導航:首頁 > 耗材問題 > 磷酸酯改性水性樹脂

磷酸酯改性水性樹脂

發布時間:2023-01-14 10:53:20

⑴ 表面改性劑

一、概 述

礦物的表面改性,主要是依靠改性劑在礦粒表面吸附、反應、活化、包覆或包膜實現的。因此,表面改性劑對於礦物的表面改性或表面處理具有決定作用。

常用於礦物表面改性的改性劑主要有各種偶聯劑、表面活性劑、有機聚合物、不飽和有機酸、有機硅、金屬氧化物及其鹽等。幾種改性劑的實用范圍和主要特點見表 4 - 1。幾種主要填料礦物的化學改性實踐見表 4 -2。

表 4 -1 幾種改性劑的實用范圍和主要特點

表 4 -2 幾種主要填料礦物的表面改性實踐

二、偶聯劑

( 一) 偶聯劑的作用機理

由於非金屬礦與塑料是兩種不同性質的物質,它們之間有很大程度上的不相容性,再加之非金屬礦與塑料等的彈性模量不一致,界面間易產生剪切應力,影響其復合材料的力學性能。偶聯劑能把兩種不同性質的物質通過化學作用或物理作用結合起來,即它能把無機填料和有機高分子基料兩種不同性質的物質緊密地結合起來。因此,偶聯劑也是無機物和有機物界面間的橋梁。

界面擴散理論認為,對作填料用的礦物進行改性處理時,所有的偶聯劑不僅親無機端應與填料表面以化學鍵結合,而且另一端還應能溶解、擴散於樹脂的界面區域,在其與樹脂大分子鏈發生糾纏或形成化學鍵,即偶聯劑的親有機端應含有較長的柔軟碳氫鏈,以使形成柔性的有利於應力鬆弛的界面層,提高其吸收和分散沖擊能,使復合材料具有更好的抗沖擊性。

表面能理論認為,礦物填料屬高能表面,為提高它和高聚物基體的相容性,必須藉助偶聯劑的 - R 基降低其表面能。

( 二) 偶聯劑的種類

目前工業上用的礦物表面改性的偶聯劑,按其化學結構可分為三大類:

硅烷類: 適用於硅酸成分較多的無機填料: 玻璃纖維、石英粉、白碳黑、雲母、粘土。

鈦酸酯類: 適用的無機填料較廣。

鋯鋁酸鹽偶聯劑。

1. 硅烷偶聯劑

( 1) 硅烷偶聯劑的結構

圖 4 -6 甲氧基及乙氧基硅烷偶聯劑的結構式

硅烷偶聯劑的通式為RSiX3

通式中R代表與聚合物分子有親和力或反應能力的有機官能團,例:氨基—NH2,乙烯基—CH2CH,甲基—CH3,環氧基—CH—CH2,氰基—CN等,可與有機分子反應或物理纏繞。

X代表水解性基團,能為水解的烷氧基,例:甲氧基—OCH3,乙氧基—OC2H5等。硅烷偶聯劑的結構式如圖4-6所示。

X基團水解後,在一定的條件下能與無機物表面的化學基團(OH—)起反應,形成牢固的化學鍵。這種具有兩性結構的物質能把兩種性質的物質結合起來。

進行偶聯時,首先X基水解形成硅醇,然後再與無機填料表面上的羥基反應,形成氫鍵並縮合成—SiOM共價鍵(M表示無機填料表面)。同時,硅烷各分子的硅酸又相互締合形成網狀結構的膜覆蓋在填料表面,使無機填料有機化。

( 2) 硅烷偶聯劑的作用機理

經硅烷偶聯劑處理的填料或增強材料 ( 如玻纖) 在提高復合材料性能方面的顯著效果,早已得到確認,偶聯劑的作用機理目前有很多理論,其中化學鍵理論是最老但仍然是最著名的理論。該理論認為: 硅烷偶聯劑含有化學官能團,它的一端與硅質填料 ( 如玻璃) 表面的硅醇基團反應生成共價鍵; 另一端又能與樹脂生成共價鍵。並提出了簡單的偶聯機理模型,見圖 4 -7。

圖 4 -7 硅烷偶聯劑的作用機理模型圖( 據吳森紀等,1990)

硅烷偶聯劑的疏水基性質也符合「相似相親」的原則。有機官能團R為乙烯基和甲基丙烯醯基時,對不飽和的聚酯和丙烯酸樹脂特別有效;當R為環氧基團時,對環氧樹脂效果特好,同時也適用於不飽和樹脂。含氨基的硅烷能和環氧樹脂、聚氨酯發生化學反應,對酚醛樹脂和三聚氰胺樹脂的固體也有催化作用,故適用於環氧、酚醛、三聚氰胺、聚氨酯等樹酯;含巰基的硅烷對硫化橡膠的偶聯效果最佳,故含巰基的硅烷偶聯劑是橡膠工業應用最廣的品種。

親水基,也稱水解性基團,該基團遇水可分解變成活性基團硅醇(≡Si—OH)。通過硅醇和無機礦物表面反應,形成牢固的化學結合或吸附於礦物表面。當X為—OCH3和—OC2H5時,水解速度緩慢,且水解產物醇為中性物質,因此可用水為介質進行表面改性。因乙氧基的體積比甲氧基的大,乙氧基硅烷在水中的溶解度較小,所以,目前趨向採用含乙氧基類硅烷偶聯劑。除此以外,還以—OC2H4OCH3作X基團,不僅保留其水解性,而且還能提高水溶性、親水性,應用時更為方便。應用硅烷偶聯劑的方法有兩種:一是將硅烷配成水溶液,用它處理無機填料或顏料後,再與有機高聚物或樹脂混合,即預處理法;另一種方法是將硅烷與填料及有機高聚物基料混合(即遷移法)。前一種方法處理效果較好,而後一種工藝較簡單。

硅烷偶聯劑的用量與偶聯劑的品種及填料的比表面積等有關,可按下式計算:

偶聯劑的用量=填料量(g)×填料比表面積(m2/g)/單位質量偶聯劑的最小包覆面積(m2/g)。常見硅烷偶聯劑的名稱、化學結構及最小包覆面積見表4-3。

表4-3常見硅烷偶聯劑的名稱、化學結構及最小包覆面積

(據鄭水林,1995;吳森紀等,1990;略有改動)

硅烷偶聯劑可用於許多無機礦物填料或顏料的表面處理,其中對含硅酸成分較多的石英粉、玻璃纖維、白炭黑等的效果最好。

2.鈦酸酯偶聯劑

鈦酸酯偶聯劑是美國Kenrich石油化學公司在20世紀70年代開發的一類新型偶聯劑,至今已有幾十個品種,是無機填料和顏料等廣泛應用的表面改性劑。

鈦酸酯偶聯劑可用通式(RO)mTi—(OX—R'—Y)n表示。

式中:1≤m≤4,m+n≤6;其中:

RO是可水解的短鏈烷氧基,能與無機物表面羥基起反應,從而達到化學偶聯的目的。m是該基團數。

Ti是偶聯劑分子的核心,—TiO—為酯基和烷基轉移和交換功能基團,是鈦酸酯的有機骨架,和聚合物羥基間進行交換,起酯基和烷基轉移反應。鈦和氧的結合鬆弛,體系中的有機酸容易游離出來作催化或緩效劑影響反應。

OX可以是羧基、烷氧基、磺酸基、磷基等,這些基團很重要,決定鈦酸酯所具有的特殊功能,如磺酸基賦予有機物一定的觸變性;焦磷醯氧基有阻燃、防銹和增強黏結的性能;亞磷醯氧基可提供抗氧、耐燃性能等,因此通過OX的選擇,可以使鈦酸酯兼具偶聯和其他特殊性能。

R'是長碳鏈烷基,碳數常為12~18。它和聚合物的鏈發生纏繞作用,藉助分子間的力結合在一起,從而可傳遞應力,提高沖擊強度、剪切強度和伸長率。此外,長鏈烴還可改變礦物的表面能,降低體系黏度,使高充填聚合物也能顯示出較好的熔融流動性,所以這種偶聯劑特別適用於聚烯烴之類的熱塑性樹脂。

Y為羥基、氨基、環氧基或末端氫原子等,這些活性基團連接在鈦的有機骨架上,能使偶聯劑和有機聚合物進行化學反應,通過偶聯劑使礦物和有機基體相結合。

n為官能團數目,當n>2時,為多官能團的鈦酸酯,但m+n<6。

根據分子結構及其偶聯機理,鈦酸酯偶聯劑分四種類型:單烷氧基型,單烷氧基焦磷酸酯型,螯合型和配位型。

(1)單烷氧基型鈦酸酯偶聯劑

適合於不含游離水,只含化學鍵合水或物理鍵合水的乾燥填料如碳酸鈣,以及水合氧化鋁等。單烷氧基型鈦酸酯偶聯劑除含三乙醇胺基(既屬單烷氧基型又屬螫合型)、焦磷酸酯基兩類外,大多耐水性差,只能在有機溶劑中溶解和包覆粉體物料。操作方法一般如下:先將單烷氧基型鈦酸酯偶聯劑溶解在少量甲苯、二甲苯等烴類溶劑中,然後和粉體物料在室溫下攪拌均勻,適當升溫,在90℃左右繼續攪拌混合半小時以上,保證鈦酸酯偶聯劑與粉體表面偶聯作用。如果沒有條件加溫,偶聯作用在室溫下也能進行,只是比較緩慢,最好在室溫下攪拌2小時然後放置過夜後再使用。一般講,溶劑用量大,對粉體的包覆效果較好,但多餘的溶劑必須除去。鈦酸酯偶聯劑用溶劑稀釋十分重要,它能使偶聯劑均勻包覆在粉體的表面。在實際生產中,根據具體情況,適量加入稀釋劑,才能達到均勻包覆的目的。

(2)單烷氧基焦磷酸酯基型偶聯劑

該類偶聯劑比一般單烷氧基型鈦酸酯耐水性好,適合於含濕量較高的礦物,如陶土、滑石粉等。在單烷氧基焦磷酸酯基型鈦酸酯偶聯劑中,除單烷氧基於礦物表面的烴基反應形成偶聯劑外,焦磷酸酯基還可分解形成磷酸,結合一部分水。

(3)螯合型

螯合型鈦酸酯偶聯劑具有極好的水解穩定性,適用於高含濕量填料和含水聚合物體系,且可在高溫狀態下使用。

螯合型鈦酸酯偶聯劑耐水性好,它可以溶解在有機溶劑中包覆粉體物料,也可以在水相中包覆粉體物料。但是,螯合型鈦酸酯偶聯劑大多不溶於水。一般可以採取3種方法使它分散在水相中:a.用高速分散器使之分散於水;b.使用表面活性劑使它分散於水;c.含有磷酸基、焦磷酸基及磺酸基的螯合型鈦酸酯可用膠類試劑使之季胺鹽化後溶解於水。

(4)配位型

配位體型鈦酸酯偶聯劑是為避免四價鈦酸酯在某些體系中的副反應,如在聚酯中的脂交換反應,在環氧樹酯中與烴基反應,在氨酯中與聚醇或異氰酸酯反應等而研製的。可見它適用多種礦物和聚合物,它對礦物的作用類似單烷氧基型鈦酸酯偶聯劑。

配位型鈦酸酯耐水性好。既可溶於有機溶劑後再包覆粉體物料,也可在水相中包覆粉體物料。配位型鈦酸酯大多數不溶解於水,通常使用表面活性劑、水性助溶劑使之溶解於水,或高速攪拌使其乳化分散在水中。

鈦酸酯偶聯劑的用量是要使鈦酸酯偶聯劑分子中的全部異丙氧基與無機填料或顏料表面所提供的羥基或質子發生反應,過量是沒有必要的。鈦酸酯偶聯劑的大致用量為填料或顏料用量的0.1%~3.0%左右。被處理填料或顏料的粒度越細,比表面積越大,鈦酸酯偶聯劑的用量就越大。最適當的用量可以用黏度測定法求得:高熔點的聚合物通常用低分子量的液體,如礦物油代替做模型試驗,鈦酸酯用量從填料重量的0.25%,0.5%,0.75%,1.0%,1.5%,2.0%及3.0%等做試驗,黏度下降最大點,就是較合適的鈦酸酯用量。

鈦酸酯偶聯劑在使用過程中應特別注意以下幾個問題:

1)嚴格控制使用溫度,防止鈦酸酯分解。

2)盡量避免與具有表面活性的助劑並用,因為它們會干擾鈦酸酯偶聯劑界面處的偶聯反應。如果必須使用這些助劑時,應在填料、偶聯劑和聚合物充分混合作用後再加入這些助劑。

3)加料順序應注意避免首先與酯類增塑劑接觸,以免發生酯交換反應而失效。

4)注意分散均勻。因鈦酸酯偶聯劑一般用量為0.5%~3%,不易與大量填料均勻混合,可採用適量稀釋劑及噴霧方法使其均勻分散混合。

5)注意技術結合,提高偶聯效果,如鈦酸酯與硅烷偶聯劑並用能產生協同效應。

三、表面活性劑

1.高級脂肪酸及其鹽

高級脂肪酸屬於陰離子表面活性劑,其分子通式為RCOOH。分子一端為長鏈烷基(C16~C18),其結構和聚合物相似,因而與聚合物有一定的相容性;分子一端為核基,可與無機填料或顏料表面發生物理、化學吸附作用。因此,用高級脂肪酸及其鹽,如硬脂酸處理無機填料或顏料類似偶聯劑的作用,有一定的表面處理效果,可改善無機填料或顏料與高聚物基料的親和性,提高其在高聚物基料中的分散度。此外,由於高級脂肪酸及其鹽類本身具有潤滑作用,還可使復合體系內摩擦力減小,改善復合體系的流動性能。

無機填料或顏料常用的高級脂肪酸及其金屬鹽類表面處理劑有:硬脂酸、硬脂酸鈣、硬脂酸鋅等,用量約為填料或顏料重量的0.5%~3%,使用時可直接與無機填料、顏料混合分散均勻,也可將硬脂酸稀釋後噴灑在無機填、顏料表面,攪拌均勻後再烘乾,除去水分。

2.高級胺鹽

屬於陽離子表面活性劑,其分子通式為RNH(伯胺)、R2NH(仲胺)、R3NH(叔胺)等。高級胺鹽的烷烴基與聚合物的分子結構相近,因此與高聚物基料有一定的相容性,分子另一端的氨基可與無機填料或顏料等粉體表面發生吸附作用。

非離子型表面活性劑對填充(或復合)體系的作用機理與各類偶聯劑相似。親水基因和親油基因分別與填料和高聚物基料發生相互作用,加強二者的聯系,從而提高體系的相容性和均勻性。二極性基團之間的柔性碳鏈起增塑潤滑作用,賦予體系韌性和流動性,使體系黏度下降,改善加工性能。如用高級脂肪酸聚氧乙烯醚類作處理劑對硅灰石粉進行的表面改性結果表明,改性後大大提高了硅灰石在PVC電纜中的填充性能。

除了上述表面活性劑外,磷酸酯也可用於無機粉體的表面處理,如單脂型磷酸酯用於滑石的表麵包覆處理,可改進滑石粉填料與高聚物(如聚丙烯)的界面親和性,改善其在有機高聚物基料中的分散狀態,並提高高聚物基料對填料的潤濕能力。

四、不飽和有機酸

不飽和有機酸作為無機填料的表面改性劑帶有一個或多個不飽和雙鍵及一個或多個羥基,碳原子數一般在10個以下。常見的不飽和有機酸是:丙烯酸、甲基丙烯酸、丁烯酸、肉桂酸、山梨酸、2-氯丙烯酸、馬來酸、醋酸乙烯、醋酸丙烯等。一般來說,酸性越強,越容易形成離子鍵,故多選用丙烯酸和甲基丙烯酸。各種有機酸可以單獨作用,也可以混合使用。

五、有機硅

有機硅是以硅氧烷鏈為憎水基,聚氧乙烯鏈、氨基、酮基或其他極性基團為親水基的一類特殊類型的表面活性劑,俗稱硅油或硅樹脂。其主要品種有聚二甲基硅氧烷、有機基改性硅氧烷及有機硅與有機化合物的共聚物等。

六、無機表面改性劑

氧化鈦、氧化鉻、氧化鐵、氧化鋁等金屬氧化物常用作沉澱法(包膜)制備雲母珠光顏料的表面改性劑;Al2O3、SiO2等常用做無機顏料的表面處理,以提高顏料的保光性、耐候性、改善著色力和遮蓋力等,如用SiO2包覆鈦白粉等。沉澱法表麵包膜工藝常用無機表面改性劑,其改性的物料(基質)一般也是無機物。

例1:雲母鐵

水解:FeCl3+3H20→Fe(OH)3+3H+

覆蓋:Fe(OH)3覆蓋在雲母的表面

焙燒:Fe(OH)3→Fe2O3+3H2O→雲母鐵

例2:雲母鈦

工業生產中常用TiOSO4,TiOSO4在水解過程中,要產生一種偏鈦酸H2TiO3的物質,沉澱覆蓋在雲母鱗片上,形成一層H2TiO3均勻的薄膜,再將覆蓋有H2TiO3薄膜的雲母進行焙燒後,結晶出的TiO2晶體(金紅石型或銳鈦礦型)薄膜,形成雲母鈦珠光顏料。其反應過程為:

水解:TiOSO4+H2O(水解)→TiO2·XH2O+H2SO4

覆蓋:TiO2·XH2O(水合TiO2)覆蓋在雲母的表面

焙燒:TiO2·XH2O→TiO2結晶→雲母鈦

工藝流程見圖4-8。

圖4-8 水解塗鈦法生產珠藝雲母粉的工藝流程

七、覆膜用樹脂塗層劑

這是利用高聚物或樹脂等對粉體表面進行「覆膜」而達到表面改性的方法。如用酚醛樹脂或呋喃樹脂等塗敷石英砂以提高精細鑄造砂的黏結性能。這種塗敷後的鑄造砂既能獲得高的熔模鑄造速度,又能保持模具和模芯生產中得到高抗卷殼和抗開裂性能;用呋喃樹脂塗敷的石英砂用於油井鑽探可提高油井產量。

塗敷改性是一種對粉體表面進行簡單處理的方法。精密鑄造用的型砂可以用樹脂對原砂表面進行覆膜改性處理。根據覆膜工藝可分為冷法和熱法兩種。

1.冷法覆膜

冷法覆膜是在室溫下進行。其方法是:先將粉狀樹脂與石英砂混勻,然後加入溶劑(如工業酒精、丙酮或糠醛),溶劑加入量根據混砂機是否封閉而定。對於封閉式混砂機,酒精用量為樹脂量的40%~50%;若混砂機不能封閉,則為70%~80%。加入溶劑後繼續混合到溶劑揮發完畢,將塗覆了樹脂膜的砂經乾燥後,破碎和過篩即得覆膜砂產品。這種方法的有機溶劑耗量大,僅用於小規模生產。

2.熱法覆膜

是將砂子加熱後進行的包敷。方法是先將石英砂加熱到140~160℃,而後與樹脂在混砂機中混勻,其中樹脂用量為石英砂用量的2%~5%。這時樹脂被熱砂熔化,包覆在砂粒表面,隨溫度降低而變粘。此時加入烏洛托品水溶劑,使烏洛托品分布在砂粒表面,並使砂急冷(烏洛托品作為催化劑可在殼模形成時使樹脂固化),再加硬脂酸鈣(防止結塊)混數秒鍾後出砂,然後粉碎、過篩、冷卻後即得覆膜砂產品。此法效果較好,適合大規模生產,但工藝控制較為復雜,並需用專門的混砂設備。精密鑄造中用作殼芯的樹脂覆膜砂配方實例見表4-4。

表4-4精密鑄造中用作殼芯的樹脂覆膜砂配方實例

⑵ 求高吸水性樹脂工藝比較

高吸水性樹脂工藝比較

高吸水性樹脂(SPA)又稱超強吸水劑,是一種新型的功能高分子材料。吸水倍數可達自身質量的數百乃至數千倍。最早的高吸水性樹脂是1974年美國學業部北方研究所研製的澱粉接枝丙烯腈共聚物的水解物,但20世紀80年代初卻是日本的高吸水性樹脂開發技術占據了主導地位。雖然高吸水性樹脂的開發時間較短,但各方面發展非常快,如1983年世界總產量為6000t,到1987年僅日本的產量就達到了36000t;目前全世界生產高吸水性樹脂的廠家達30-40個,主要分布在日本、美國及歐洲;產品從澱粉接枝丙烯腈發展到澱粉接枝丙烯酸、交聯纖維素類、聚丙烯酸鹽、共聚物水解、聚醚、聚氨酯等類;高吸水性樹脂的吸水率從80年代的百倍提高到目前的四五千倍。我國開展高吸水性樹脂研製的時間較短(20世紀80年代初開始),但研究、生產單位已達數十家,高吸水性樹脂的專利已達數十種。1999年的累計產量已達近千噸,但仍存在品種單一、質量參差不齊等問題,缺少高功能的產品,某些含量的指標偏高。目前世界上佔主導地位的是聚丙烯酸鹽類高吸水性樹脂。

1 高吸水性樹脂生產方法

1.1 天然高分子的接枝

通過天然高分子的接枝改性合成的高吸水性樹脂的優點是成本較低、產物超過使用周期可以分解,缺點是工藝復雜、產品易腐敗,強度較差。天然高分子的接枝主要有以下幾種方法。

澱粉-丙烯腈接枝共聚物:澱粉-丙烯腈接枝共聚物的水解產物是世界上第一個開發的高吸水性樹脂。特點是吸水倍數高(1000-3000倍)、成本低。缺點是水解工藝比較復雜,乾燥效率低。合成所用的硝酸鈰銨是至今澱粉接枝不飽和單體最有效的引發劑,其工藝過程為:澱粉糊化→冷卻→接枝共聚→加壓水解→冷卻→酸化→離心分離→中和→乾燥→成品包裝。如果採用三價錳鹽-硫酸亞鐵銨雙氧水組成的復合引發體系,則接枝效率可達95%。合成時需要控制引發劑用量、加入方式、溫度、澱粉種類和丙烯腈用量等。但關鍵是控制共聚物的皂化方法和皂化程度。

澱粉-混合單體的接枝共聚物:即在澱粉上除了接枝丙烯腈外,還可以接枝丙烯、甲基丙烯酸、丙烯酸、丙烯醯胺等單體。其優點是進一步提高產物的吸水倍數,此外,如採用顆粒澱粉,可省去糊化工序,縮短皂化時間,產品容易過濾、分離、清洗、貯存。

澱粉-聚丙烯酸鈉的接枝共聚物優點是將澱粉和聚丙烯酸鈉水溶液在加熱條件下進行混煉,即過程力化學接枝形成產物。

纖維素的接枝共聚物:即將丙烯腈等單體分散在纖維素漿液中,在鈰鹽引發劑的作用下進行接枝共聚,再加壓水解。其優點是:雖然吸水倍數不如澱粉類共聚物,但可製成高吸水性織物,可與纖維混紡,改善最終產品的吸水性能。

天然高分子羧甲基化:特點是控制羧甲基化的程度,交聯後可得吸水性不同的產物。

1.2 交聯水溶性合成樹脂

以水溶性合成樹脂為原料合成高吸水樹脂是目前的主導,其優點是克服了天然高分子接枝後改性的不足,並且原料豐富,缺點是成本偏高。具體合成方法為:

聚乙烯醇的交聯改性:主要通過酸酐的交聯,並引入-COONa基團。特點是吸水性能可調。

聚丙烯醯胺的交聯改性:主要通過輻射引發或引發劑引發磷酸、馬來酸酐、鄰苯二甲酸酐等與聚丙烯醯胺交聯,如採用丙烯酸鈉與丙烯醯胺共聚交聯,可得吸水量可達2000g/g的高吸水性樹脂。

聚丙烯腈的改性:主要是通過丙烯腈與甲基丙烯酸、N-羥甲基丙烯醯胺進行共聚、紡絲、再硫酸浸漬製得纖維狀吸水樹脂。

聚丙烯酸的改性:主要是通過丙烯酸鹽類單體的水溶液聚合或反相懸浮聚合製得,其產量是最大的。交聯方法可以採用交聯劑交聯、自身交聯、離子交聯等方法。

2 高吸水性樹脂的應用

2.1 在農業與園藝方面的應用

用於農業與園藝方面的高吸水性樹脂又稱為保水劑和土壤改良劑。我國是世界上缺水較嚴重的國家,因此,保水劑的應用就顯得越來越重要,目前國內已有十幾家科研院所的研製高吸水性樹脂產品用於糧、棉、油、糖、煙、果、菜、林等60多種植物上進行應用試驗,推廣面積超過7萬多公頃,並在西北、內蒙等地利用高吸水性樹脂進行大面積防砂綠化造林。用於這方面的高吸水性樹脂主要是澱粉接枝丙烯酸鹽聚合交聯物和丙烯醯胺-丙烯酸鹽共聚交聯物,其中鹽已由鈉型轉向鉀型。使用的方法主要有拌種、噴撤、穴施、或用水調成糊狀後浸泡植物根部。同時,還可以利用高吸水性樹脂對化肥進行包衣後施肥,充分發揮化肥的利用率,防止浪費和污染。國外還利用高吸水性樹脂作為水果、蔬菜、食品保鮮包裝材料。

2.2 在醫用、衛生方面的應用

主要用作衛生巾、嬰兒尿布、餐巾、醫用冰袋;用於調節環境氣氛的膠狀日用芳香材料。用作軟膏、霜劑、擦劑、巴布劑等的基質醫用材料,具有保濕、增稠、皮膚浸潤、膠凝的作用。還可以製作成控制葯物釋放量、釋放時間、釋放空間的智能載體。

2.3 在工業方面的應用

利用高吸水性樹脂高溫吸水低溫釋放水的功能製作工業防潮劑。在油田採油作業中,尤其老油田的採油作業,利用超高相對分子質量的聚丙烯醯胺的水溶液進行驅油效果非常好。還可以用於有機溶劑的脫水,尤其對極性小的有機溶劑其脫水效果十分顯著。還有工業用的增稠劑、水溶性塗料等。

2.4 在建築方面的應用

在水利工程使用的遇水快速膨脹材料,是純粹的高吸水性樹脂,主要用於汛期大壩洞的堵漏、地下室、隧道、地鐵預制縫的堵水;用於城市污水處理和疏竣工程的泥漿固化,以便於挖掘和運輸等。

高吸水性樹脂基本成本核算

廣泛用於農業、工業、生活領域,極具發展前景的國內高吸水性樹脂行業,由於反傾銷後原材料市場形成壟斷,價格暴漲,導致30多家高吸水性樹脂企業紛紛倒閉、停產,與此同時,國外產品趁機大量湧入國內市場。

反傾銷後丙烯酸價格驚人上漲

作為國內生產丙烯酸及酯的最大生產企業——北京東方化學工業集團(以下簡稱東方化工)、上海高橋石化丙烯酸廠、吉聯(吉林)石油化學有限公司,針對國外出口丙烯酸酯的大量低價傾銷行為提起了反傾銷調查。2001年6月和2003年4月,國家先後公布了對原產日本、美國、德國,及韓國、印尼、馬來西亞和新加坡等進口丙烯酸酯的反傾銷案終裁決定。三家企業獲得了反傾銷的勝訴。

據了解,近10年來,我國丙烯酸工業發展很快,但仍不能滿足迅速增長的市場需求。國內自給率呈逐年下降趨勢,由1996年的80%降至2001年的44%,對進口依賴度相應由20%增加到56%。

實行反傾銷措施後,國內丙烯酸由原來的供過於求,一下變為奇貨可居,其價格出現了驚人的上漲:東方化工乙烯產品出廠價格報單顯示,從2003年七八月份至今年2月,丙烯(基礎原料)單價一直穩定為5700元/噸,但丙烯酸酯的最高價格為每噸17000元,上漲了1倍。而相關產品丙烯酸,由最低時的每噸6750元漲至21600元,上漲約3倍。

化工專家介紹,東方化工等三家企業的丙烯酸酯產品在市場上佔有絕對優勢,它們同時又是丙烯酸的僅有生產廠家。反傾銷後,由於利潤較低,國外已基本不再向我國出口丙烯酸。面對旺盛的市場需求,三家企業生產能力有限,對丙烯酸的價格又具備排他性。在這種情況下出現的大大超出成本的反常提價行為,令丙烯酸下游產業、高吸水性樹脂行業難以為繼。

下游企業遭受「滅頂之災」

投資達5000萬元的唐山博亞科技工業開發有限公司,是全國最大的保水劑生產示範基地,如今企業已經停產半年。財務主管任海霞說:「去年八九月份,丙烯酸價格往上猛躥,實在太離譜了,我們的產品賣一噸要賠3000多元,賣得越多,賠得就越多,不停產拖不下去了。原料廠家獲得這樣的超額利潤不正常。」

另一家被迫停產的陝西漢中樹脂有限公司,也是一家國有企業,去年丙烯酸價格漲到1.3萬元左右,就無力生產了。總經理隆建民說:「我們1989年就正式出高分子產品,到2000年占據了比較大的市場份額,光設備投入就有500萬元。誰想到,市場剛剛發育並替代了進口,就遭致『滅頂之災』,職工放假8個多月了。」

目前我國高吸水性樹脂生產企業有近40家,年產能力3萬噸,但產量不到3000噸。國有企業尚且如此遭遇,由於原料供應不能保證,且價格大大超出企業承受能力的民營企業更是紛紛倒閉關門。

唯一苦苦支撐的濟南昊月樹脂有限公司,曾占據國內高分子吸水樹脂銷售市場的30%份額,是東方化工的丙烯酸大客戶,幾度全面停產,各項經濟損失近500萬元。這家企業自今年2月先後向商務部、發展改革委等提出反壟斷調查,到目前沒有明確結果。

昊月公司總經理楊志亮說:「最初丙烯酸價格飛漲,我們覺得是原材料丙烯價格上漲所致,然而,經過認真調查發現,丙烯的價格一直很穩定,而丙烯酸價格暴漲,廠家利用的正是他們供不應求的趨勢及絕對的支配地位,是明顯的不正當競爭。」

對下游企業的這些遭遇,東方化工銷售部工作人員的說法是,由於一段時間以來石油、水、煤價格普遍上漲,加之丙烯酸類產品一直供不應求,多重因素作用其價格「隨行就市」,國際上也是如此。至於高吸水樹脂企業的停產、倒閉,這是市場的正常「洗牌」行為。

國外廠商進貨量迅速上漲

企業負責人普遍反映,丙烯酸類項目都是國家巨資投入,發展改革委嚴格審批,目的就是考慮整個產業的配置,實現進口替代。可如今企業利用國家的保護政策,只顧自己生產,而無視下游廠商的死活,最終還是讓國家財產和行業發展受損。

據國外一些企業駐中國代表處透露,今年高分子吸水樹脂的進貨量上漲了5倍。日本、韓國企業紛紛湧入,開始都採用平價供應策略,沒想到國內競爭對手沒有了,價格最近開始上漲。記者在調查中了解到,像天津小護士、重慶絲爽、四川吉慶衛生用品有限公司,自去年底以來,已紛紛轉向採用進口商的產品。

化工專家表示,化工類產品實際是個鏈條產業。丙烯酸的漲幅過高,導致國內吸水性樹脂企業萎縮、垮掉。昂貴的化工設備不用,老化是很快的,這些還都是有形損失,而無形損失呢?我國有三四億人使用衛生巾,失去這樣大的市場太可惜了。

反傾銷是把「雙刃劍」

著名反壟斷法專家、對外經濟貿易大學博士生導師黃勇教授認為,我國雖然沒有反壟斷法,但相關精神在反不正當競爭法和價格法中都有體現,問題是很多關鍵的技術性衡量指標無法可依。高吸水樹脂行業的遭遇,反映出反壟斷與反傾銷也存在協調問題,特別是要防止對原材料產品佔有壟斷地位的企業借機抬高價格,使相關產業的發展受損。

一般而言,判斷其行為是否發生壟斷,有三個構成要件:一是企業是否占市場支配地位;二是企業之間是否有共謀,可從其價格上漲趨勢、後果等進行推定;三是在一定時期內不正當地維持高定價。市場支配地位很好判斷,但是否濫用就要進行更細致的調查。需要明確一點,各國的反壟斷法不是反占市場支配地位的企業,而反的是對其支配地位的濫用行為,因而,國家應加快出台反壟斷法。

黃勇教授同時指出,反傾銷也是一把「雙刃劍」,實施這項措施,特別是對化工類原材料產品,要進行上下游及相關產品的成本核算。丙烯酸酯反傾銷,維護了國內幾家企業的利益,但相關產業卻瀕臨倒閉。這是令人深思的,表面上我們奪回了丙烯酸酯市場,但又拱手相讓了高分子樹脂市場。不管是反傾銷還是反壟斷,要建立制度性的溝通和協調機制,最終目的是維護公平的競爭格局,保護消費者福利的整體提高。

⑶ 什麼是磷酸酯

由特殊的催化酯化方法制備而成,廣泛應用於金屬加工液領域,在高載荷引起邊界潤滑條件下減少摩擦和磨損。LYCOMAX公司研製的磷酸酯包括油性的MAX-P16,水性的LYCO-P08 LYCO-P30等,常用於鋁軋制液,鋼板軋制液,拉削液,沖壓油,超精研,磨削液,冷軋液等產品中。

⑷ 關於環氧磷酸酯附著力促進劑的使用

環氧磷酸酯對增強水性五金烤漆的附著力效果挺好的,特別是在卷鋼卷鋁塗料、電鍍塗料,據我應用的經驗,深圳市道威爾科技有限公司的M133環氧磷酸酯效果挺好的,高固含,高性價比

⑸ 滑石粉改性的改性劑,主要有哪幾種

滑石粉改性的改性劑主要為以下幾種:
1、滑石粉鈦酸酯偶聯劑改性
鈦酸酯偶聯劑的作用是在填料表面形成一層單分子覆蓋膜.改變其原有的親水性質,使填料表面性質發生根本性變化。由於鈦酸酯偶聯劑具有獨特的結構,對聚合物與填充劑有良好的偶聯效能,因而可提高填料的分散性和流動性,改善復合材料的斷裂伸長率、沖擊性和阻燃性能等。
2、滑石粉鋁酸酯偶聯劑改性
用鋁酸酯改性後的滑石粉與普通滑石粉相比,在液體石蠟中的粘度顯著減小,水滲透時間增大,有機憎水改性效果明顯。由鋁酸酯改性的滑石粉代替半補強碳黑填充橡膠,其拉伸強度、伸長率等力學性能有所提高。同時,替代量很大。可達到降低成本,減少環境污染的效果。
3、滑石粉有機高分子改性
採用甲苯二異氰酸酯(TDI)和丙烯酸羥丙酯(HPA)對滑石粉體進行表面改性,分別接枝包覆聚甲基丙烯酸甲酯(PMMA)層和甲基丙烯酸甲酯-丙烯酸丁酯共聚物(PMMA-Co-PBA)層,構成復合粒子。
4、滑石粉硅烷偶聯劑改性
滑石粉屬於極性的水不溶物質,當它們分散於極性極小的有機高分子樹脂中,因極性的差別,造成二者相容性不好,直接或過多地填充往往容易導致材料的某些力學性能下降以及易脆化等缺點,從而對製品的加工性能和使用性能帶來負面影響。可採用硅烷偶聯劑對滑石粉填料的表面進行改性處理。
5、滑石粉磷酸酯改性
磷酸酯可與滑石粉表面發生化學吸附和物理吸附反應形成表麵包覆,增加表麵包覆量可改善滑石粉的分散狀態,可顯著改變填充體系的形態和機械性能。
當然所有的產品還是要經過試驗才能確定是否可用的,實踐才是檢驗產品是否可行的標准。我們澳達的滑石粉改性劑助劑經得起檢驗,選擇澳達環保新材料,您不會失望的。

⑹ 如何區分使用磷酸酯雙澱粉和乙醯化二澱粉磷酸酯、乙醯化雙澱粉己二酸酯

澱粉改性方式不同,各自應用也有偏重的方向,有的耐高溫蒸煮及剪切,有的改善口感,有的凍融性更好,乙醯化的硬度好一些,磷酸酯的保水性好一些應用比較廣泛。

⑺ 水性防腐塗料的水性防腐塗料的研究狀況

1 水性丙烯酸塗料
目前很少研究單組分純丙體系,一般通過不同功能單體對純丙體系進行改性,如採用苯乙烯改性,製得的丙烯酸/苯乙烯聚合物體系可配製堅硬的防腐蝕塗料。YanaiHidenor等人採用含環氧基和羥基的丙烯酸酯類單體先聚合,製得聚丙烯酸酯中間體,再與含縮水甘油基和可水解硅烷基的低聚硅氧烷縮合反應,製得塗膜緻密的單組分低溫固化硅丙塗料,其耐水性、耐候性、耐高溫性、拉伸強度都有顯著提高。美國Rohm&Hass公司開發的水性雙組分環氧/丙烯酸塗料系列MAINCOTEAE-58,以環氧樹脂E-12為基料,過氧化苯甲醯(BPO)作為引發劑,在丙烯酸聚合中將環氧樹脂接枝到丙烯酸酯分子鏈中,且環氧基不開環,固化反應為雙鍵加成反應,所得雙組分乳液穩定性好,貯存時間長,塗膜緻密,耐水性佳、耐磨性和耐候性好,光澤度高。德國不久前也開發出一種新型性能優異的防銹漆,是一種環氧改性的丙烯酸防腐蝕塗料。
我國的學者、研發工作者對丙烯酸酯的研究也從未間斷。潘祖仁等人研究了某些含氨基的高聚物作為交聯劑的聚合物乳液,如氨基樹脂、環氧樹脂、聚氨酯等,塗膜具有優異的緻密性、耐水性、耐候性、保色性和保光性。楊新革選用丙烯酸和丙烯酸正丁酯自由基聚合,製得丙烯酸酯乳液,並加入納米TiO2,製得水性納米丙烯酸抗菌塗料,具有優異的防腐蝕性、耐候性、耐菌性和耐溶劑性,抗污能力強。
2 水性環氧塗料
水性環氧防腐蝕塗料的研究經歷了幾個階段:第一代水性環氧體系直接用乳化劑進行乳化,主要以聚乙烯醇為乳化劑,並開始研究用多醯多胺與環氧化合物的加成物、聚乙氧撐醚等作為乳化劑。第二代水性環氧體系是採用含環氧基的水溶性固化劑乳化油溶性環氧樹脂,並出現自乳化型環氧樹脂。第三代水性環氧體系是由美國殼牌公司經多年研發成功的,這一體系的環氧樹脂和固化劑都接上了非離子型表面活性劑,由其配製塗料的性能指標可達到或超過溶劑型塗料。
從20世紀70年代開始,國外已經不斷有新的合成技術及防腐蝕塗料產品推出,如德國Henkel公司的水性環氧樹脂系列WATERPOXYl401、1455等,水性環氧固化劑WATERPOXY751、755等;美國Shell公司的EPIREZ3510-W-60及EPI-REZW-5l等;美國DEVOEMAREN塗料公司的Devran230、240QC和Devchem252和Devran188都是卓有成效的無溶劑環氧樹脂的代表。
我國很多高校和科研院所對水性環氧防腐蝕塗料進行了研究,華南理工大學宋蓓蓓等人用超支化樹枝狀聚酯BoltornTMH20(B-OH)與乙醯乙酸叔丁酯(t-BAA)進行酯交換反應,制備成乙醯乙酸封端的B-OH,使得BBA的乙醯乙酸基的亞甲基發生接枝共聚反應,合成了以BBA為核的超支化聚合物,使塗膜具有更高的交聯度、更高的玻璃化溫度、更好的熱穩定性,從而使塗料具有優異的防腐性。燕山大學任宇紅等人用自乳化法制備了丙烯酸酯改性水性環氧樹脂,漆膜的緻密性好,防腐蝕性、耐候性、耐水性和拉伸強度都比未改性的有顯著提高,並已經開始用於石油化工、冶金、五金交電、汽車、船舶等領域的防腐。
3 水性無機富鋅塗料
水性無機富鋅防腐塗料經歷了70餘年的發展歷程,主要有3個階段:第一階段,熱固化無機富鋅塗料。無機富鋅塗料最早誕生於20世紀30年代的澳大利亞,其發明人是工程師VictoeNightingale。第二階段,後固化無機富鋅塗料。無機富鋅塗層的處理工藝於1949年被介紹到美國,並於1952年開發成功後固化無機富鋅塗料。第三階段,自固化無機富鋅塗料。隨著對鋅/硅酸鹽化學研究的深入,開發了具有自固化特性的水性富鋅塗料,即不必噴灑後固化液,固化後也不必另行清除塗層表面固化反應產物,而自固化後的塗層硬度又與後固化的塗層硬度相當。
JohnBSchutt從20世紀90年代開始進行了一系列的研究工作,制備成可商業化使用的水性無機富鋅塗料。澳大利亞Morgan-Wyalla油管,長達250km,採用水性無機富鋅防腐塗料,效果很好。
以色列、韓國採用環氧富鋅底漆代替熱噴漆用於地下管道防腐,也取得了良好效果。
在我國,天津化工研究院自20世紀80年代初開始對水性硅酸鋰富鋅塗料進行研發並使之工業化,成為我國最早生產、推廣、應用該產品的單位之一。90年代起,我國自行研製的水性無機富鋅塗料得到了長足發展,如上海高科推出的LW-I型無機富鋅塗料、天津燈塔的E53851、重慶三峽的E06-1、武漢現代的E777-1、台灣的TC-799等。目前,我國對水性無機富鋅塗料的研究主要是在其改性研究上,華南理工大學彭剛陽等人採用低模數硅酸鉀溶液、鹼性硅溶膠為主要原料,以有機硅氧烷作為改性劑,制備成穩定的高模數硅酸鉀溶液,配製成粒徑均勻、貯存穩定、耐水性和耐候性優異的高性能無機富鋅塗料。天津大學研發的水溶性硅酸鋰富鋅塗料具有耐高溫、耐候、導靜電、長效防腐蝕等特性。山東大學吳波以水溶性硅酸鋰-硅酸鈉、硅酸鋰-硅酸鉀、硅酸鋰-甲基硅酸鈉、硅酸鋰-甲基硅酸鉀4種硅酸鹽復合物作為基料,通過分析和研究,開發出一條新的制備硅酸鋰富鋅塗料的工藝路線,製成耐高溫、附著力好、耐鹽霧性優異的無機富鋅塗料。揚州市金陵特種塗料廠研製的ET-98無機磷酸鹽富鋅塗料屬國內首創,制備的塗層堅牢,耐磨性、耐油性、耐水性和耐熱性優良,對黑色金屬表面具有優異的隔熱和陰極保護作用。
水性無機富鋅塗料廣泛適用於海洋大氣、高溫等各種環境下的鋼結構,如海洋平台、船舶、集裝箱、大型鋼鐵構件、輸油管線、各種化學貯槽內襯的長效防腐。
4 水性聚氨酯塗料
在聚氨酯樹脂中,除了含有大量的氨酯鍵外,還有脲鍵、酯鍵、醚鍵、醯胺鍵等,這些特殊的鍵結構賦予塗層優異的黏結性、耐磨性、柔韌性、回彈性、耐化學腐蝕性、耐溶劑性、光澤等,從而集裝飾性與防腐性於一體。20世紀90年代,Jacobs成功開發出能分散於水中的多異氰酸酯固化劑,從而使雙組分水性聚氨酯防腐蝕塗料進入實用研究階段。美國ARCO化學技術公司,採用含重復的烯丙基醇或烷氧化烯丙基醇單元的水分散聚合物、TDI、HDI等多異氰酸酯開發了雙組分聚氨酯塗料,具有卓越的柔韌性、機械強度、耐磨性、耐化學品性和耐久性。
S.S.Pathak等人用有機硅MTMS(甲基三甲氧基硅烷)和GPTMS(γ-縮水甘油醚氧丙基三甲氧基硅烷)改性水性聚氨酯塗料,增強了水性聚氨酯塗料的彈性和機械應力,其降解溫度升高到約206℃,熱穩定性得到較大的提高,使其適用於航天、海洋、汽車等領域的防腐。
在我國,華東理工大學藉助DSC、FTIR等方法討論了擴鏈劑對聚氨酯脲-聚甲基丙烯酸甲酯水分散液的分子鏈結構和性能的影響。孫道興等人以環氧樹脂與含硅的聚氨酯樹脂接枝共聚製得水性聚氨酯,再以其來改性環氧丙烯酸樹脂作為防腐蝕塗料的基料,鈦鐵粉為防銹顏料,製得綜合性能優異的水性防腐蝕塗料。吳校彬等人通過原位乳液聚合制備了用環氧丙烯酸樹脂雙重改性的水性聚氨酯乳液,乳液貯存期超過10個月,耐凍融循環超過5次,塗膜擺桿硬度超過0.7,拉伸強度大於10MPa,耐水性、耐酸鹼性、耐溶劑性和防腐性都比未改性的有明顯提高。合肥工業大學的呂建平教授採用低聚聚酯多元醇和甲苯二異氰酸酯(TDI)反應,用新戊二醇(NPG)和三羥甲基丙烷(TMP)等小分子擴鏈,採用二羥甲基丙酸(DMPA)引入親水基團,最後採用TEA(三乙醇胺)中和,在快速攪拌下分散,製得具有良好貯存穩定性、耐水性和物理性能的聚酯型水性聚氨酯,並已經用於室外場地鋪裝的防腐蝕塗料。
目前水性聚氨酯塗料已經廣泛應用於飛機、船舶、車輛、建築物的表面防腐塗裝,以及其他一些要求較高的表面防腐塗裝領域。
5·存在的問題和技術動向
經過研發工作者們多年的努力,水性防腐蝕塗料已經取得了很大進步和發展,目前水性防腐蝕塗料存在問題和今後的技術走向,主要有以下幾個方面:
(1)目前水性防腐蝕塗料普遍存在固含量低的缺點,固含量低將使生產廠家的成本加大,因此,開發高固含量的防腐蝕塗料是科研工作者的重點。
(2)單一體系的防腐蝕塗料功能比較單一,在應用上存在一些缺點,研發兩種或者兩種以上體系的復配防腐蝕塗料,可以增加塗料的多功能性,並可彌補單一體系防腐蝕塗料的缺點。
(3)塗料性能有待提高。通過研究水性塗料成膜交聯機理,尋找新型交聯劑、添加劑,使樹脂具有更好的緻密性,從而提高塗料的機械性能;研究乳液聚合原理,尋找新型乳化劑,使乳液聚合更加均勻,單體轉化率更高,減少傳統乳化劑用量,提高塗料的耐水性。
(4)不斷更新和改進生產工藝流程及生產設備,對生產人員進行專業培訓。
(5)施工性能有待提高。水性塗料對底材表面清潔度和施工過程的要求較高,因水的表面張力大,所以污物易使塗膜產生縮孔。水性塗料對抗強機械作用力的分散穩定性差,輸送管道內的流速急劇變化時,分散微粒被壓縮成固態微粒,使塗膜產生麻點。
(6)水性防腐蝕塗料從根本上說是藉助於成膜樹脂的親水化。樹脂親水化途徑有自乳化與外乳化兩種。無論哪種途徑都必須引進含親水性官能團的物質,在自交聯體系中,塗料成膜一般親水官能團依然游離,並沒有交聯轉化成疏水鏈段,這樣不可避免會影響塗膜的耐介質性、耐腐蝕性等性能。如何將這些親水官能團在成膜後轉化為疏水基團是當前研究工作需要高度關注的問題之一。
(7)環保方面有待提高。由於水性體系中使用了乳化劑和其他小分子助劑,可能對環境存在一定的影響,有待尋找新型高性能乳化劑和其他助劑使塗料在使用過程中更加環保。

⑻ 水性環氧的生產工藝,以及配方,注意事項

環氧樹脂具有優良的物理、機械、電絕緣性能及對各種材料的粘接性能,廣泛應用於塗料、復合材料、澆鑄料、膠粘劑、模壓材料和注射成型材料等領域¨ 。隨著工業的發展及社會的進步,人們的環保意識逐漸增強,不含揮發性有機化合物(VOC)或少含VOC、以及不含有害空氣污染物(HAP)的體系已成為新型材料的研究方向 。近年來,以水為溶劑或分散介質的水性環氧樹脂越來越受到重視。水性環氧樹脂通常是指以微粒或液滴形式分散在以水為連續相的分散介質中而配製的穩定分散體系。一般可分為水乳型環氧樹脂膠液(環氧樹脂水乳液)以及水溶性環氧樹脂膠液(環氧樹脂水溶液)兩類,既保持了溶劑型環氧樹脂的優點,還具有合理的固化時間並
有著很高的交聯度和很大的粘度可調范圍,操作性能好,施工工具可直接用水清洗,可與其它水性聚合物體系混合使用,以及價廉、無氣味、VOC含量低、不燃,儲存、運輸和使用過程中安全性高等特點 。
隨著生產技術的不斷成熟和發展,水性環氧樹脂的應用前景良好。國內外已研究和開發了很多新的品種,並將其不斷地推廣到各個相關領域 l。
1 水性環氧樹脂的制備
水性環氧樹脂制備方法主要有以下幾種:
1.1 直接乳化法
直接乳化法又稱機械法、直接法,通過球磨機、膠體磨、超聲波振盪、高速攪拌,均質機乳化等手段將環氧樹脂磨碎,在乳化劑水溶液的作用下,再通過機械攪拌將粒子分散於水中;或將環氧樹脂和乳化劑混合,加熱到適當的溫度,在激烈的攪拌下逐漸加入水而形成乳液。可採用的乳化劑有聚氧乙烯烷芳基醚(HLB=10 9~19、5)、聚氧乙烯烷基醚(HLB=10.8~16 5)、聚氧乙烯烷基酯(HLB=9 0~16 5)等,另外也可自製活性乳化劑 】。
機械法制備水性環氧樹脂乳液的優點是工藝簡單,所需乳化劑的用量較少,但乳液中環氧樹脂分散相微粒的尺寸較大,約50/tm左右,粒子形狀不規則且粒度分布較寬,所配得的乳液穩定性差,時間一長乳液就會分層,並且乳液的成膜性能也不是很好。
1.2 相反轉法
相反轉原指多組分體系中的連續相在一定條件下相互轉化的過程,如在油/水/乳化劑體系中,當連續相由水相向油相(或從油相向水相)轉變時,在連續相轉變區,體系的界面張力最低,因而分散相的尺寸最小。通過相反轉法將高分子樹脂乳化為乳液,其分散相的平均粒徑一般為1~2 ILm。
相反轉法是一種制備高分子樹脂乳液較為有效的方法,幾乎可將所有的高分子樹脂藉助於外加乳化劑的作用並通過物理乳化的方法製得相應的乳液。用相反轉法制備水性環氧樹脂乳液的具體過程是在高速剪切作用下先將乳化劑和環氧樹脂混合均勻,隨後在一定的剪切條件下緩慢地向體系中加入蒸餾水,隨著加水量的增加,整個體系逐步由油包水向水包油轉變,形成均勻穩定的水可稀釋體系。在這一過程中,水性環氧樹脂乳液的許多性質會發生突變,如體系的粘度、導電性和表面張力等,通過測定體系乳化過程中的電導率和粘度的變化就可判斷相反轉是否完全。該乳化過程可在室溫環境下進行,對於固體環氧樹脂,則需要藉助於少量有機溶劑或進行加熱來降低環氧樹脂的本體粘度,然後再進行乳化 -8l。
有研究按一定比例將環氧樹脂和表面活性劑通過加熱及過硫酸鉀溶液催化,製得反應型環氧樹脂乳化劑溶液,大大改善了乳化劑與環氧樹脂的相容性。然後將雙酚A型環氧樹脂的乙二醇單乙醚溶液和反應型環氧樹脂乳化劑按一定比例攪拌混合均勻,滴加蒸餾水至體系的粘度突然下降,此時體系的連續相由環氧樹脂溶液相轉變為水相,發生了相反轉,繼續高速攪拌一段U?I司後加入適量蒸餾水稀釋到一定的濃度,製得水性環氧樹脂乳液 l。
1.3 自乳化法
自乳化法,又稱化學法,或化學改性法。在環氧樹脂中,環氧基的存在使其具有較好的反應活性,因為環氧環為三元環,張力大,C、0電負性的不同使該三元環具有極性,容易受到親核試劑或親電試劑進攻而發生開環反應;分子骨架上所懸掛的羥基雖然具有一定反應活性,但由於空間位阻,其反應程度較差 。。。因此可在環氧樹脂分子骨架中引入一定量的強親水性基團,如磺酸基、羧酸基等酸性基團;胺基等鹼性基團,聚醚等非離子基團。這些親水性基團能幫助環氧樹脂在水中分散,使改性樹脂具有親水親油的兩親性能,當這種改性聚合物加水進行乳化時,疏水性高聚物分子鏈就會聚集成微粒,離子基團或極性基團分布在這些微粒的表面,由於帶有同種電荷而相互排斥,只要滿足一定的動力學條件,就可形成穩定的水性環氧樹脂乳液,從而使所得的改性環氧樹脂不用外加乳化劑即可自分散於水中形成乳液。所需親水基團的最低數量與親水基團的極性大小,樹脂的結構以及平均相對分子質量有關。樹脂的相對分子質量小,相對分子質量分布寬時,其水溶性較好。因為高相對分子質量的分子在水中的擴散速度慢,且其溶液的粘度也大,增加了分子運動的阻力。而分子間的互溶效應則可使相對分子質量分布寬時的溶液的水溶性得到改善。
如用相對分子質量為4 000~20 000的雙環氧端基乳化劑與環氧當量為190的雙酚A環氧樹脂和雙酚A混合,以三苯基膦化氫為催化劑進行反應,可製得含親水性聚氧乙烯、聚氧丙烯鏈段的環氧樹脂,該樹脂不用#F;bu-~L化劑便可溶於水,且耐水性強⋯ 。
根據反應類型的不同,可將自乳化法分為以下幾類:
1.3.1 醚化反應型
由親核試劑直接進攻環氧環上的C原子即為醚化反應型。可用的方法有:將環氧樹脂和對位羥基苯甲酸甲酯反應,而後水解、中和;將環氧樹脂與巰基乙酸反應,而後水解、中和;將對位氨基苯甲酸與環氧樹脂反應,產物可穩定分散於合適的胺/水}昆合溶劑中[12l~
1.3.2 酯化反應型
酯化反應型與醚化反應型不同的是氫離子先將環氧環極化,酸根離子再進攻環氧環,使其開環。可行的方法有:用不飽和脂肪酸酯化環氧樹脂,再將所得產物與馬來酸酐反應,引入極性基;或者將不飽和脂肪酸先與馬來酸酐反應,所得中間產物與環氧樹脂發生酯化反應,然後中和產物上未反應的羧基。
在較激烈反應條件下,環氧樹脂可以和羧酸發生酯化反應,按化學計量加入二酸,可得到含一游離羧基的環氧酯,用有機胺中和即得穩定分散體:磷酸與環氧樹脂反應生成環氧磷酸酯,由於溶液有利於放熱反應進行,用環氧樹脂溶液反應可得最好結果,磷酸最好與水和醇一起逐步加入溶液中,反應極易製得二酯,二酯在醇作用下易解離成單磷酯,用胺中和,可得不易水解的較穩定水分散體。環氧樹脂與丙烯酸樹脂發生酯基轉移反應,或環氧樹脂與丙烯酸單體溶液反應,丙烯酸通過酯鍵接枝於環氧樹脂上,這兩種改性方法所得的水乳體系,大量用作罐頭內壁塗料。目前,環氧樹脂磺化水性化的報道較少,低相對分子質量的含環氧基有機物,在亞硫酸氫鈉作用下可以磺化,通過這種方法有可能將低相對分子質量的環氧樹脂改性,使其水性化。
酯化法的缺點是酯化產物的酯鍵會隨U?I司增加而水解,導致體系不穩定。為避免這一缺點,可將含羧基單體通過形成碳碳鍵接枝於高相對分子質量的環氧樹脂上 。
1.3.3 接枝型
James.T.K.Woo等人利用甲基丙烯酸單體與環氧樹脂在自由基引發劑(BPO)存在的條件下進行接枝聚合,將羧基引入環氧樹脂骨架中,製得水性環氧樹脂。並研究發現接枝位置為環氧分子鏈上的脂肪0HjC原子一O—CH:一CH—CH 一O一,接枝效率低於100% ,最後產物為未接枝的環氧樹脂、接枝的環氧樹脂和聚丙烯酸的混合物, 由於沒有酯鍵,用鹼中和,可得穩定的水乳液。引發劑用量至少為單體量的3%, 在自由基引發劑為單體量的3% ~15%范圍內,接枝率與引發劑用量呈線性關系,但過多的引發劑導致單體的自聚,或為鏈終止所消耗,接枝率不能保持原來的增加趨勢;用所得產物製得的乳液粒子的粒徑隨制備時引發劑用量的增加而變小。最後產物中未反應的環氧樹脂比原來的環氧樹脂平均相對分子質量要低,這是因為高相對分子質量的環氧樹脂有更
佳的接枝率,在高相對分子質量的環氧樹脂中(數均
相對分子質量約為10 000),大約有34個重復單元O H
l一(卜一CH廠CI{-_一CH廠0一, 則有34 x 5=170個氫原
子可被自由基離解而成為單體反應的起點,而如果使用的是低相對分子質量的環氧樹脂,如數均相對分子質量為1 000左右, 則在環氧骨架上約有2個0H一0一CH廠Cl_卜CH廠一0一單元,那麼只有1O個氫原子可作反應起點。由於這種接枝與通過酯鍵接枝於環氧骨架上不同,無需形成酯鍵,環氧官能基對其無影響,可用苯酚或苯甲酸將環氧官能基封端 。
1.3.4 開環接枝型
選羥基含量較高的環氧樹脂作骨架材料,用不飽和脂肪酸進行酯化製成環氧酯,再以不飽和二元羧酸(酐)與環氧酯的脂肪酸上的雙鍵進行自由基引發加成反應,以引進羧基。然後加鹼中和,直接加水稀釋即得水性環氧乳液。如可用亞麻油酸與環氧樹脂製成環氧酯後,與馬來酸酐進行自由基反應制備水性環氧樹脂 。
這種方法製得的粒子較細,通常為納米級,相反轉法以及直接乳化法製得的粒子較大,通常為微米級。從此意義上講,化學法雖然制備步驟多,不易操控,且成本高,但在某些方面仍具有實際意義。
1.4 固化劑乳化法
將多元胺固化劑進行擴鏈、接枝、成鹽,使其成為具有親環氧樹脂分子結構的水分散型固化劑,同時它作為陽離子型乳化劑對環氧樹脂進行乳化,兩組分混合後可製成穩定的乳液。雙酚A環氧樹脂和過量的二乙烯三胺反應,形成胺封端的環氧樹脂加成物,真空蒸餾除去多餘的二乙烯三胺,再加入單環氧基化合物將氨基上的伯氫反應掉,最後加入乙酸中和,製成酸中和的環氧樹脂固化劑。此固化劑可分散於水中,向其水溶液中直接加入環氧樹脂或環氧樹脂乳液,均可形成穩定的水乳化環氧一胺組合物,可配製水性常溫固化清漆 。
2 水性環氧樹脂體系的幾個重要參數「
2.1 粒子大小及其分布
粒子大小及其分布對分散體系的性質及塗層的性質是非常關鍵的。塗層的乾燥時間、塗層的透氣性等參量隨粒徑增大而提高;塗層的光澤、耐水性、硬度、乳液與顏料的結合力、乳液的粘度及穩定性等參量隨粒徑增大而減小。而粒子大小及分布主要取決於制備方法、設備、乳化劑類型及用量等因素。粒子越小,膜的硬化過程越慢,膜的最終硬度越大;相反,較大粒子會加速塗層的硬化過程,但最終硬度較小。所以,若調節體系的粒子大小,使其具有一定分布,不僅可以保證膜快速硬化,又能保證膜的最終硬度。由水性化體系的固化過程可知:粒子大,其表面的固化劑濃度高,導致快速固化;然而,隨著固化的進行,固化劑向微粒內部擴散的速度變慢,使粒子的內層來不及固化,導致固化不完全,降低了膜的最終硬度。相反,小粒子表面的固化劑濃度適中,固化速度慢,使固化劑有充分時間擴散到整個微粒,使之固化完全,形成均一的完全化的硬膜。
2.2 乳化劑濃度
乳化劑濃度對環氧樹脂微粒化水基化體系性質的影響也是非常顯著的,不僅影響粒子大小,而且也影響塗膜的性質,如膜的硬度。隨著乳化劑濃度的增加,粒子平均尺寸變小,但當乳化劑濃度較大時(如15PHR),進一步增加乳化劑濃度,平均粒子尺寸減小得不明顯。此外,乳化劑含量增加,塗層的硬度顯著降低。因為乳液成膜是一個由O/W變為W/0的相反轉過程,過多的乳化劑分散於塗膜中,導致膜的不均勻性;同時,乳化劑分散相起著增塑作用。
但可以想像,適量的乳化劑可以作為無機填料的表面處理劑,使無機填料與樹脂具有良好的相容性,從而提高塗膜性質。
2.3 其它重要參數 ¨
水性環氧樹脂乳液的穩定性也是一個重要參數。無論是外加乳化劑,還是自乳化環氧樹Ji~?L液,都處於熱力學不穩定狀態,尤其是外加乳化劑型乳液(包括外加反應性乳化劑所得的自乳化乳液),僅有一定的貯存期。首先,環氧分子能被水解成a一二醇,它不與胺固化劑反應;其次,大多用非離子表面活性劑乳化環氧樹脂,而由於非離子表面活性劑的濁點問題,一旦溫度升高,聚醚和水的吸附量減少,即水化層厚度降低,液滴趨向於聚結成較大粒子,最終導致兩相分離。通常環氧乳液在20℃時可貯存1年;而在40℃ ,3個月即發生相分離;6o℃時貯存,穩定期不到1個月。用固體或半固體狀環氧樹脂制
得的環氧乳液比用液體環氧樹脂製得的乳液穩定性要好,這是因為固體環氧樹脂可以製得粒徑較小的乳液。對於自乳化環氧樹脂乳液,溫度上升,乳液也會沉澱,但一旦溫度下降,經攪拌又可恢復原樣,穩定性較好。確保乳液長期貯存穩定的最好方法是選擇適宜的乳化劑(復合型乳化劑),避免極端溫度(如低於0℃ ,或高於40℃)。乳液液滴的粒徑和分布對乳液的穩定性也極為重要,小粒徑和窄分布會大大增加乳液的穩定性。
此外,乳液流變特性的研究有助於指導施工過程。比較水基體系與有機溶劑體系的粘度與固含量的關系可見:水基體系的粘度更大,尤其是在高固含量時更是如此。這是因為水基體系中微粒表層的乳化劑與水形成強相互作用,導致體系的粘彈性增加所致。

1 水性環氧樹脂乳液的制備
眾所周知,環氧樹脂的親水親油平衡值(HI B)在3左右,是一種不溶於水也難於乳化的親油性聚合物。為使其乳
化形成穩定乳液,目前國內外最常用的方法可歸結為外加乳化劑法及自乳化法。
1 1 外加乳化劑法
這是一種藉外加乳化劑使環氧樹脂乳化而形成水包油型(O/W)乳液的方法。其最主要的實施方法包括直接乳化
法及相反轉法。
(1)直接乳化法Ⅲ 又稱機械法 可用球磨機、膠體磨或均
化器等先將環氧樹脂磨碎成粉末,然後加入乳化劑水溶液,繼而再通過強烈機械攪拌將樹脂粒子分散於水中而成。也可將環氧樹脂和乳化劑混合後加熱到適當溫度,在施以激烈機械攪拌後逐漸加入水而形成乳液。乳化劑通常採用較多的有聚氧化乙烯烷基醚(HI B值為10.8-16.5)及聚氧化乙烯烷基酯(HLB值為9.0-16.5)。目前國內外陸續有許多新的乳化劑被開拓應用,如利用雙酚A環氧樹脂在路易斯酸催化下與聚乙二醇的反應產物,環氧樹脂,聚乙二醇與多元胺作用的加成產物等。直接乳化法最大特點就是工藝簡單,乳化劑用量也較少,但所得乳液中作為分散相的環氧樹脂微粒粒徑較大(約50 m)且粒徑分布較寬,形狀也不規則,乳液穩定性及成膜性相對較差。影響這~ 方法的因素頗多,除乳化劑的選擇外,高效攪拌及分散時溫度控制都是十分重要的。
(2)相反轉法 這是一種有效制備高聚物水乳液的方法,包括從油包水(W/O)到水包油(O/W )的相轉變過程,
在此過程中乳液的黏度、導電性及表面張力等諸多性質均會發生突變。在室溫高速剪切作用下先將液態環氧樹脂與乳化劑均勻混合,然後繼續在一定剪切作用下緩慢地逐步向其中加入蒸餾水,增加到一定水量後,即出現整個體系逐步由油包水型向水包油型的轉變,而形成均勻穩定並可由水稀釋的乳液。若選用高分子質量固體環氧樹脂,則需要加少量有機溶劑並加熱以降低其本黏度,繼而再行轉換和乳化。這一方法的影響因素也較多,除必須有高效的高速剪切分散的設備外,乳化劑的類型、分子質量大小、使用濃度及操作溫度等,實際上都對相反轉過程、粒徑控制及分散乳化效果有著直接影響。近來有人 對其相反轉過程流變行為及相態發展進行了研究,在相反轉點附近,體系油水相的界面張力最
小,此時產生的乳液具有最小分散相尺寸。
1.2 自乳化法
又稱化學修飾法,這是利用環氧樹脂活性基團的反應活
性將親水性基團或鏈段引入到環氧樹脂分子上而進行化學修飾改性的方法。這種具有疏水及親水兩性的環氧樹脂,有著良好的表面活性,無需添加乳化劑而具有自乳化作用,自行分散於水中形成穩定乳液。親水性基團及鏈段的引入主要是充分利用了環氧樹脂分子中活性環氧基及活潑的次甲基上氫原子進行的。當然對高分子質量環氧樹脂而言,還有仲羥基,但其反應活性相對要低得多。
(1)與環氧基的反應_8 因環氧基有較大張力及極性,很易與親核試劑及親電試劑作用而開環,方便地引入親
水性基團及鏈段。例如選用氨基酸、氨基苯甲酸、氨基苯璜酸等小分子化合物與環氧樹脂反應,則氨基使環氧基開環得到相應含羧基、磺酸基的環氧樹脂,再經與氨水等鹼性化合行分散於水中,也可用此產物使純環氧
樹脂進行乳化。也有用羥基苯甲酸甲酯、巰基乙酸酯等小分子化合與環氧基反應,然後再進行酯基水解和中和而引入親水基團的。有人將丙烯酸齊聚物與環氧樹脂作用,藉羧基使環氧基開環而引入含多羧基基團的環氧樹脂再繼而用氨水中和成鹽,分散於水中形成穩定乳液。這類反應因使環氧基消失,一般需加入三聚氰胺或氮基樹脂等以利固化成膜。也有人選用端環氧基聚氧化乙烯或端環氧基聚氧化丙烯乳化劑及雙酚A與雙酚A環氧樹脂在三苯基膦化氫催化下反應.巧妙得到分別含親水性聚氧化乙烯及聚氧化丙烯鏈段並含有環氧基的改性環氧樹脂,不僅具有很好水分散性,且成膜後具有良好耐水性。也有以端羥基聚氧化乙烯或端羥基聚氧化丙烯代替上述雙環氧乳化劑與之反應的報道。
(2)與次甲基上氫的反應 」 有人將環氧樹脂溶於溶劑,加入引發劑及親水性單體如丙烯酸或甲基丙烯酸,加
熱使引發劑分解產生初級游離基,並進攻環氧樹脂次甲基使其活化而產生碳游離基成為新的活性中心,它引發單體進行聚合而使環氧樹脂成為含多羧基基團親水鏈的產物,用氨水中和得到了良好分散於水的穩定乳液。在游離基反應中一般對環氧基影響不大,但也有人將環氧基先用苯酚或苯甲酸或磷酸等予以保護,反應完後再予以還原。當然保護基的選擇應符合易於引入,形成的中間結構能經受所處後繼反應條件,並能在反應結束後不損及分子其他結構的條件下除去。
研究表明,這類接枝環氧樹脂中丙烯酸鏈段含量對乳液穩定性影響很大。
(3)與羥基的反應 對於分子質量較大的環氧樹脂中的仲羥基,雖然反應活性不及前者,但仍可以通過其反應而引入親水基團或鏈段。如有人使用磷酸與其反應形成單、雙或三磷酸酯環氧,用氨水中和成鹽而具親水性。也有酸酐與之反應形脂肪酸環氧,也有將不飽和脂肪酸與之反應形成不飽和脂肪酸環氧酯,再通過雙鍵作用與順丁烯二酸酐反應而製成水性脂肪酸環氧的報道。
1 3 改性固化劑乳化法[. ]
除上述方法外還可採用改性固化劑乳化法,它不需要先
將環氧樹脂改性和乳化,而在配製使用前與改性固化劑混合乳化,這種固化劑一般由多元胺固化劑進行加成擴鏈、接枝、成鹽而製得,非極性及具有表面活性的基團和鏈段的引入,不僅改善了與其環氧樹脂的相容性,而且對低分子質量液體樹脂有良好乳化作用,因而同時兼有乳化及交聯固化功能。
如將多乙烯多胺與單環氧或多環氧化物加成使大部分伯胺氫封閉,再用雙酚A環氧樹脂與之加成,達適當親水親油平衡值後與甲醛作用使伯胺氫羥甲基化。或將過量的多烯多胺與環氧樹脂加成後,用脂肪族或芳香族單環氧化合物封閉其伯胺氫,以水(或水溶性有機溶劑)稀釋後,以醋酸中和部分伯胺氫。封端的作用主要在於制約伯胺基上的氫的活性。
制備中控制好HLB值可保證其良好水分散性。
2 水性環氧樹脂的固化機理[18,1 9j 1 、 、
水性環氧樹脂乳液在配製時根據組成及成膜後性質的
不同要求,需調節環氧與固化劑 的摩爾比,當使用分子質量較大的固體環氧時,尚需加入乙二醇醚一類的成膜助劑。顏填料則可分別添加在環氧及固化劑內,最好質量相近。由於這是一種以溶有固化劑的水為連續相,環氧樹脂為分散相的多相體系,塗裝後水分在適當蒸汽壓條件下會逐漸揮發。有人認為隨水分大部分揮發,環氧顆粒相互接觸形成球體緊密堆積而聚結,而含固化劑的剩餘水分則填充於其間,繼而固化劑不斷擴散人環氧,二者相互作用而交聯固化成膜,殘余水分及其他添加助劑則擴散到膜表面揮發。但隨著交聯固化的進行,環氧顆粒內質量增大,黏度及玻璃化轉變溫度升高,會大大影響固化劑向內部擴散的速度,但速度過快並不利於成膜過程的進行,透射電鏡測試也顯示了其相應的兩相
結構,初步成膜後其固化反應實際上繼續進行,到完全固化需要持續一定時間。
由水的揮發,顆粒聚結,固化劑。擴散及交聯固化成膜的反應機制充分說明,水分的揮發及固化劑擴散速度是極重要的技術關鍵,環氧分散相的粒徑愈小,固化劑與環氧的相容性愈好,少量成膜助劑的使用及合適的水蒸發的控制手段都將直接影響成膜的過程及性質。陳聲銳指出 水分的蒸發分2個階段,先是流體狀態時其蒸發速率恆定,二是成膜後水分需從內部擴散到表面蒸發速率較慢,並指出固化成膜時的溫度、膜厚度及環境相對濕度皆制約著水分的蒸發。
3 有待改善的問題
以水性環氧樹脂為基礎的水性塗料具有環境污染小,對
許多基材包括潮濕基材都有良好附著力 可與水 泥砂漿或水性聚合物配合使用,操作方便,有很好的應用前景,但實踐中還是有不少問題需要予以改善。
(1)由於水的蒸汽壓及蒸發潛熱皆比有機溶劑高,作為
塗料塗裝後水的蒸發較慢,在低溫及潮濕環境下更甚,微量水分的殘留常造成塗膜表干時間延長,塗膜起泡或凹陷。
(2)由於水的冰點低,作為水性塗料,其凍融穩定性較溶
劑型為差。
(3)由於水的表面張力較大,作為水性塗料大大影響了
其對基材及添加的顏填料的潤濕及附著。
(4)由於水的電導率高及乳化劑存在,易使塗裝金屬受
到一定腐蝕。

⑼ 各種樹脂型號和用途!有多少種

樹脂按來源分有天然樹脂和合成樹脂兩種。

天然樹脂是指由自然界中動植物分泌物所得的無定形有機物質,如松香、琥珀、蟲膠等。主要用作塗料(見天然樹脂塗料),也可用於造紙、絕緣材料、膠粘劑、醫葯、香料等的生產過程。

合成樹脂是指由簡單有機物經化學合成或某些天然產物經化學反應而得到的樹脂產物,如酚醛樹脂、聚氯乙烯樹脂等,其中合成樹脂是塑料的主要成分。

(9)磷酸酯改性水性樹脂擴展閱讀:

樹脂環保燙鑽主要的產品系列有: 樹脂環保燙鑽,樹脂,樹脂燙鑽,仿奧地利切面鑽中東切面鑽,仿奧鑽,異形鑽,光面鑽,水滴,心形,馬眼,桃心鑽,圓形等等各種樹脂燙鑽。

各種可燙樹脂鑽及仿奧地利切面鑽中東切面鑽,採用進口技術生產,種類齊全、品質一流。可生產切面樹脂鑽、光面樹脂和異形樹脂鑽等等各種形狀;產品具有精度高,亮度好,稜角清,不易磨損,不易刮傷,顏色豐富,形狀效果多樣,環保自然等優點。

⑽ 磷酸酯附著力促進劑哪家做的比較好啊

磷酸酯類型附著力試了幾家,有的附著力可以耐溶劑性不好,有的耐水性不好,有的漆膜比較硬韌性不好,有的酸性大對儲存有影響,據我所知,常州新元素化學比較好,很穩定,我們公司用了好多年了。

閱讀全文

與磷酸酯改性水性樹脂相關的資料

熱點內容
雲煙win過濾嘴顏色 瀏覽:179
一般飲水機的絕緣值多少 瀏覽:389
超濾和反滲透怎麼一起用 瀏覽:675
凈水機如何不堵水 瀏覽:358
反滲透預處理罐體計算 瀏覽:290
天正怎麼標注污水井標高 瀏覽:27
甲生產的污水流入 瀏覽:803
小松空調濾芯在什麼地方 瀏覽:411
洗衣機除垢劑自製 瀏覽:973
純凈水茶為什麼顏色淡 瀏覽:449
廢水硫酸根檢測值單位 瀏覽:991
泉衛士凈水器濾芯怎麼換 瀏覽:776
西安市農村污水處理方案及設備 瀏覽:868
空氣凈化器怎麼除去二手煙 瀏覽:553
聊城洗衣機除垢劑銷售 瀏覽:943
魚粉廢水 瀏覽:488
福島污水或損人類DNA床陽地 瀏覽:587
兒童鼻炎睡覺用什麼凈化器好 瀏覽:604
飲水機熱水膽水銹怎麼清理 瀏覽:179
奧克斯飲水機怎麼是涼水 瀏覽:345