『壹』 弱酸性陽離子交換樹脂再生一般是順流還是逆流兩者的區別是
再生使用的話逆流洗脫效果好,離子交換的過程是從樹脂上層逐步向下吸附飽和的,也就是說上層的吸附雜質最多,而最底下的交換柱角落的樹脂可能還沒有完全吸附,如果順流洗脫的話,那些雜質會逐步的向下轉移,先污染底層樹脂,在解析活化,影響洗脫效果和樹脂壽命;逆流的話就解決這個問題,底下的輕度交換的樹脂先被活化,然後在逐步的向上,上層的雜物被洗出直接流走。
『貳』 什麼叫做離子交換樹脂的再生
離子交換樹脂是一種聚合物,帶有相應的功能基團。一般情況下,常規的鈉離子交版換樹脂帶有大量的權鈉離子。當水中的鈣鎂離子含量高時,離子交換樹脂可以釋放出鈉離子,功能基團與鈣鎂離子結合,這樣水中的鈣鎂離子含量降低,水的硬度下降。硬水就變為軟水,這是軟化水設備的工作過程。
2.當樹脂上的大量功能基團與鈣鎂離子結合後,樹脂的軟化能力下降,可以用氯化鈉溶液流過樹脂,此時溶液中的鈉離子含量高,功能基團會釋放出鈣鎂離子而與鈉離子結合,這樣樹脂就恢復了交換能力,這個過程叫做「再生」。
『叄』 各類離子交換樹脂的再生方法
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
5、陽樹脂再生:
通鹽酸:在環境溫度下,將4%的樹脂床體積4倍的HCL通過樹脂床,通過時間約2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=5-6.樹脂床備用。
6、陰樹脂再生:
通氫氧化鈉:在環境溫度下,將濃度為4%的樹脂體積4倍量的NaOH通過樹脂床,通過時間約為2小時。
慢洗:以相同流速和;流向,通2倍樹脂體積的除鹽水。
快洗:以運行流速和流向,通除鹽水至PH=8,樹脂床備用
具體操作可根據樹脂使用情況酌情增加酸鹼的濃度和再生時間。
(3)弱酸陽樹脂的再生擴展閱讀:
應用領域:
1)水處理
水處理領域離子交換樹脂的需求量很大,約占離子交換樹脂產量的90%,用於水中的各種陰陽離子的去除。目前,離子交換樹脂的最大消耗量是用在火力發電廠的純水處理上,其次是原子能、半導體、電子工業等。
2)食品工業
離子交換樹脂可用於製糖、味精、酒的精製、生物製品等工業裝置上。例如:高果糖漿的製造是由玉米中萃出澱粉後,再經水解反應,產生葡萄糖與果糖,而後經離子交換處理,可以生成高果糖漿。離子交換樹脂在食品工業中的消耗量僅次於水處理。
3)制葯行業
制葯工業離子交換樹脂對發展新一代的抗菌素及對原有抗菌素的質量改良具有重要作用。鏈黴素的開發成功即是突出的例子。近年還在中葯提成等方面有所研究。
4)合成化學和石油化學工業
在有機合成中常用酸和鹼作催化劑進行酯化、水解、酯交換、水合等反應。用離子交換樹脂代替無機酸、鹼,同樣可進行上述反應,且優點更多。如樹脂可反復使用,產品容易分離,反應器不會被腐蝕,不污染環境,反應容易控制等。
甲基叔丁基醚(MTBE)的制備,就是用大孔型離子交換樹脂作催化劑,由異丁烯與甲醇反應而成,代替了原有的可對環境造成嚴重污染的四乙基鉛。
5)環境保護
離子交換樹脂已應用在許多非常受關注的環境保護問題上。目前,許多水溶液或非水溶液中含有有毒離子或非離子物質,這些可用樹脂進行回收使用。如去除電鍍廢液中的金屬離子,回收電影製片廢液里的有用物質等。
6)濕法冶金及其他
離子交換樹脂可以從貧鈾礦里分離、濃縮、提純鈾及提取稀土元素和貴金屬。
『肆』 弱酸性陽離子交換樹脂有何特性
弱酸陽離子交換樹脂在水中的特性類似弱酸。它與中性鹽類作用的能力較弱(例如SO42—、CL—等強酸陰離子)。它僅能與弱酸性鹽類(具有鹼度的鹽類)反應,反應後產生的是弱酸。用強酸H型離子交換樹脂可處理鹼度大的水,將水中的鹼度所對應的陰離子除去後,再用強酸H型交換樹脂來除去強酸根所對應的那部分陰離子。
由於弱酸性陽樹脂對H 的親和力較大,很容易再生,因此它可用強酸H型陰離子交換樹脂的再生廢液來進行再生。
弱酸性陽樹脂的交換容量很大,約為強酸性陽樹脂的2倍。由於弱酸性陽樹脂的交聯度低,所以其機械強度比強酸性陽樹脂的要低。
鹽型弱酸性陽樹脂具有水解能力。
『伍』 為什麼弱型樹脂比較容易再生
一、 常規的再生處理
離子交換樹脂使用一段時間後,吸附的雜質接近飽和狀態,就要進行再生處理,用化學劑將樹脂所吸附的離子和其他雜質洗脫除去,使之恢復原來的組成和性能。在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為 70~80% 。如果要達到更高的再生水平,則再生劑量要大量增加,再生劑的利用率則下降。
樹脂的再生應當根據樹脂的種類、特性,以及運行的經濟性,選擇適當的再生劑和工作條件。
樹脂的再生特性與它的類型和結構有密切關系。強酸性和強鹼性樹脂的再生比較困難,需用再生劑量比理論值高相當多;而弱酸性或弱鹼性樹脂則較易再生,所用再生劑量只需稍多於理論值。此外,大孔型和交聯度低的樹脂較易再生,而凝膠型和交聯度高的樹脂則要較長的再生反應時間。
再生劑的種類應根據樹脂的離子類型來選用,並適當地選擇價格較低的酸、鹼或鹽。例如:鈉型強酸性陽樹脂可用 10%NaCl 溶液再生,用量為其交換容量的 2 倍 (用NaCl 量為117g/ l 樹脂 );氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入 1~2% 的稀硫酸再生。
氯型強鹼性樹脂,主要以 NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~ 200g NaCl ,及 3~4g NaOH。 OH 型強鹼陰樹脂則用 4%NaOH 溶液再生。
樹脂再生時的化學反應是樹脂原先的交換吸附的逆反應。按化學反應平衡原理,提高化學反應某一方物質的濃度,可促進反應向另一方進行,故提高再生液濃度可加速再生反應,並達到較高的再生水平。
為加速再生化學反應,通常先將再生液加熱至 70~80℃。它通過樹脂的流速一般為 1~ 2 BV/h 。也可採用先快後慢的方法,以充分發揮再生劑的效能。再生時間約為一小時。隨後用軟水順流沖洗樹脂約一小時 ( 水量約4BV) ,待洗水排清之後,再用水反洗,至洗出液無色、無混濁為止。
一些樹脂在再生和反洗之後,要調校 pH 值。因為再生液常含有鹼,樹脂再生後即使經水洗,也常帶鹼性。而一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH 值下降至6左右,再用水正洗,反洗各一次。
樹脂在使用較長時間後,由於它所吸附的一部分雜質 ( 特別是大分子有機膠體物質 ) 不易被常規的再生處理所洗脫,逐漸積累而將樹脂污染,使樹脂效能降低。此時要用特殊的方法處理。例如:陽離子樹脂受含氮的兩性化合物污染,可用 4%NaOH 溶液處理,將它溶解而排掉;陰離子樹脂受有機物污染,可提高鹼鹽溶液中的 NaOH 濃度至0.5~1.0%,以溶解有機物。
二、特殊的再生處理
污染較嚴重的樹脂,可用酸或鹼性食鹽溶液反復處理,如先用 10%NaCl +1%NaOH 鹼鹽溶液溶解有機物,再用 4%HCl 或分別用 10%NaOH 及 1%HCl 溶解無機物,隨後再用 10%NaCl +1%NaOH 處理,在約 70℃下進行。
如果上述處理的效果未達要求,可用氧化法處理。即用水洗滌樹脂後,通入濃度為 0.5% 的次氯酸鈉溶液,控制流速 2~4BV/h ,通過量 10~20BV ,隨即用水洗滌,再用鹽水處理。應當注意,氧化處理可能將樹脂結構中的大分子的連接鍵氧化,造成樹脂的降解,膨脹度增大,容易碎裂,故不宜常用。通常使用 50 周期後才進行一次氧化處理。由於氯型樹脂有較強的耐氧化性,故樹脂在氧化處理前應用鹽水處理,變為氯型,這還可避免處理過程中的 pH 值變化,並使氧化作用比較穩定。
三、再生廢液的處置
糖廠用樹脂脫色,樹脂再生的廢液含有大量的色素和有機物,顏色很深。用原糖生產精糖時,每 100 噸糖的再生廢液量約為 6~9m3 。要經過處理才能排放 (或循環),這也是一個難題。
Bento 詳細研究了用化學方法處理再生液,使色素和其他有機物沉澱,除去雜質後再循環使用,減少排放,並充分利用其中的氯化鈉。由於再生液中色素的濃度比糖汁中高 10 倍以上,液體數量較小,沒有糖液的粘性,並能容許強烈的條件如強鹼性和高溫等而無需顧慮糖的分解,用化學處理比較方便。再生液加入 5~10% 容積的石灰乳 ( 濃度為含CaO100g/ l ) ,加熱到60℃並輕微攪拌,大量的有色物沉澱析出。再加入碳酸鈉或二氧化碳、磷酸鈉或磷酸並保持鹼性,都可使較多的有色物沉澱。處理後的液體添加少量食鹽可返回作樹脂的初級再生液,其後再用新的鹽水再生。
對廢液的處理還研究過多種方法:用顆粒活性炭吸附,用次氯酸鈉、次氯酸鈣、氯氣或臭氧將它氧化,用超過濾或反滲透法分離它的有機物,或用粉狀樹脂吸附等。最近 Guimaraes 等研究用微生物將它的有色物降解,取得較好效果
『陸』 為什麼陽樹脂再生後效果不好
有可能是鹽液的濃度沒達到,或者再生時間不合理。
陽樹脂,全名是陽離子交換內樹脂,具有交換容量高,交換速度快容,機械強度好等特點,尤其適合於制備供鍋爐使用的軟水和純水的制備。樹脂也可用於催化劑和脫水劑,以及冶金、製糖制葯工業等。
這類樹脂(IONRESIN)含有大量的強酸性基團,容易在溶液中離解出H+,故呈強酸性。樹脂離解後,本體所含的負電基團,如SO3-,能吸附結合溶液中的其他陽離子。這兩個反應使樹脂中的H+與溶液中的陽離子互相交換,酸性樹脂的離解能力很強,在酸性或鹼性溶液中均能離解和產生離子交換作用。
『柒』 強酸陽樹脂和弱鹼陰樹脂哪個容易再生
呵呵,抄你這個問題問的有襲點奇怪哦,首先強酸陽樹脂是陽離子交換樹脂,再生液採用NaCl(軟化水制備)或HCl(除鹽水制備),而弱鹼陰樹脂是陰離子交換樹脂,再生液採用NaOH,這沒有可比性啊,當然你要問強酸性(強鹼性)與弱酸性(弱鹼性)相比,哪個更容易再生,那無疑是弱酸性(弱鹼性)更容易再生,而且再生酸(鹼)耗明顯比強酸性(強鹼性)低,所以才有了強弱型聯合應用工藝的設計理念,原因就是再生完強酸性(強鹼性)樹脂的廢酸(鹼)還能繼續再生弱酸性(弱鹼性),從而達到降低酸鹼耗和水耗的目的。希望我的回答能解答你的疑問。
目前國內樹脂行業太混亂,希望能甄別真偽,以防止購買偷工減料的冒牌樹脂,尤其是我們爭光牌的,假冒的最多,還有那些洋品牌啊,普通水處理的樹脂,根本就沒有必要如此崇洋媚外,因為樹脂性能基本一樣,很多洋品牌也都是國內樹脂生產企業代加工的,千萬別花這些冤枉錢買個心理安慰,國人這種思想,真得好好糾正一下哦
『捌』 樹脂再生
我覺得合理,陽離子交換樹脂用酸再生效果甚佳。樓上的真強,我很佩服。
『玖』 「離子交換樹脂的再生」的意思是什麼
離子交換樹脂為什麼要再生?
離子交換樹脂在長時間使用之後,吸附能力逐漸會達到飽和,樹脂吸附能力達到飽和之後,就無法繼續吸附水中的雜質,就需要對樹脂進行再生處理,在實際運用中,為降低再生費用,要適當控制再生劑用量,使樹脂的性能恢復到最經濟合理的再生水平,通常控制性能恢復程度為70~80%左右。
離子交換樹脂的再生方法:
1、大孔吸附樹脂簡單再生的方法是用不同濃度的溶劑按極性從大到小剃度洗脫,再用2~3BV的稀酸、稀鹼溶液浸泡洗脫,水洗至PH值中性即可使用。
2、鈉型強酸性陽樹脂可用10%NaCl 溶液再生,用葯量為其交換容量的2倍 (用NaCl量為117g/ l 樹脂);氫型強酸性樹脂用強酸再生,用硫酸時要防止被樹脂吸附的鈣與硫酸反應生成硫酸鈣沉澱物。為此,宜先通入1~2%的稀硫酸再生。
3、氯型強鹼性樹脂,主要以NaCl 溶液來再生,但加入少量鹼有助於將樹脂吸附的色素和有機物溶解洗出,故通常使用含10%NaCl + 0.2%NaOH 的鹼鹽液再生,常規用量為每升樹脂用150~200g NaCl ,及3~4g NaOH。OH型強鹼陰樹脂則用4%NaOH溶液再生。
4、一些脫色樹脂 (特別是弱鹼性樹脂) 宜在微酸性下工作。此時可通入稀鹽酸,使樹脂 pH值下降至6左右,再用水正洗,反洗各一次。
『拾』 在對污水除硬度的軟化再生中,強酸陽離子樹脂和弱酸陽離子樹脂有什麼區別,分別用於什麼不同情況
首先你得對這個污水除硬度中的污水進行說明,是不是城市中水啊?
一般來說強酸陽樹脂去除硬度和弱酸陽樹脂去除水中硬度是兩種概念,首先,強酸陽樹脂能除與官能團所帶H離子同當量的Ca和Mg離子,但是弱酸陽樹脂一般是應用於水中鹼度較高的工況中的,H型弱酸陽樹脂能去除與原水中鹼度同等當量的硬度,但前提是原水中必須是鹼度高於硬度的情況下。才採用弱酸陽樹脂去除硬度,因為只有硬度沒有鹼度的話,弱酸陽樹脂壓根就沒有除硬度的能力。(以上鹼度也稱為暫時硬度。Ca、Mg為永久硬度)。
大孔型弱酸陽樹脂的工作交換容量的確比凝膠型強酸陽樹脂要高(一般強酸陽樹脂為900~1100,弱酸陽樹脂為1600~2000),但是我實在不明白你干嗎非考慮弱酸由H型再轉為Na去去除硬度。而且大孔弱酸陽樹脂的價格可是普通強酸陽樹脂的3倍啊