① 透析,微濾,超濾,納濾,反滲透,電滲析,滲透氣化等膜分離技術各自的特點
1.透析(dialysis)是通過小分來子經過半源透膜擴散到水(或緩沖液)的原理;
2.微濾適用於細胞、細菌和微粒子的分離,在生物分離中,廣泛用於菌體的分離和濃縮,目標物質的大小范圍為0.01-10 μm,一般用於預處理;
3.超濾技術的優點是沒有相的轉變,無需添加任何強烈的化學物質,可以在低溫下操作,過濾速度較快,便於無菌處理等,一般用於預處理;
4.納濾 特點是能截留小分子的有機物並可同時透析出鹽,集濃縮與透析於一體;
操作壓力低,因為無機鹽能通過納米濾膜而透析,使得納米過濾的滲透壓遠比反滲透為低,所以納米過濾所需的外加壓力比反滲透低得多;
5.反滲透法具有設備構型緊湊,佔地面積小、單位體積產水量及能量消耗少等優點;
6.電滲析的特點時可以同時對電解質水溶液起淡化、濃縮、分離、提純作用、可以用於蔗糖等非電解質的提純,以除去其中的電解質、在原理上,電滲析器是一個帶有隔膜的電解池,可以利用電極上的氧化還原效率高;
7.滲透氣化對共沸物系和近沸物系等難分物系的分離, 顯示特有的優越性。
② 膜過濾技術發展現狀及其優缺點,主要用於處理污水
查查文獻不就了!
膜過濾技術在水處理中的應用
1、用反滲透和納濾處理垃圾填埋場滲瀝液
城市垃圾填埋場產生的滲瀝液中含有大量有機和無機污染物。由於成分復雜,組分變化大,污染物濃度高,所以很難用傳統方法處理。即使用生化法(好氧或厭氧)和活性炭吸附或臭氧氧化聯合流程進行處理,效果也不理想。傳統處理法的處理效果很大程度上取決於滲瀝液成份和填埋場運行年限。反滲透和納濾被認為是處理滲瀝液的有效方法。反滲透膜可同時去除有機和無機成分。濾過液可作為工藝循環水使用或排放。殘留液通過蒸發,可以獲得固態廢物。這些廢物可返回填埋場進行填埋。預處理可以採用簡單的過濾、生物處理、生物處理與混凝聯合以及微濾或超濾的方法。國外已有許
多填埋場都採用膜濾技術處理垃圾滲瀝液。國內這方面的研究還處在實驗研究階段。採用氨氮吹脫與厭氧工藝進行預處理後,採用膜生物反應器法處理城市垃圾
填埋場產生的滲瀝液,獲得了較好的效果。
2、用納濾處理紡織印染廢水
紡織印染業工藝過程中要產生大量高鹽度(>5%)、高色度(數萬至十幾萬)、高化學需氧量(CODCr數萬至十幾萬)、可生化性差的廢水[8]。在排放或回用之前,在傳統處理之後(如活性污泥法—沉降—砂濾)加上膜濾就可以降低水的色度和難生物降解的有機物、重金屬、營養物等的含量。超濾只能部分去除色度、不能被去除小分子有機染料。所以超濾處理後還不能循環使用,不過經過超濾後的滲透液可以達標排放。紡織印染廢水回用的最重要的指標是硬度、鹽度和色度。先生物處理再納濾就可以使廢水達到回用標准。經過納濾處理後,水在硬度、有機物濃度和色度等可以接近地下水的水平。滲透液的水質在很大程度上取決於膜的類型。小孔徑膜(NF70)可以用於脫色,但流量要低一些。通過納濾處理紡織行業水的循環利用率為80%—90%
3、超濾/微濾用於中水回用
缺點就是會產生膜污染:
膜處理技術在長期的運轉過程中,會引起膜的污染,導致過濾通量隨運行時間而逐漸下降。膜污染是膜濾應用的主要制約因素,它既能引起過濾通量的下降,又能影響處理效果
③ 膜技術的發展
《中國膜產業市場前瞻與投資戰略規劃分析報告前瞻》顯示,經過50多年的發展,我國膜產業已經步入快速成長期。超濾、微濾、反滲透等膜技術在能源電力、有色冶金、海水淡化、給水處理、污水回用及醫葯食品等領域的工程應用規模迅速擴大,多個具有標志性意義的大型膜法給水工程、污水回用工程及海水淡化工程已經相繼建成。我國膜產業總產值已經從1994年2億元上升到2011年近400億元。
隨著國家節能減排要求和居民對飲水質量要求的不斷提高,國內對水處理尤其是深度水處理的需求越來越迫切,作為水處理的核心元件——膜的應用將越來越廣泛,市場總量也將越來越大。
國家環保總局環境規劃院預測,我國「十二五」和「十三五」時期廢水治理投入將分別達1.05萬億元和1.39萬億元,其中工業和城鎮生活污水的治理投資將分別達4355億元和4590億元。在此背景下,廣泛應用於污水處理的膜技術在未來十年間將迎來大發展。
此外,「十一五」以來,我國不斷加大分離膜的研發和產業化推進力度,在開發分離膜新膜種和膜製造技術創新以及膜技術的工程應用方面走在了世界前列。2010年來,國家發改委、科技部和工信部等部委已將膜技術列入「十二五」重大產業技術予以專項支持。
在市場需求及產業政策的雙重推動下,我國膜技術產業將迎來產值可觀的「黃金十年」,預計這十年內我國膜法水處理工程將以40%的年增長率高速發展,膜產品產值年增長率也將達到20%以上,遠遠高於國際平均水平,屆時中國膜市場將佔全球膜市場總需求量的15%-20%。
水質直接影響著人們的健康。膜技術以其原理簡單,操作方便,超強的凈化效果被用於苦鹹水淡化處理和軟化水處理行業中。因此膜技術在水處理行業得到了廣泛的應用和推崇。下面我們來了解一下膜技術的發展。
膜技術的發展:
1.低污染膜:
膜污染是反滲透膜技術應用中的最大危害。目前已有幾種抗污染性能強、使用壽命長、清洗頻度低且易清洗的低污染膜在膜技術領域問世。
2.超低壓膜:
由於節省電耗和降低相關機械部件的壓力等級引起材料費下降等優點,自1999年以來超低壓膜在膜技術領域應用比重日益增大,這在以使用4英寸膜為主的小型裝置中應用最為突出,大型裝置中應用超低壓膜也呈上升趨勢。
3.帶正電荷的反滲透膜:
現在廣泛應用的低壓、超低壓復合膜的材質均為芳香族聚酸胺,其膜表面均帶有負電荷,膜技術的發展帶來了表面帶正電荷的低壓復合膜,這種膜目前主要應用於制備高電阻率的高純水系統中。
4.耐高溫、食品級、衛生級反滲透膜:
普通水處理膜技術採用反滲透膜的使用溫度均為0~45℃,但在需要耐90℃高溫殺菌的特殊場合,可使用耐高溫、耐化學葯品的反滲透膜。此外,各種有特殊膜元件結構的食品級或衛生級的反滲透膜技術也開始在國內應用。
④ 膜分離技術的歷史與現狀
膜分離現象廣泛存在於自然界中,特別是生物體內,但人類對它的認識和研究卻經過了漫長而曲折的道路。膜分離技術的工程應用是從20世紀60年代海水淡化開始的-1960)年洛布和索里拉金教授製成了第一張高通量和高脫鹽率的醋酸纖紙素膜,這種膜具有推對稱結構,從此使反滲透從實驗室走向工業應用。其後各種新型膜陸續問世,1967年美國杜邦公司首先研製出以尼龍-66為膜材料的中空纖維膜組件;1970年又研製出以芳香聚醯胺為膜材料的「Pemiasep B-9」中空纖維膜組件,並獲得1971年美國柯克帕特里克化學工程最高獎。從此反滲透技術在美國得到迅猛的發展,隨後在世界各地相繼應用。其間微濾和超濾技術也得到相應的發展。
膜在大自然中,特別是在生物體內是廣泛存在的。我國膜科學技術的發展是從1958年研究離子交換膜開始的。60年代進入開創階段。1965年著手反滲透的探索,1967年開始的全國海水淡化會戰,大大促進了我國膜科技的發展。70年代進入開發階段。這時期,微濾、電滲析、反滲透和超濾等各種膜和組器件都相繼研究開發出來,80年代跨入了推廣應用階段。80年代又是氣體分離和其他新膜開發階段。 隨著我國膜科學技術的發展,相應的學術、技術團體也相繼成立。他們的成立為規范膜行業的標准,在促進膜行業的發展中起著舉足輕重的作用。半個世紀以來,膜分離完成了從實驗室到大規模工業應用的轉變,成為一項高效節能的新型分離技術。1925年以來,差不多每十年就有一項新的膜過程在工業上得到應用。
由於膜分離技術本身具有的優越性能,故膜過程已經得到世界各國的普遍重視。在能源緊張、資源短缺、生態環境惡化的今天,產業界和科技界把膜過程視為二十一世紀工業技術改造中的一項極為重要的新技術。曾有專家指出:誰掌握了膜技術誰就掌握了化學工業的明天。
80年代以來我國膜技術跨入應用階段,同時也是新膜過程的開發階段。在這一時期,膜技術在食品加工、海水淡化、純水、超純水制備、醫葯、生物、環保等領域得到了較大規模的開發和應用。並且,在這一時期,國家重點科技攻關項目和自然科學基金中也都有了膜的課題。
這一潛力巨大的新興行業正在以蓬勃的激情挑戰市場,為眾多的企業帶來了較為顯著的經濟效益、社會效益和環境效益。 除了以上四種常用的膜分離過程,另外還有滲析、控制釋放、膜感測器、膜法氣體分離、液膜分離法等。
⑤ 微濾與超濾的共同點和不同點,及其優缺點
微濾、超濾的區別
從膜的分離范圍來看,微濾最適合液體介質的降濁、除菌處理,而超濾主要可用於對低分子溶解物與有機大分子的分離(通常是指分子量在500以上,106以下的大分子從溶液中分離)。對於反滲透水處理中的預處理來說是分離水中全部的有機物、微生物和膠體顆粒。
微濾和超濾的過濾過程通常是以直流過濾方式(包括表面過濾、深度過濾)和錯流過濾方式進行的。微濾膜和超濾膜的差異最明顯的是孔徑不同,微濾膜一般指孔徑在 0.02-0.1um,高度均勻,具有篩網特徵的多孔固體連續相,而超濾的孔徑似為0.002-0.2um,在進行分離時的壓力也分別為0.01- 0.3Mpa和0.2-1.0Mpa。
超濾膜透過物質主要是水、溶劑、離子和小分子。
被截留物質主要是蛋白質、各類□、細菌、病毒、乳膠、微粒子、過濾精度為10-4cm~10-7cm利用超濾膜不同孔徑對液體進行分離,其分子切割量(CWCO)一般為6000~50萬,孔徑為100nm(納米)。
微濾膜透過物質主要是水、溶液和溶解物。被截留物質主要是懸浮物、細菌類、微粒子。過濾精密有0.2cm、0.5cm、1.0cm、2.0cm、3.0cm、5.0cm、和10.0cm。其在過濾領域里的重要特點是:
1. 使所有比網孔大的粒子被全部攔截在膜的表面,克服了常規過濾的深層過濾介質過濾達不到「絕對值」的要求,而微孔過濾膜是趨於「絕對值」過濾器的首選材料。
2. 孔徑均勻,過濾精度高
微孔濾膜的孔徑十分均勻,故為均孔膜,其與反滲透及超濾有明顯的不同。其最大孔徑與平均孔徑的比值一般為3~4,孔徑分布基本呈正態分布,因而常被作為起 保證作用的手段,過濾精度高,分離效率高。孔隙率高,流速快。微孔膜的微孔數絢達每平方釐米107~1011個孔,孔隙率在60%~90%之間,由於孔隙 率高,其對液體的過濾速度在同等過濾精度下,比常規過濾介質快40倍。
3. 厚度薄,吸附量小微孔膜的厚度一般為90~220um,與一般深層過濾介質比,只有它們的1/10,因而過濾速度高,過濾時對被濾物質的液體的吸附量極小。
4. 無介質脫落,不產生二次污染。微孔膜是均勻,連續的整體結構,沒有一般的深層過濾介質可能產生濾材脫落的不足。
5. 顆粒容納量小,易賭塞。微孔膜阻留顆粒大多數只限於膜表面,因而易被材料中與膜孔徑大小相近的微粒或凝膠物質所堵塞。微濾和超濾在處理系統上視水質需要適當地採取預過濾。
http://www.waterinfor.com/index.php?option=com_k2&view=item&id=101:%E5%BE%AE%E6%BF%BEmf%E8%B6%85%E6%BF%BEuf%E6%A6%82%E8%BF%B0&Itemid=78&tmpl=component&print=1
⑥ 微濾的發展歷程
微濾技術的研究是從19世紀初開始的,它是膜分離技術中最早產業化的一種,以天然或人工合成的聚合物製成的微孔過濾膜最早出現於19世紀中葉。
1907年Bechhold發表了第一篇系統研究微孔濾膜性質的報告。1918年Zsigmondy等首先提出了商品規模生產硝化纖維素微孔過濾膜的方法,並於1921年獲得專利,1925年在德國的哥丁根大學(University of Göttingen)成立了世界上第一個微孔濾膜公司「Sartorius GmbH」,專門生產和銷售微孔濾膜。第二次世界大戰後,美國和英國也對微孔濾膜的製造技術和應用進行了廣泛的研究,這些研究對微濾技術的迅速發展起到了推動作用,全世界微孔濾膜的銷售量,在所有合成膜中居第一位。據美國Freedonm公司的統計,2001年世界微濾膜材料的需求額為7.4億美元,到2006年和2011年,這個數字將分別達到9.8億美元和12.9億美元。
微濾技術在中國的研究開發則較晚,基本上是20世紀80年代初期才起步,但其發展速度非常快。截止至2005年,中國微濾技術已形成7000萬元的年產值,佔中國膜工業年產值的1/5,經濟、社會效益也非常顯著。通過國家「十五」和「十一五」的科技攻關,中國的微濾技術改變了僅有醋酸-硝酸混合纖維素(CA-CN)膜片的局面,相繼開發了醋酸纖維素(CA)、聚苯乙烯(PS)、聚四氟乙烯(PTFE)、尼龍等膜片和筒式濾芯,聚丙烯(PP)、聚乙烯(PE)、聚四氟乙烯(PTFE)等控制拉伸致孔的微孔膜和聚酯,聚碳酸酯等的核徑跡微孔膜,無機微孔膜也有了白己的產品。近十幾年來,中國在微濾膜、組件及相應的配套設備方面有了較大的進步,並在醫葯、飲料、飲用水、食品、電子、石油化工、分析檢測和環保等領域有較廣泛的應用。
與國外水平相比,中國的常規微濾膜的性能和國外同類產品的性能基本一致,折疊式濾芯在許多場合替代了進口產品,但在錯流式微濾膜和組器技術及其在工程中的應用等方面,仍落後於國外,這就抑制了微濾技術在較高濁度水質深度處理中的應用。
⑦ 有關微濾和超濾的區別的問題
這個主要是過濾精度的區別,微孔過濾所用的操作壓通常小於4×10^4 Pa,膜的平均版孔徑為500埃~14微米,用於分離權較大的微粒、細菌和污染物等。超濾所用操作壓為4×10^4 Pa~7×10^5 Pa,膜的平均孔徑為10-100埃,用於分離大分子溶質。
⑧ 微孔濾膜過濾與超濾膜過濾有何異同點
超濾膜的工業應用十分廣泛,已成為新型化工單元操作之一。用於分離、濃縮專、純化生屬物製品、醫葯製品以及食品工業中;還用於血液處理、廢水處理和超純水制備中的終端處理裝置。在我國已成功地利用超濾膜進行了中草葯的濃縮提純。超濾膜隨著技術的進步,其篩選功能必將得到改進和加強,對人類社會的貢獻也將越來越大。
微孔濾膜由精製硝化棉,加入適量醋酸纖維素、丙酮、正丁醇、乙醇、等製成,親水,具有無毒衛生,是一種多孔性的薄膜過濾材料,孔徑分布比較均勻穿透性的微孔,微孔率高達80‰的絕對孔徑。主要用於水系溶液的過濾,故也稱水系膜。
⑨ 請比較說明微濾,超濾,納濾和反滲透等四種常用膜分離技術的異同點
微濾microfiltration以壓力為驅動力,分離0.1-1微米的微粒的過程,簡稱為MF
超濾ultrafiltration以壓力差為動力,膜孔徑約0.001-0.2微米的物理篩分過程,簡稱為UF
1,微濾和超濾同屬於微孔膜范疇,微孔過濾是一種物理篩分過程,其功能在於截留分子量為幾百至幾百萬的物質,包括大分子有機物,微生物等,而不是以脫鹽為目的。
2,微孔膜的孔徑為一個范圍值:微濾在0.1-1微米,超濾為0.001-0.2微米
3,在學術領域,微濾膜的過濾精度一般用孔徑表示,而超濾的過濾精度一般用切割分子量來表示
4,微濾和超濾的過程均以壓力為驅動力,用於溶液體系中的物質分離。
5,膜的材料分為有機高分子和無機高分子材料。
納濾:nanofiltration以壓力為驅動力,用於脫除二價及二價以上的多價離子和分子量200以上有機物的膜分離過程,簡稱為NF
1, 納濾技術是繼反滲透後出現的一種新的分離技術,其分離機理基本和反滲透一致。
2, 納濾理論精度為0.001-0.005微米,略大於反滲透,因此所需工作壓力低於反滲透,早期被稱為「鬆散反滲透」
3, 納濾的作用在於去除二價及二價以上離子和分子量200以上的物質,對一價離子的去除率較低,其綜合脫鹽率低於反滲透
反滲透reverse
osmosis在膜的進水一側施加比溶液滲透壓高的外界壓力,只允許溶液中水和某些組分選擇性透過,其他物質不能透過而被截留在表面的過程,簡稱RO
1,反滲透的概念始於滲透現象,當把只允許水透過的高分子半透膜作為介質,兩側分別是鹽水和純水時,由於純水測水的濃度高於鹽水測的濃度,純水將向鹽水側擴散透過,這種濃度差異導致的遷移過程,就是滲透,他是自然界中在生物體內存在的一個普遍現象。
2,反滲透是一種由人類創造力產生的非自然現象或一種水溶液分離技術,其原理是通過施加機械外壓,克服濃度差導致的逆向遷移的過程。
3, 反滲透僅適用於液相體系(水溶液體系)中溶質和溶劑的分離,在凈水器中運用較多。
4, 反滲透現象必須在外界壓力作用下發生,且壓力必須高於水溶液的滲透壓。
⑩ 超濾和微濾的原理
超濾與微濾原理來
超濾及源微濾是依託於材料科學發展起來的先進的膜分離技術。
超濾和微濾均是利用多孔材料的攔截能力,以物理截留的方式去除水中一定大小的雜質顆粒。在壓力驅動下,溶液中水、有機低分子、無機離子等尺寸小的物質可通過纖維壁上的微孔到達膜的另一側,溶液中菌體、膠體、顆粒物、有機大分子等大尺寸物質則不能透過纖維壁而被截留,從而達到篩分溶液中不同組分的目的。該過程為常溫操作,無相態變化,不產生二次污染。
超濾是利用超濾膜的微孔篩分機理,在壓力驅動下,將直徑為0.002-0.1μm之間的顆粒和雜質截留,去除膠體、蛋白質、微生物和大分子有機物。應用於鍋爐給水處理、工業廢污水處理、飲用水的生產及高純水制備等。在給水處理中常作為反滲透、離子交換的預處理。
微濾也是利用微濾膜的篩分機理,在壓力驅動下,截留直徑在0.1~1μm之間的顆粒,如懸浮物、細菌、部分病毒及大尺寸膠體,多用於給水預處理系統。