航天等領域中,以每年大於10%的速率遞增,發展前景備受關注。
自20世紀60年代Loeb和Saurirajan研製成功了世界第一張非對稱型醋酸纖維素反滲透膜以來,大規模海水淡化就變成了現實;20世紀70~80年代開發的超濾、氣體分離膜等也已進入工業應用;80~90年代建成無水酒精滲透氣化裝置,現已大規模推廣應用於有機物的回收和脫水;90年代以來被稱之為膜接觸器(membrane contactor)的膜萃取、膜吸收、膜汽提(membrane-based striping)、膜蒸餾(membrane distillation)等,為膜技術全面溶入大化工(流程工業:包括石油化工、化工、精細化工、制葯、食品、發酵工程)領域提供了技術支持;近幾年來膜促進傳遞(facilitated transport)、膜反應器(membrane-reactor)、膜感測器(membrane sensor)、控制釋放(controlled release)等膜技術發展很快,膜式燃料電池(membrane fuel cell)則成為當今發達國家探索研究的熱點。
目前膜分離技術已被廣泛地用於水處理領域如海水淡化、苦鹹水脫鹽、超純水製取;醫葯工業,人工臟器如人工腎
(artificial kidney)、膜式氧合器(membrane oxygenator)、人工肝的制備,以及葯劑的濃縮、提純;食品工業,如果汁和果肉等的濃縮、飲料的滅菌和純清、從家畜等動物的血液中提取蛋白質;石油化學工業,如天然氣中回收氦,合成氨廠尾氣中回收氫、石油伴生氣二氧化碳的回收、輕烴氣流中脫除硫化氫等;環境保護,如廢水(電鍍廢水、印染廢水、石油化工廢水、食品制葯工業廢水)中有用物質的回收,以及城市生活污水和放射性廢水的處理等。
膜與膜技術的應用領域十分廣闊,在當今世界高技術競爭中,也佔有極其重要的位置,特別是載人航天、大洋深海探索研究與開發中離不開它,因而深受發達國家的關注。歐盟、日本、美國等早年在膜材料的基礎研究和應用開發方面投入大量人力、物力,加拿大、義大利、荷蘭和英國等也在膜的基礎研究和開發應用上做出了大量的貢獻。這些國家(如美國的KOCH、GE、DOW、DuPont;荷蘭的norit等公司)在膜元件的制備技術上處於絕對領先的地位。
中國膜科學技術開始於1958年離子交換膜的研究;20世紀60年代研究反滲透膜,曾組織全國海水淡化會戰,大大促進我國膜科學技術的發展;70年代就已開發出反滲透(reverse osmosis)、超濾(ultrafiltration)、微濾(microfiltration)和電滲析(electrodialysis)等器件設備,隨後投入工業應用;80年代起除繼續發展液體分離之外,氣體膜分離和滲透氣化等已走過了開發和研究階段,現在已進入工業應用階段,其它新技術也在不斷研究開發之中。
膜科學與技術的發展與應用可分為膜元件的製造、膜設備的研製、膜軟體的研發、膜應用四個環節。膜製造商只保證膜本身的標准分離性能,即在規定測試條件下的分離性能;膜硬體與膜軟體是膜分離工程公司的工作,膜分離工程公司首先根據市場需求和用戶要求分離的物料性狀和目標產物標准進行實驗研究,在滿足用戶要求的條件下確定膜元件的種類和數量,膜分離穩定運行的條件和清洗恢復條件,這就是膜軟體;膜硬體就是膜元件和膜設備,膜設備實質上是機電一體化設備,膜元件是膜分離設備的核心,設備的其它部分都是為膜元件分離功能的發揮提供運行條件(溫度,壓力,流速流量等)的;膜軟體是靠膜硬體來運行的,膜硬體的設計製作基礎是膜軟體;膜用戶只能按照與膜分離工程公司達成的一致嚴格執行《膜分離設備運行規范》的要求,將膜分離設備與自己流程的前後工序連接運行以達到自己對膜分離工序所確定的運行目標。近年來膜過程(膜軟體、膜硬體)的國內市場已經進入成熟期(高速增長,價格穩定)。

膜技術的主要分離過程
國際理論與應用化學聯合會(IUPAC)將膜定義為:一種三維結構,三維中的一度(如厚度方向)尺寸要比其餘兩度小得多,並可通過多種推動力進行質量傳遞。這樣膜過程就應該被定義為以膜為介質進行質量傳遞的一種化工單元過程或化工單元操作;很顯然膜分離屬於化工單元操作。
膜分離技術按傳質推動力可分為壓力差、濃度差、溫度差、電位差等推動力膜;按膜組件結構可分為平板(盒式)膜、螺旋卷式膜、中空纖維膜、管式膜等;按功能層材料可分為無機膜(陶瓷膜、金屬膜、碳分子篩膜等)和有機膜。
微濾、超濾、納濾(nanofiltration)與反滲透都是以壓力差為推動力的液體膜過程,當膜兩側存在一定壓力差時,可使一部分溶劑及小分子的組分透過膜,而微粒、大分子、鹽的離子等被膜截留下來,從而達到分離目的。四個過程的透過機理基本相同,主要是被分離物顆粒或分子、離子的大小和所採用膜的結構與性能有所差異。按照國際理論與應用化學聯合會(IUPAC)對這四種膜過程的定義,微濾(MF)是指大於0.1μm的顆粒或可溶物被截留的壓力驅動型膜過程;超濾(UF)是指不大於0.1μm大於2nm的顆粒或可溶物被截留的壓力驅動型膜過程;反滲透(RO)是指高壓下溶劑逆著其滲透壓而選擇性透過的膜過程;納濾是指不大於2nm的顆粒或可溶物被截留的壓力驅動型膜過程。微濾的壓差范圍為0.10~0.20MPa;超濾的壓差范圍為0.10~0.50MPa; 反滲透被用於截留溶液中的鹽或其它小分子物質(分子量小於200),所施加的壓力在2MPa左右,也可高達10MPa;納濾用以分離分子量約為幾百至幾千的溶液組分,其壓差范圍為0.5~2.0MPa。
電滲析是在電場作用下使溶液中的陰、陽離子選擇性地分別透過陰、陽離子交換膜,進行定向遷移的分離過程。該過程主要用於苦鹹水脫鹽、飲用水制備、工業用水處理等。近十多年來,開始應用於有機酸脫鹽與純化、廢酸鹼回收等;膜電解過程中,在兩電極上存在電化學反應,並有氣體產生,主要在氯鹼工業中用於大規模生產離子膜級氫氧化鈉。
氣體分離膜是指在壓力差下,利用氣體中各組分在膜中滲透速率的差異,達到各組分分離的過程。氣體分離膜已大規模用於合成氨廠的氮、氫分離,空氣富氧、富氮,天然氣中二氧化碳與甲烷的分離等。
滲透氣化與蒸汽滲透(vaper permeation)均是利用待分離混合物中某組分具有優先選擇性透過膜的特點,使料液側優先滲透組分以溶解-擴散透過膜而實現分離的過程。兩者的差異在於滲透汽化過程採用負壓操作,進料物流為液態,優先透過膜的組分在膜下游側汽化,並在冷凝器中冷凝和收集;而蒸汽滲透採用正壓操作,進料物流為氣相,常為對膜具有相互作用的有機分子透過膜。滲透氣化主要用於有機物脫水(親水膜)、水中有機物的脫除(疏水膜)、有機混合物分離等方面的應用,被認為是最有希望取代高能耗精餾技術的膜過程,其中有機溶劑脫水及水中有機物脫除已有工業裝置;蒸汽滲透適用於空氣中有機溶劑的回收,隨著環保意識的增強,蒸汽滲透將會獲得較大的推廣應用。
另外還有兩類正在開發與推廣應用的新型膜技術:一類是目前稱之為膜接觸器,包括膜基吸收、膜級萃取、膜蒸餾、膜基汽提等。在這些過程中,膜介質本身對待處理的混合物無分離作用,主要利用膜的多孔性、親水性或疏水性,為兩相傳遞提供較大而穩定的相接觸面,可克服常規分離中的液泛、返混等影響,因而近十餘年來,深受化工界的關注;另一類是以膜為關鍵技術的集成分離過程,包括膜與蒸餾、膜與吸附、膜與反應等相結合的集成過程,具有常規分離過程所不能及的優點,也正在受到重視和發展。
隨著科學技術的發展,人們模仿生物膜的某些功能,研製出各種功能的合成膜,應用於日常生活與工業生產過程中。可以認為,膜產業已成為21世紀發展最快的高新技術產業之一。
http://wenku..com/link?url=jXA21_ggIENbKblGrdKo56PVI3W_nakV4uuuYRS9xiY_btaO4ZOrmW-3WOjIgo1mF2MYoDXihZ6oU2HKVM-67NhDEdq-zG4SSETB3m0xxBS

⑺ 反滲透膜是什麼

通俗理解:反滲透膜技術,可將溶液分離,制備出所需水質!反滲透膜版又稱逆滲透膜,是一種以權壓力差為推動力,從溶液中分離出溶劑的膜分離操作。對膜一側的料液施加壓力,當壓力超過它的滲透壓時,溶劑會逆著自然滲透的方向作反向滲透。從而在膜的低壓側得到透過的溶劑,即滲透液;高壓側得到濃縮的溶液,即濃縮液。若用反滲透處理海水,在膜的低壓側得到淡水,在高壓側得到鹵水。反滲透膜脫鹽層的材料主要為芳香聚醯胺。此外還有哌嗪醯胺、丙烯-烷基聚醯胺與縮合尿素、糠醇與三羥乙基異氰酸酯、間苯二胺與均苯三甲醯氯等。反滲透膜的結構,有非對稱膜和均相膜兩類。當前使用的膜材料主要為醋酸纖維素和芳香聚醯胺類。其組件有中空纖維式、卷式、板框式和管式。可用於分離、濃縮、純化等化工單元操作,主要用於純水制備和水處理行業中。反滲透膜能截留水中的各種無機離子、膠體物質和大分子溶質,從而取得凈制的水。也可用於大分子有機物溶液的預濃縮。由於反滲透過程簡單,能耗低,近些年迅速發展。

⑻ 反滲透技術到底是什麼時期發展起來的呢

反滲透又稱逆滲透,一種以壓力差為推動力,從溶液中分離出溶劑的膜分離操作。因版為它和自權然滲透的方向相反,故稱反滲透。根據各種物料的不同滲透壓,就可以使用大於滲透壓的反滲透壓力,即反滲透法,達到分離、提取、純化和濃縮的目的。
反滲透技術是利用壓力表差為動力的膜分離過濾技術,源於美國二十世紀六十年代宇航科技的研究,後逐漸轉化為民用,目前已廣泛運用於科研、醫葯、食品、飲料、海水淡化等領域。

反滲透法通常又稱超過濾法,反滲透膜屬新材料范疇,是一種用高分子化學材料特殊加工製成的、具有半透性能的薄膜。它能夠在外加壓力作用下使水溶液中的某些組分選擇性透過,從而達到淡化、凈化或濃縮分離的目的。反滲透法的最大優點是整個過程中無水相變化,能耗較少,而且設備投資省、建設周期短。它的能耗僅為電滲析法的1/2,蒸餾法的1/40。反滲透海水淡化的技術關鍵在於反滲透膜、高壓泵、能量回收裝置和系統優化設計技術。

⑼ dmac能用反滲透膜嗎

對於磺化聚芳醚碸在溶劑甲酸、DMAC以及甲酸和DMAC的混合溶劑中的溶解性進行實驗;並進行了以甲酸、DMAC和不同比例的甲酸與DMAC為溶劑的磺化聚芳醚碸樹脂成膜實驗.實驗證明了甲酸為磺化聚芳醚碸的劣溶劑,以甲酸為溶劑的樹脂溶液塗布而成的膜由於大量的裂紋缺陷和脆性弊病無法用作反滲透膜的除鹽層DMAC對於磺化聚芳醚碸的溶解性良好,用甲酸和DMAC的混合溶劑溶解磺化聚芳醚碸,隨著DMAC所佔比例的不斷增加,混合溶劑的溶解性先略微變差,然後溶解性明顯增加,最後又變蓋由於揮發速度的差距,在磺化聚芳醚碸樹脂的甲酸溶液中加入少量DMAC即可得到緻密無缺陷的塗層.【期刊名稱】《信息記錄材料》【年(卷),期】2018(019)006【總頁數】3頁(P36-38)【關鍵詞】磺化聚芳醚碸;甲酸;DMAC;反滲透膜【作 者】蓋樹人;張靜【作者單位】樂凱膠片股份有限公司 河北 保定 071054;樂凱膠片股份有限公司 河北 保定 071054【正文語種】中 文【中圖分類】TB383.21 引言隨著全球經濟的快速發展,全世界范圍內的水資源短缺和環境污染的問題日益嚴重,已經成為制約經濟發展的重要原因。地球上的水儲量十分巨大,但其99%以上是人類無法直接利用的海水,海水淡化技術就成為解決水資源短缺的重要途徑[1-3]。在常用的海水淡化方法中反滲透膜法以其運行成本低、集成度高的優點占據了海水淡化的80%以上的份額[4-5]。反滲透膜應用於污水處理可以將污水中的有害成分完全去除,將污水轉變為可以用於生產和生活的水資源,反滲透膜在污水處理中的應用在近年來越來越受到重視。反滲透膜產業在誕生50多年後即將迎來其快速增長的時期。現在市售的反滲透膜均是採用界面聚合法製造的除鹽層為芳香聚醯胺的反滲透膜。芳香聚醯胺反滲透膜以其除鹽率高(大於99%)和水通量大的優點而占據市場,但是由於芳香聚醯胺材料的耐氯性較差[6],而海水中的含有大量的微生物,待處理的水又必須加入大量的活性氯來進行殺菌處理,之後必須對於待處理的水進行嚴格的脫氯,使水中的游離氯含量降低到小於1ppm,這會大大增加成本。為了解決反滲透膜的耐氯性問題,各研究機構開展了一系列的研究工作。磺化聚芳醚碸類材料是一種性能優良的特殊材料,其分子主鏈中含有硬段苯環、軟段醚鍵及穩定的碸鍵,不僅具有優良的耐熱性,而且具有較好的耐紫外光、耐老化、耐氧化、耐酸鹼、耐水解性及良好的機械強度,其分子的耐氯性能優良,可以被應用於製造反滲透膜[6-7]。和界面聚合法製造反滲透膜的工藝不同,磺化聚芳醚碸製造反滲透膜是首先合成樹脂,然後將樹脂用溶劑溶解後均勻塗布於多孔支撐層上形成厚度約200nm的除鹽層。由於塗布形成的除鹽層只有約200nm厚,塗層中的些許缺陷都會導致除鹽層失去脫鹽效果,如何能夠塗布出超薄、均勻、緻密、無缺陷的除鹽層是關繫到反滲透膜除鹽率和水通量性能的關鍵。
磺化聚芳醚碸作為一種高分子物質,磺化聚芳醚碸能否被溶劑溶解首先要滿足溶度參數相近和極性相同的條件,其溶度參數由物質的色散分量δd、極化分量δp和氫鍵分量δh構成,根據計算公式可以求得磺化聚芳醚碸的溶度參數[8]。磺化度為30%的磺化聚芳醚碸樹脂的溶度參數值為23.65Mpa(1/2),而且其樹脂由於磺酸的存在而有較強的極性。常用的極性溶劑如甲酸(溶度參數:27.62Mpa(1/2))、DMAC(溶度參數:24.76Mpa(1/2))、一縮二乙二醇(溶度參數:27.775Mpa(1/2))都和磺化聚芳醚碸的溶度參數相近。但一縮二乙二醇的飽和蒸汽壓很低(0.13Kpa,91.8℃),很難將其揮發徹底得到緻密的除鹽層,在實際的工業生產中很難被應用,進行研究的價值不大;甲酸(53.32Kpa,16℃)和DMAC(6.21Kpa,20℃)的飽和蒸汽壓較高,以其為溶劑的塗層能夠被在常壓條件下快速乾燥,所以研究以甲酸和DMAC為溶劑的塗層性能具有很高的應用價值。下面就關於溶劑甲酸和DMAC對於磺化聚芳醚碸溶液成膜性能的影響進行實驗。2 實驗部分2.1 儀器及葯品旋轉粘度計(上海精密科學儀器有限公司,NDJ-8S),鼓風乾燥箱,#24RDS絲棒;甲酸(天津市福晨化學試劑廠,分析純)、DMAC(天津市福晨化學試劑廠,分析純)、磺化聚芳醚碸(天津硯津科技有限公司,磺化度30%)2.2 磺化聚芳醚碸樹脂的溶解將磺化聚芳醚碸按照表1的配比進行溶解,室溫放置溶脹1小時後,在60℃水浴中攪拌4小時後得到樹脂含量為5%的不同溶劑的溶液,觀察溶液的透明性和測試溶液粘度,溶液組成見表1。表1 溶液組成磺化聚芳醚碸(g) 555555甲酸(g) 9593908547.5 /DMAC(g) / 251047.595 DMAC占溶劑比例(%) 02.15.310.5501002.3 磺化聚芳醚碸塗層的制備將配製好的磺化聚芳醚碸溶液樣1-6用#24絲棒均勻塗布於100微米厚的PET片基上,入溫度為45℃的鼓風乾燥箱進行乾燥1小時,觀察聚芳醚碸塗層表觀並用掃描電鏡觀察塗層細微弊病。
3 結果與討論3.1 溶劑對於磺化聚芳醚碸溶液的性能影響通過調整溶劑中甲酸和DMAC的比例,可以觀察到以甲酸作為溶劑的磺化聚芳醚碸溶液呈半透明狀,隨著DMAC的量增加,磺化聚芳醚碸溶液的透明性先是略有下降,然後在DMAC的用量達到一半時溶液完全透明澄清,完全使用DMAC為溶劑時溶液保持完全透明澄清。如圖1所示。圖1 溶劑種類對磺化聚芳醚碸溶液透明性的影響測量六個樣品在20℃的粘度,其數據如圖2所示。圖2 溶劑種類對磺化聚芳醚碸溶液粘度的影響一般來說,溶液越透明澄清,說明溶質分子在溶劑中的團聚越少,溶質溶解越完全,磺化聚芳醚碸的甲酸溶液的透明性遠遠不如DMAC溶液;同時溶質在溶劑中溶解性越好,溶質分子在溶液中越伸展,分子間的纏繞就會越多,導致溶液的粘度就會越大。磺化聚芳醚碸DMAC溶液的粘度明顯大於在甲酸溶液中的粘度。根據溶液的透明性和粘度數據可以知道DMAC對磺化聚芳醚碸的溶解性優於甲酸,分析其原因是雖然DMAC、甲酸都和磺化聚芳醚碸的溶度參數相近,但磺化聚芳醚碸屬於親電子物質,易溶於具有給電子性的溶劑,甲酸屬於親電子溶劑,由於親電子性相同的溶劑和高分子物質的溶劑化作用差,故甲酸對於磺化聚芳醚碸的溶解性差;而DMAC溶劑屬於強給電子溶劑,有利於溶劑和高分子進行溶劑化作用,故利於互溶。[9]磺化聚芳醚碸的甲酸和DMAC混合溶液,當DMAC含量較少(占溶劑量≤10%)時,隨著DMAC的含量增加,溶液的透明度略有下降,溶液粘度也略有下降,說明在甲酸中加入少量DMAC對磺化聚芳醚碸的溶解起抑製作用;當DMAC含量較多(達到占溶劑量的50%)時,溶液透明性好,而且其粘度遠遠超過單純以DMAC為溶劑的溶液粘度,說明當甲酸和DMAC的含量接近時,混合溶劑對樹脂的溶解性較單獨採用任何溶劑有明顯改善。3.2 溶劑對於磺化聚芳醚碸溶液成膜性的影響將配製好的磺化聚芳醚碸溶液樣1-6塗布於無底PET片基上,在45℃的鼓風乾燥箱進行乾燥後得到樣片1-6,樣片如圖3所示。
圖3 溶劑對於樣片表觀的影響溶劑全部為甲酸的樹脂溶液所成的膜樣片1有大量的肉眼可見裂紋,並且膜層的脆性很高,樣片輕微彎曲膜層就會有明顯的斷裂脫落現象,可見膜層和基材的附著力和膜層的自身強度很差;出現這種現象的原因是由於甲酸是磺化聚芳醚碸樹脂的劣溶劑,溶劑和樹脂分子的親和力差。樹脂分子在甲酸溶劑中以較緊密的線團形式存在,樹脂分子在溶劑中幾乎沒有互相纏繞,分子間的作用力很小,隨著溶劑的揮發,樹脂分子在溶劑中析出後在膜中的相互作用和纏繞也很少,導致膜的機械性能很差並且存在大量的裂紋。所以在反滲透膜除鹽層的塗布中如果只採用甲酸作為溶劑,則必然會導致除鹽層存在裂紋缺陷從而使反滲透膜的除鹽率達不到使用要求。由DMAC含量為2%的樣2塗布而成的樣片2的韌性較好,樣片只是在塗層厚度不均勻的邊緣處有少量裂紋;DMAC含量為5%、10%、47.5%和95%的樣3、樣4、樣5和樣6溶液塗布的樣片3-6的塗層韌性強,經電鏡檢測樣片塗層無缺陷。根據溶液的性能已知磺化聚芳醚碸樹脂樣2、樣3和樣4溶液的溶解性比在甲酸溶液要差,這與塗層性能和溶劑溶解性之間的關系相矛盾。其原因是由於塗層在乾燥過程中甲酸和DMAC的揮發速度不同導致隨著乾燥的進行塗層中兩種溶劑的比例發生了變化,由於甲酸的飽和蒸汽壓(53.32Kpa,16℃)遠遠大於DMAC的飽和蒸汽壓(6.21Kpa,20℃),所以在乾燥過程中塗層中甲酸的揮發速度遠遠大於DMAC的揮發速度,導致隨著乾燥的進行塗層中DMAC相對於甲酸的含量越來越大,在樹脂析出時塗層溶液的溶劑比例達到磺化聚芳醚碸良溶劑的水平,所以在溶液中只加入少量的DMAC就能實現形成良好、緻密、無缺陷的磺化聚芳醚碸層。這一點對於採用塗布法制備磺化聚芳醚碸除鹽層的反滲透膜尤其重要,因為DMAC能夠溶解反滲透膜的支撐層——聚碸層,在除鹽層溶液中使用大量的DMAC會導致由於多孔聚碸支撐層被溶解而縮孔,造成水通量的急劇下降。
4 結語甲酸是磺化聚芳醚碸的劣溶劑,磺化聚芳醚碸樹脂甲酸溶液成膜時由於樹脂分子在甲酸溶劑中縮成線團,樹脂分子之間的纏繞很少,所成的膜機械強度很差且有裂紋弊病;磺化聚芳醚碸樹脂在甲酸和DMAC混合溶劑的表現是隨著DMAC的比例增加,混合溶劑對於樹脂的溶解性先略微降低再明顯增加,最後又會降低;由於甲酸的揮發性大大高於DMAC,所以即使混合溶劑中DMAC的含量較低,在乾燥時塗層溶液中DMAC的比例會隨著乾燥進程而增加,達到樹脂良溶劑的比例,明顯改善樹脂膜層的性能,塗布出緻密無缺陷的膜層。【參考文獻】[1] 楊家臣,陳素寧,王寧,等.海水淡化工藝及發展趨勢[J].廣州化工,2012,40:46-48.[2] 李琳梅.發展海水淡化事業促進海洋強國建設[J].海洋開發與管理,2012(12):59-61.[3] 楊尚寶.關於我國海水淡化產業發展的戰略思考[J].水處理技術,2011,37:1-4.[4] Lauren F Greenlee,Desmond FLawler,Benny D Freeman,et al.Reverse osmosis desalination:Water sources,technology, and today's challenges[J].Water Research,2009,43:2317-2348.[5] 高從鍇.海水淡化進展淺談[J].給水排水動態,2012(02):11-13.[6] 黃海,張林,侯立安.海水淡化反滲透耐氯膜材料的研究與制備進展[J].中國工程科學,2014(16):90-94.[7] 馬苗,俞三傳.磺化聚碸類膜材料的制備及在水處理中的應用[J].水處理技術,2011,37:14-18.[8] 黃方,楊龍,樂以倫.磺化聚芳醚碸溶度參數的確定[J].四川大學學報,2011,33:75-78.[9] 林尚安,陸耘,梁兆熙.高分子化學[M].第一版,北京東黃城根北街16號,科學出版社,1982.05:120-127.

5.9
網路文庫VIP限時優惠現在開通,立享6億+VIP內容
立即獲取
溶劑對磺化聚芳醚碸成膜性的影響
因版權原因,僅展示原文概要,查看原文內容請下載
掌橋科研官方
溶劑對磺化聚芳醚碸成膜性的影響
蓋樹人;張靜
【摘 要】對於磺化聚芳醚碸在溶劑甲酸、DMAC以及甲酸和DMAC的混合溶劑中的溶解性進行實驗;並進行了以甲酸、DMAC和不同比例的甲酸與DMAC為溶劑的磺化聚芳醚碸樹脂成膜實驗.實驗證明了甲酸為磺化聚芳醚碸的劣溶劑,以甲酸為溶劑的樹脂溶液塗布而成的膜由於大量的裂紋缺陷和脆性弊病無法用作反滲透膜的除鹽層DMAC對於磺化聚芳醚碸的溶解性良好,用甲酸和DMAC的混合溶劑溶解磺化聚芳醚碸,隨著DMAC所佔比例的不斷增加,混合溶劑的溶解性先略微變差,然後溶解性明顯增加,最後又變蓋由於揮發速度的差距,在磺化聚芳醚碸樹脂的甲酸溶液中加入少量DMAC即可得到緻密無缺陷的塗層.

⑽ 膜過濾技術發展現狀及其優缺點,主要用於處理污水

查查文獻不就了!
膜過濾技術在水處理中的應用

1、用反滲透和納濾處理垃圾填埋場滲瀝液
城市垃圾填埋場產生的滲瀝液中含有大量有機和無機污染物。由於成分復雜,組分變化大,污染物濃度高,所以很難用傳統方法處理。即使用生化法(好氧或厭氧)和活性炭吸附或臭氧氧化聯合流程進行處理,效果也不理想。傳統處理法的處理效果很大程度上取決於滲瀝液成份和填埋場運行年限。反滲透和納濾被認為是處理滲瀝液的有效方法。反滲透膜可同時去除有機和無機成分。濾過液可作為工藝循環水使用或排放。殘留液通過蒸發,可以獲得固態廢物。這些廢物可返回填埋場進行填埋。預處理可以採用簡單的過濾、生物處理、生物處理與混凝聯合以及微濾或超濾的方法。國外已有許
多填埋場都採用膜濾技術處理垃圾滲瀝液。國內這方面的研究還處在實驗研究階段。採用氨氮吹脫與厭氧工藝進行預處理後,採用膜生物反應器法處理城市垃圾
填埋場產生的滲瀝液,獲得了較好的效果。

2、用納濾處理紡織印染廢水
紡織印染業工藝過程中要產生大量高鹽度(>5%)、高色度(數萬至十幾萬)、高化學需氧量(CODCr數萬至十幾萬)、可生化性差的廢水[8]。在排放或回用之前,在傳統處理之後(如活性污泥法—沉降—砂濾)加上膜濾就可以降低水的色度和難生物降解的有機物、重金屬、營養物等的含量。超濾只能部分去除色度、不能被去除小分子有機染料。所以超濾處理後還不能循環使用,不過經過超濾後的滲透液可以達標排放。紡織印染廢水回用的最重要的指標是硬度、鹽度和色度。先生物處理再納濾就可以使廢水達到回用標准。經過納濾處理後,水在硬度、有機物濃度和色度等可以接近地下水的水平。滲透液的水質在很大程度上取決於膜的類型。小孔徑膜(NF70)可以用於脫色,但流量要低一些。通過納濾處理紡織行業水的循環利用率為80%—90%

3、超濾/微濾用於中水回用

缺點就是會產生膜污染:
膜處理技術在長期的運轉過程中,會引起膜的污染,導致過濾通量隨運行時間而逐漸下降。膜污染是膜濾應用的主要制約因素,它既能引起過濾通量的下降,又能影響處理效果

閱讀全文

與反滲透膜的研究進展相關的資料

熱點內容
北斗星用什麼濾芯好 瀏覽:793
工業污水處理出水標准 瀏覽:275
公寓污水倒灌怎麼處理 瀏覽:376
白醋可以為咖啡機除垢嗎 瀏覽:380
生物轉盤農村生活污水 瀏覽:383
車空調濾芯有什麼作用 瀏覽:508
edi是哪個城市的縮寫 瀏覽:601
污水處理廠都有什麼內容 瀏覽:245
邁騰gte空氣凈化器怎麼開啟 瀏覽:743
燃氣濾芯怎麼拆 瀏覽:360
山東清洗鍋爐水垢 瀏覽:95
能源動力部污水處理是干什麼的 瀏覽:148
超濾常用的工作壓力 瀏覽:392
家用凈水器的水屬於什麼水 瀏覽:642
杭州凱德湖墅水垢 瀏覽:826
巧去廁所水垢 瀏覽:547
什麼濾芯半年一換 瀏覽:275
超濾膜凈水器沒效果 瀏覽:993
純水手機什麼意思 瀏覽:973
耐火型酚醛樹脂氧指數 瀏覽:986