❶ 輸液器中用什麼膜過濾效果最好呢
輸液器葯液過濾膜品種很多,其特點各不相同,對微粒的濾出效果與對葯物的吸附性內也區別很大容:
離子膜:應用電子直線串聯加速器輻照離子成孔,孔徑均一,屬於疏水材質,膜材較薄,對葯物的吸附性極低。
核孔膜:一般是利用小型核裂變裝置產生的射線輻照生產,孔徑大小不一,屬於疏水材質,膜材較薄,對葯物的吸附性極低。
聚醚碸膜:是通過溶劑將聚醚碸溶解後在一潔凈不銹鋼裝置中塗抹生產,待溶劑揮發後成孔。孔徑不一,疏水材質,對葯物的吸附性極低。
尼龍膜:應用尼龍材質加工生產,孔徑不一,膜材厚度可調,對部分葯物有一定的吸附作用。
葯液過濾膜各有特點,一般來說,現主要在輸液器比較成熟的採用的是離子膜和聚醚碸膜。
❷ 誰知道谷奇核孔膜開水過濾器,來說說。
那個就是一個開水過濾裝備,我用過,效果不錯,技術挺高端,價格不貴。
❸ 關於現代分離技術的綜述
···萊特··萊德···膜是具有選擇性分離功能的材料。利用膜的選擇性分離實現料液的不同組分的分離、純化、濃縮的過程稱作膜分離。膜分離與傳統過濾的不同在於,膜可以在分子范圍內進行分離,並且這過程是一種物理過程,不需發生相的變化和添加助劑。膜的孔徑一般為微米級,依據其孔徑的不同(或稱為截留分子量),可將膜分為微濾膜(MF)、超濾膜(UF)、納濾膜(NF)和反滲透膜(RO)等;根據材料的不同,可分為無機膜和有機膜:無機膜主要還只有微濾級別的膜,主要是陶瓷膜和金屬膜,有機膜是由高分子材料做成的,如醋酸纖維素、芳香族聚醯胺、聚醚碸、聚氟聚合物等等。膜分離都採用錯流過濾方式。膜分離是一門新興的跨學科的高新技術。膜的材料涉及無機化學和高分子化學;膜的制備、分離過程的特徵、傳遞性質和傳遞機理屬於物理化學和數學研究范疇;膜分離過程中涉及的流體力學、傳熱、傳質、化工動力學以及工藝過程的設計,主要屬於化學工程研究范疇;從膜分離主要應用的領域來看,還涉及生物學、醫學以及與食品、石油化工、環境保護等行業相關的學科。膜分離過程已成為工業上氣體分離、水溶液分離、化學品和生化產品的分離與純化的重要過程。廣泛應用於食品、飲料加工過程、工業污水處理、大規模空氣分離、濕法冶金技術、氣體和液體燃料的生產以及石油化工製品生產等。膜從廣義上可以定義為兩相之間的一個不連續區間。這個區間的三維量度中的一度和其餘兩度相比要小的多。膜一般很薄,厚度從幾微米、幾十微米至幾百微米之間,而長度和寬度要以米來計量。膜可以是固相,液相,甚至是氣相的。用各種天然或人工材料製造出來的膜品種繁多,在物理、化學和生物性質上呈現出多樣的特性。膜可以對雙組分或多組分體系進行分離,分級,提純或濃縮。大部分的分離膜都是固體膜,其中尤以有機高分子聚合物材質製成的膜及其分離過程為主。但仍有待發展。氣體在理論上可以構成分離膜,但研究它的人很少。物質選擇透過膜的能力可分為兩類:一種是藉助外界能量,物質發生由低位向高位的流動;另一種是以化學位差為推動力,物質發生由高位向地位的流動。
❹ 求一篇關於恆沸精餾醋酸脫水的英文文獻,最好順帶中文翻譯,回報豐厚!
發酵已經從過去簡單的生產酒精類飲料、生產醋酸和發酵麵包發展到今天成為生物工程的一個極其重要的分支,成為一個包括了微生物學、化學工程、基因工程、細胞工程、機械工程和計算機軟硬體工程的一個多學科工程。從廣義上講,發酵工程由三部分組成:上游工程,發酵工程和下游工程。其中,下游工程指從發酵液中分離和純化產品的技術:包括固液分離技術(離心分離,過濾分離,沉澱分離等工藝),細胞破壁技術(超聲、高壓剪切、滲透壓、表面活性劑和溶壁酶等),蛋白質純化技術(沉澱法、色譜分離法和超濾法等),最後還有產品的包裝處理技術(真空乾燥和冰凍幹事燥等)。本文對其中的膜分離技術的原理及研究進展做一綜述。
一、概述
膜分離技術是近三十多年來發展起來的高新技術,是多學科交叉的產物,亦是化學工程學科發展新的增長點。它與傳統的分離方法比較,具有如下明顯的優點:
1.高效:由於膜具有選擇性,它能有選擇性地透過某些物質,而阻擋另一些物質的透過。選擇合適的膜,可以有效地進行物質的分離,提純和濃縮;
2.節能:多數膜分離過程在常溫下操作,被分離物質不發生相變, 是一種低能耗,低成本的單元操作;
3.過程簡單、容易操作和控制;
4.不污染環境。
由於這些優點、使膜分離技術在短短的時間迅速發展起來,已廣泛有效地應用於石油化工、生化制葯、醫療衛生、冶金、電子、能源、輕工、紡織、食品、環保、航天、海運、人民生活等領域,形成了獨立的新興技術產業。目前,世界膜市場以每年遞增14~30%速度發展,它不僅自身形成了每年約百億美元的產值,而且有力地促進了社會、經濟及科技的發展。特別是,它的應用與節能、環境保護以及水資源的再生有密切的關系,因此在當今世界上能源短缺、水荒和環境污染日益嚴重的情況下,膜分離技術得到世界各國的普遍重視,歐、美、日等發達國家投巨資立專項進行開發研究,已取得在此領域的領先地位。我國在「六五」、「七五」、「八五」、「九五」以及863、973計劃中均列為重點項目,給予支持。
二.膜分離技術簡介
1.分離膜的種類:膜是膜技術的核心,膜材料的性質和化學結構對膜分離性能起著決定性的影響。膜的種類很多,其中按材料分有高分子膜、金屬膜、無機膜。高分子膜用途最廣。
按結構分有七類:
(1)均質膜或緻密膜,為結構均勻的緻密薄膜。
(2)對稱微孔膜,平均孔徑為0.02~10。按成膜方法不同,有三種類型的微孔膜,即核孔膜、控制拉伸膜和海綿狀結構膜。
(3)非對稱膜。膜斷面為不對稱結構,是工業上應用最多的膜。
(4)復合膜。在多孔膜表面加塗另一種材料的緻密復合層。
(5)離子交換膜
(6)荷電膜
(7)液膜、包括支撐液膜和乳狀液膜
按形狀分有平板膜、管式膜和中空纖維膜。
2.膜分離設備(組件)
板框式,結構類似板框式壓濾機。
卷式,結構類似出螺旋板換熱器。
管式,結構類似列管式換熱器。
中空纖維式,結構類似列管式換熱器,由幾千根甚至幾百萬根中空纖維組成。
3.膜分離過程
膜分離過程是以選擇性透過膜為分離介質,當膜兩側存在某種推動力(如壓力差、濃度差、電位差、溫度差等)時,原料側組分選擇性地透過膜,以達到分離,提純的目的。不同的膜過程使用不同的膜,推動力也不同。目前已經工業化應用的膜分離過程有微濾(MF)、超濾(UF)、反滲透(RO)、滲析(D)、電滲析(ED)、氣體分離(GS)、滲透汽化(PV)、乳化液膜(ELM)等八種。
反滲透、超濾、微濾、電滲析這四大過程在技術上已經相當成熟,已有大規模的工業應用,形成了相當規模的產業,有許多商品化的產品可供不同用途使用。
氣體分離和滲透汽化是正在發展中的技術。其中氣體分離相對較為成熟一些。目前已有工業規模的氣體分離體系是, 空氣中氧和氮的分離;合成氨廠中氨、氮、甲烷混合氣中氫的分離;天然氣中二氧化碳與甲烷的分離。滲透汽化是這些膜過程中唯一有相變的過程,在組件和過程設計中均有特殊的地方。它主要用於有機物/水,水/有機物,有機物/有機物分離,是最有希望取代某些高能耗的精餾技術的膜過程。80年代中期進入工業化應用階段。
除了以上八種已工業應用的膜分離過程外,還有許多正在開發研究中的新膜過程,它們是膜萃取、膜蒸餾、雙極性膜電滲析、膜分相、膜吸收、膜反應、膜控制釋放、膜生物感測器等。這些膜過程目前尚處在小型試驗和中試階段。
三.膜分離技術的發展簡史及研究現狀
人類對於膜現象的研究源於1748年,然而認識到膜的功能並用於為人類服務,卻經歷了200多年的漫長過程。人們對膜進行科學研究則是近幾十年來的事。1950年W.Juda試制出選擇透過性能的離子交換膜,奠定了電滲析的實用化基礎。1960年 Loeb和Souriringan首次研製成世界上具有歷史意義的非對稱反滲透膜,這在膜分離技術發展中是一個重要的突破,使膜分離技術進入了大規模工業化應用的時代。其發展的歷史大致為:30年代微孔過濾,40年代透析;50年代電滲析;60年代反滲透;70年代超濾和液膜;80年代氣體分離;90年代滲透汽化。此外以膜為基礎的其它新型分離過程,以及膜分離與其它分離過程結合的集成過程(Integrated Membrane Process)也日益得到重視和發展。
幾種主要膜技術發展近況大致如下:
微濾在30年代硝酸纖維素微濾膜商品化,60年代主要開發新品種。近年來以四氟乙烯和聚偏氟乙烯製成的微濾膜已商品化,具有耐高溫、耐溶劑、化學穩定性好等優點,使用溫度在-100~260℃。目前銷售量居第一位。
超濾從70年代進入工業化應用後發展迅速,已成為應用領域最廣的技術。日本開發出孔徑為5~50nm的陶瓷超濾膜, 截留分子量為2萬, 並開發成功直徑為1~2mm, 壁厚200~400的陶瓷中空纖維超濾膜,特別適合於生物製品的分離提純。
離子交換膜和電滲析技術主要用於苦鹹水脫鹽,近年市場容量也近飽和。80年代新型含氟離子膜在氯鹼工業成功應用後, 引起氯鹼工業的深刻變化。離子膜法比傳統的隔膜法節約總能耗30%,節約投資20%。90年世界上已有34個國家近140套離子膜電解裝置投產, 到2000年全世界將1/3氯鹼生產轉向膜法。
60年洛布(Loeb)與索里拉簡(Sourirajan)發明了第一代高性能的非對稱性醋酸纖維素膜, 把反滲透(RO)首次用於海波及苦鹹水淡化。70年代開發成功高效芳香聚醯胺中空纖維反滲透膜,使RO膜性能進一步提高。90年代出現低壓反滲透復合膜, 為第三代RO膜,膜性能大幅度提高,為RO 技術發展開辟了廣闊的前景。目前RO 已在許多領域得到廣泛應用,例如,超純水製造、鍋爐水軟化,食品、醫葯的濃縮,城市污水處理,化工廢液中有用物質回收。
1979年Monsanto公司用於H2/N2分離的Prism系統的建立, 將氣體分離推向工業化應用。1985年Dow化學公司向市場提供以富N2為目的空氣分離器「Generon」氣體分離用於石油、化工、天然氣生產等領域, 大大提高了過程的經濟效益。
80年代後期進入工業應用的膜分離技術是用滲透汽化進行醇類等恆沸物脫水,由於該過程的能耗僅為恆沸精餾的1/3~1/2,且不使用苯等挾帶劑,在取代恆沸精餾及其它脫水技術上具有很大的經濟優勢。德國GFT公司是率先開發成功唯一商品GFT膜的公司。90年代初向巴西、德、法、美、英等國出售了100多套生產裝置,其中最大的為年產4萬噸無水乙醇的工業裝置,建於法國。除此之外,用PV法進行水中少量有機物脫除及某些有機/有機混合物分離, 例如水中微量含氯有機物分離,MTBE/甲醇分離, 近年也有中試規模的研報導。
在我國,膜技術的發展是從1958年離子交換膜研究開始的。65年開始對反滲透膜進行探索,66年上海化工廠聚乙烯異相離子交換膜正式投產,為電滲析工業應用奠定了基礎。67年海水淡化會戰對我國膜科學技術的進步起了積極的推動作用。70年代相繼對電滲析、反滲透、超濾和微濾膜及組件進行研究開發,80年代進入推廣應用階段。80年代中期我國氣體分離膜的研究取得長足進步,1985年中國科學院大連化物所首次研製成功中空纖維N2/H2分離器, 主要性能指標接近國外同類產品指標, 現已投入批量生產, 每套成本僅為進口裝置的1/3。
我國滲透汽化(PV)過程研究開始於1984年, 進入90年代以來, 復合膜的制備取得了較大進展, 1992年, 我系研製的改性PVA/PAN復合膜通過技術鑒定, 98年在燕化建立我國第一個千噸級苯脫水示範工程, 為我國PV技術的工業化應用奠定了基礎。
四.膜分離學科發展的主要學科支持體系
以選擇性分離膜為中心的膜科學研究自本世紀50年代形成一個學科以來,取得了飛速發展,主要圍繞幾個方向深入研究, 這幾個方面是:膜材料和膜結構;膜制備與膜形成機理;膜性能與結構的關系; 膜過程和傳遞機理; 過程和設備設計與優化;膜應用研究等。膜分離技術之所以能夠在短短30年內迅速發展脫穎而出,首先是因為它有堅實的理論基礎,例如化學滲透壓學說,氣體膜透過理論、膜孔徑理論、膜平衡概念、定電位學說、雙電層理論等等。其次是近代科學技術的發展為分離膜材料研究提供了良好的條件,高分子科學的進展為膜分離提供了具有各種特性的合成高分子膜材料;電子顯微鏡等近代分析技術的進展為分離膜的結構分析和分離機理研究提供了有效手段。第三是現代工業的發展迫切需要節能、低品位原料的再利用和消除環境污染的新技術,而膜分離正好是能滿足這些需要的新技術。
五.目前基礎研究的前沿課題
1.以水處理為主的膜材料及膜研究
大通量、高表面積的反滲透膜研究
截留分子量低於1000, 高於100萬的超濾膜及透過機理; 抗污染膜製造
孔徑從0.1m到75m 微孔膜系列化研究
界面縮聚法制備納濾膜活性層的方法
2. 大通量高選擇性氣體分離膜研究
二氧化碳分離
有機廢氣(VOCS)處理
3. 滲透汽化膜
從水中分離有機物的高選擇性膜研究
有機物/有機物分離膜研究
4. 無機膜
超薄化, 超微孔化復合膜研究; 多組分復合膜研究
電導移動膜研究
無機與有機材料接枝膜
5. 膜催化反應器的傳質、傳熱模型
6. 膜過程在環境保護及治理、水資源再生、燃料電池隔膜的理論和應用研究
7.膜中的分子模擬
❺ 膜技術的膜
膜是一種具有特殊選擇性分離功能的無機或高分子材料,它能把流體分隔成不相通的兩個部分,使其中的一種或幾種物質能透過,而將其他物質分離出來。膜技術是環境保護和環境治理的首選技術。在食品工業中也正在發揮著重要的作用。
膜是膜技術的核心,膜材料的性質和化學結構對膜分離性能起著決定性的影響。
分類:
⑴ 按材料來源分:天然膜和合成膜,合成膜又分為有機膜與無機膜。
⑵ 按結構分有七類:
a.均質膜或緻密膜,為結構均勻的緻密膜。
b.對稱微孔膜,平均孔徑為0.02~10μm。按成膜方法不同,有三種類型的微孔膜,即核孔膜、控制拉伸膜和海綿狀結構膜。
c.非對稱膜。膜斷面為不對稱結構,是工業上應用最多的膜。
d.復合膜。在多孔膜表面加塗另一種材料的緻密復合層。
e.離子交換膜。
f.荷電膜。
g.液膜。包括支撐液膜和乳狀液膜。
⑶ 按形狀分:平板膜、管式膜、中空纖維膜和卷式膜
膜技術在日常生活中也日益顯示出它的重要作用和光明前景。自從人們發現自來水含有三鹵甲烷、農葯、洗滌劑以及自來水管、水塔的二次污染後,就開始用反滲透膜制備純凈水。但是由於純凈水製作成本較高,而且在去除水中有害物質的同時,也把對人體有益的無機鹽剔除掉了。於是,人們又用純膜裝置生產出具有礦泉水和純凈水兩者優點的、具有生物活性的、可直接生飲的過濾水。
❻ 市場過濾膜常規品種有那幾種
品種和規格
() 纖維素酯類 如二醋酸纖維素(CA);三醋酸纖維素(CTA);硝化纖維素(CN);乙基纖維素(EC);混合纖維素(CN-CA)等。其中混合纖維素製成的膜,是一種標準的常用濾膜。由於成孔性能良好,親水性好,材料易得且成本較低,因此,該膜的孔徑規格分級最多,從0.05~8um,約有近十個孔徑型號。該膜使用溫度范圍較廣。可耐稀酸。不適用酮類、酯類、強酸和鹼類等液體的過濾。
(2) 聚醯胺類 如尼龍6(PA-6)和尼龍(PA-66)微孔膜。該種也具有親水性能。較耐鹼而不耐酸。在酮、酚、醚及高分子量醇類中,不易被腐蝕。孔徑型號也較多。適用於電子工業光刻膠、顯影液等的凈化。
(3) 聚碸類 如聚碸(PS)和聚醚碸(PES)微濾膜。該類膜具有良好的化學性和熱穩定性,耐輻射,機械強度較高,應用面也較廣。
(4) 含氟材料類 如聚偏氟乙烯(PVDF)和聚四氟乙烯膜(PTFE)。這類微濾膜,都有極好的化學穩定性,適合在高溫下使用。特別是PTFE膜,其使用溫度為-40~260℃可耐強酸、強鹼和各種有機溶劑。由於具有疏水性,可用於過濾蒸氣及各種腐蝕性液體。
(5) 聚碳酸酯和聚酯類 主要用於制核孔微孔膜。核孔膜孔徑非常均勻,一般厚度為5~15um。此膜的孔隙率只有百分之十幾,因膜薄所以其流體的過濾速度與前敘的幾種膜相當。但製作工藝較為復雜,膜價格高,應用受到限制。目前該核膜已能製成多種孔徑價格。
(6) 聚烯烴類 如聚丙烯(PP)拉伸式微孔膜和聚丙烯(PP)纖維式深層過濾膜。該類微孔膜具有良好的化學穩定性,可耐酸、耐鹼和各種有機溶劑。價格便宜。但該類膜孔徑分布寬。目前的商品膜有平板式和中空釺維式多種構型。並具有多種孔徑規格。
(7) 無機材料 如陶瓷微孔膜、玻璃微孔膜,各類金屬微孔膜等。這是近幾年來倍受重視的新的一族微孔膜。無機膜具有耐高溫、耐有機溶劑、耐生物降解等優點。特別在高溫氣體分離和膜催化反應器及食品加工等行業中,有良好的應用前景。
❼ 市場過濾膜常規品種有那幾種
品種和規格
(1) 纖維素酯類 如二醋酸纖維素(CA);三醋酸纖維素(CTA);硝化纖維素(CN);乙基纖維素(EC);混合纖維素(CN-CA)等。其中混合纖維素製成的膜,是一種標準的常用濾膜。由於成孔性能良好,親水性好,材料易得且成本較低,因此,該膜的孔徑規格分級最多,從0.05~8um,約有近十個孔徑型號。該膜使用溫度范圍較廣。可耐稀酸。不適用酮類、酯類、強酸和鹼類等液體的過濾。
(2) 聚醯胺類 如尼龍6(PA-6)和尼龍(PA-66)微孔膜。該種也具有親水性能。較耐鹼而不耐酸。在酮、酚、醚及高分子量醇類中,不易被腐蝕。孔徑型號也較多。適用於電子工業光刻膠、顯影液等的凈化。
(3) 聚碸類 如聚碸(PS)和聚醚碸(PES)微濾膜。該類膜具有良好的化學性和熱穩定性,耐輻射,機械強度較高,應用面也較廣。
(4) 含氟材料類 如聚偏氟乙烯(PVDF)和聚四氟乙烯膜(PTFE)。這類微濾膜,都有極好的化學穩定性,適合在高溫下使用。特別是PTFE膜,其使用溫度為-40~260℃可耐強酸、強鹼和各種有機溶劑。由於具有疏水性,可用於過濾蒸氣及各種腐蝕性液體。
(5) 聚碳酸酯和聚酯類 主要用於制核孔微孔膜。核孔膜孔徑非常均勻,一般厚度為5~15um。此膜的孔隙率只有百分之十幾,因膜薄所以其流體的過濾速度與前敘的幾種膜相當。但製作工藝較為復雜,膜價格高,應用受到限制。目前該核膜已能製成多種孔徑價格。
(6) 聚烯烴類 如聚丙烯(PP)拉伸式微孔膜和聚丙烯(PP)纖維式深層過濾膜。該類微孔膜具有良好的化學穩定性,可耐酸、耐鹼和各種有機溶劑。價格便宜。但該類膜孔徑分布寬。目前的商品膜有平板式和中空釺維式多種構型。並具有多種孔徑規格。
(7) 無機材料 如陶瓷微孔膜、玻璃微孔膜,各類金屬微孔膜等。這是近幾年來倍受重視的新的一族微孔膜。無機膜具有耐高溫、耐有機溶劑、耐生物降解等優點。特別在高溫氣體分離和膜催化反應器及食品加工等行業中,有良好的應用前景。
❽ 什麼紗窗防塵效果好
超濾抄膜紗窗是防塵效果最好的紗襲窗 他的沙的密度可以過濾pm2.5
孔徑僅為150納米,其他紗窗至少是在5000納米以上(pm2.5直徑為2500納米)
納米纖維是?
直徑1~1000nm,長度為直徑的100倍以上的纖維物質。
*1m=1,000mm=1,000,000um=1,000,000,000nm
一般情況下空氣接觸到物體,由於空氣抵抗,會下降速度,
但納米尺寸為100nm以下的物質,會產生滑溜現象,
所以速度不會下降的傾向。
預期效果:在納米尺寸中,由於分子間引力增大,會提高捕捉能力.
通常情況下捕捉能力增大,同時壓力損失也會提高,
但納米纖維由於滑溜現象,會減少壓力損失。
壓力效果
壓力損失減少:滑溜(slip flow)效果
從理論上纖維直徑變小時,壓力損失會上升。
但,實際上纖維直徑100nm一下時,壓力損失反而減少。
【最大特點】
防止pm2.5,黃砂,花粉,火山灰及害蟲的進入(花粉捕捉率約99%)