離子交換樹脂對各種反離子的親和力往往不一樣.一種離子交換樹脂常常容內易取得某些反離子容,在取得這類反離子後要把它置換下來就比較困難,反之,它對另一些離子很難取得,但卻比較容易置換下來.這種性能稱為離子交換樹脂的選擇性.
陽離子交換樹脂的選擇順為,Fe>Al>Ba>Pb>Sr>Ca>Ni
>Cd>Cu>Co>Zn >Mg>K>NH>Na>Li
陰樹脂的選擇性為,強鹼樹脂SO>NO>CI>F>HCO>HSIO>
弱鹼樹脂OH>SO>NO>CI>HCO
② 什麼叫離子交換樹脂的選擇性與什麼因素有關
什麼是離子交來換源樹脂的選擇性?
離子交換樹脂的選擇性是指離子交換樹脂能吸附的金屬離子,污水中有很多金屬離子而離子交樹脂不可能可以把所有的金屬離子都吸咐干凈的,有一些金屬離子樹脂對它的吸附能力是比較弱的而有一些則比較強,也就是說離子交換樹脂只能針對性的吸附某一些金屬離子,這就是離子交換樹脂的選擇性。
離子交換樹脂的選擇性怎樣?
離子交換反應和其他化學反應一樣,完全服從質量作用定律。離子交換親和力,也就是離子交換樹脂對水中金屬離子的吸附能力。離子交換樹脂對離子的吸附能力與離子半徑大小和離子所帶的電荷數有關。離子交換樹脂的吸附能力與金屬離子的電荷數、價態和金屬離子的半徑成正比。
離子交換樹脂的選擇性:
經過實驗證明,低濃度、常溫下,離子交換樹脂對不同離子的吸附能力順序有下列規律。
陽離子交換樹脂對金屬離子的吸附順序是:
Fe3+>Al3+>Pb2+>Ca2+>Mg2+>K+>Na+>H+。
強鹼性陰離子樹脂對陰離子的吸附順序是:
SO42->NO3->CI->HCO3->OH-。
弱鹼性陰離子樹脂對陰離子的吸附順序是:
OH->檸檬酸根3->SO42->酒石酸根2->草酸根2->PO43->NO2->Cl->醋酸根-
>HCO3-。
③ 在水處理實際應用中,離子交換樹脂選擇順序如何有什麼規律
陽離子抄交換樹脂在稀溶液襲中的的選擇性順序如下:Fe3+>A13+>Ca2+>Mg2+>K+≈NH4+>Na+>H+
這可歸納為①離子所帶電荷越大,越易被吸著;②當離子所帶電荷量相同時,離子水合半徑較小的易被吸著。
弱酸性陽樹脂對H+的選擇性向前移動,羧酸型樹脂對H+的選擇性居於Fe3+之前。
在濃溶液中選擇順序有所不同,某些低價離子會居於高價離子前面。
陰離子交換樹脂的選擇順序:在淡水的離子交換除鹽處理系統中,即進水是稀酸溶液時,陰離子的選擇順序為SO42-(+HSO4-)>CL->HCO3->HSiO-;
當OH型離子交換樹脂失效後,用鹼進行再生時,即對於進水是濃鹼溶液,陰離子的選擇性順序為:CL—>SO42—>CO32->HSiO3—;
據此,可以推知,OH型離子交換樹脂對於水中常見陰離子的選擇順序,遵循以下三條規則:
(1)在強弱酸混合的溶液中,OH型離子交換樹脂易吸著強酸陰離子。
(2)濃溶液與稀溶液,前者利於低價離子被吸著,後者利於高價離子被吸取。
(3)在濃度和價數等條件相同的情況下,選擇性系數大的易被吸著。
④ 什麼叫離子交換樹脂的選擇性有什麼規律
離子交換樹脂的顆粒尺寸和有關的物理性質對它的工作和性能有很大影響。離子交換樹脂通常製成珠狀的小顆粒,它的尺寸也很重要。樹脂顆粒較細者,反應速度較大,但細顆粒對液體通過的阻力較大,需要較高的工作壓力;特別是濃糖液粘度高,這種影響更顯著。因此,樹脂顆粒的大小應選擇適當。如果樹脂粒徑在0.2mm(約為70目)以下,會明顯增大流體通過的阻力,降低流量和生產能力。樹脂顆粒大小的測定通常用濕篩法,將樹脂在充分吸水膨脹後進行篩分,累計其在20、30、40、50……目篩網上的留存量,以90%粒子可以通過其相對應的篩孔直徑,稱為樹脂的「有效粒徑」。多數通用的樹脂產品的有效粒徑在0.4~0.6mm之間。樹脂顆粒是否均勻以均勻系數表示。它是在測定樹脂的「有效粒徑」坐標圖上取累計留存量為40%粒子,相對應的篩孔直徑與有效粒徑的比例。如一種樹脂(ir-120)的有效粒徑為0.4~0.6mm,它在20目篩、30目篩及40目篩上留存粒子分別為:18.3%、41.1%、及31.3%,則計算得均勻系數為2.0。樹脂在乾燥時的密度稱為真密度。濕樹脂每單位體積(連顆粒間空隙)的重量稱為視密度。樹脂的密度與它的交聯度和交換基團的性質有關。通常,交聯度高的樹脂的密度較高,強酸性或強鹼性樹脂的密度高於弱酸或弱鹼性者,而大孔型樹脂的密度則較低。例如,苯乙烯系凝膠型強酸陽離子樹脂的真密度為1.26g/ml,視密度為0.85g/ml;而丙烯酸系凝膠型弱酸陽離子樹脂的真密度為1.19g/ml,視密度為0.75g/ml。(3)樹脂的溶解性離子交換樹脂應為不溶性物質。但樹脂在合成過程中夾雜的聚合度較低的物質,及樹脂分解生成的物質,會在工作運行時溶解出來。交聯度較低和含活性基團多的樹脂,溶解傾向較大。高價離子通常被優先吸附,而低價離子的吸附較弱。在同價的同類離子中,直徑較大的離子的被吸附較強。一些陽離子被吸附的順序如下:Fe3+>Al3+>Ra2+>Pb2+>Sr2+>Ca2+>Ni2+>Cd2+>Cu2+>Co2+>Zn2+>Mg2+>Ba2+>K+>NH4+>Na+>Li+對強酸性陽樹脂,H+的選擇性介於Na+和Li+之間。但對弱酸性陽樹脂,H+的選擇性最強。
⑤ 離子交換樹脂的洗脫順序和什麼有關
和樹脂的親和力有關,主要是靜電吸引,其次是疏水作用。
樹脂的交聯度,即樹脂基體版聚合時所用二權乙烯苯的百分數,對樹脂的性質有很大影響。通常,交聯度高的樹脂聚合得比較緊密,堅牢而耐用,密度較高,內部空隙較少,對離子的選擇性較強。
而交聯度低的樹脂孔隙較大,脫色能力較強,反應速度較快,但在工作時的膨脹性較大,機械強度稍低,比較脆而易碎。
(5)離子交換樹脂吸附順序擴展閱讀:
大孔樹脂內部的孔隙又多又大,表面積很大,活性中心多,離子擴散速度快,離子交換速度也快很多,約比凝膠型樹脂快約十倍。使用時的作用快、效率高,所需處理時間縮短。
大孔樹脂還有多種優點耐溶脹,不易碎裂,耐氧化,耐磨損,耐熱及耐溫度變化,以及對有機大分子物質較易吸附和交換,因而抗污染力強,並較容易再生。
交聯度高的樹脂對離子的選擇性較強,大孔結構樹脂的選擇性小於凝膠型樹脂。這種選擇性在稀溶液中較大,在濃溶液中較小。
⑥ 離子交換樹脂的分離原理
原則上和分子集團的大小沒直接關系(有間接關系的),主要看的是被吸附集團的 極性,也就是電子雲的分布。看哪種更適合被樹脂吸附
但是分子基團的大小對電子雲的分布也是有些影響的,所以說有會有間接關系。
⑦ 離子交換樹脂的選擇原則是什麼
離子交換樹脂的吸附交換原理:
離子交換樹脂本身的離子一般是低價離子,所以離子交換樹脂在與水接觸時,根據樹脂的吸附選擇性,會將水中的高價離子吸附,將低價離子釋放,而這些被釋放的低價離子會與水中的其他離子結合,成為無害的物質,而在實際使用的過程中,經常都是將樹脂轉化為其他的離子形式進行使用,比如一般陽離子交換樹脂會轉化為鈉型樹脂再進行使用,從而達到軟化水的目的。
離子交換樹脂的吸附順序:
1.離子交換樹脂對陽離子的吸附順序:
Fe3+ > Al3+ > Pb2+ > Ca2+ > Mg2+ > K+ > Na+ > H+
2.強鹼性陰離子交換樹脂對陰離子的吸附順序:
SO42- > NO3- > Cl- > HCO3- > OH-
3.弱鹼性陰離子交換樹脂對陰離子的吸附順序:
OH- > 檸檬酸根3- > SO42- > 酒石酸根2- >草酸根2- > PO43- >NO2- > Cl- >醋酸根- > HCO3-
詳情點擊:離子交換樹脂的選擇性
⑧ 離子交換樹脂吸附分離
在抄0.25mol/LH2SO4並含有少量過氧化氫的襲介質中釩不被陽離子交換樹脂吸附,可與鈧、釔、鈾分離。
將含釩與鉻的0.08mol/LHCl-6(6+94)%H2O2通過氯型樹脂,鉻通過交換柱而釩吸附於柱上,從而得到分離。
用硫酸根型樹脂採用選擇性洗脫可將鉻(Ⅲ)、釩(Ⅴ)、鉬(Ⅵ)、鎢(Ⅵ)分離,先用0.05mol/LH2SO4-0.1%H2O2洗脫鉻(Ⅲ),再用0.5mol/LH2SO4-0.1%H2O2或1mol/L(NH4)2SO4-0.025mol/LH2SO4洗脫釩(Ⅴ),而鉬(Ⅵ)和鎢(Ⅵ)仍留在吸附柱上。
⑨ 離子交換樹脂的交換原理
離子交換樹脂的內部結構,由三部分組成,分別是:
1、高分子骨。
由交聯的高分子聚合物組成;
2、離子交換基團。
它連在高分子骨架上,帶有可交換的離子(稱為反離子)的離子型官能團或帶有極性的非離子型官能團;
3、孔。
它是在干態和濕態的離子交換樹脂中都存在的高分子結構中的孔(凝膠孔)和高分子結構之間的孔(毛細孔)。
在交聯結構的高分子基體(骨架)上,以化學鍵結合著許多交換基團。這些交換基團也是由兩部分組成:固定部分和活動部分。
交換基團中的固定部分被束縛在高分子的基體上,不能自由移動,所以稱為固定離子;交換基團的活動部分則是與固定離子以離子鍵結合的符號相反的離子,稱為反離子或可交換離子。反離子在溶液中可以離解成自由移動的離子,在一定條件下,它能與符號相同的其他反離子發生交換反應。
1、離子交換的選擇性定義:
離子交換劑對於某些離子顯示優先活性的性質。離子交換樹脂吸附各種離子的能力不一,有些離子易被交換樹脂吸附,但吸著後要置換下來就比較困難;而另一些離子很難被吸著,但被置換下來卻比較容易,這種性能稱為離子交換的選擇性。離子交換樹脂對水中不同離子的選擇性與樹脂的交聯度、交換基團、可交換離子的性質、水中離子的濃度和水的溫度等因素有關。
離子交換作用即溶液中的可交換離子與交換基團上的可交換離子發生交換。一般來說,離子交換樹脂對價數較高的離子的選擇性較大。對於同價離子,則對離子半徑較小的離子的選擇性較大。在同族同價的金屬離子中,原子序數較大的離子其水合半徑較小,陽離子交換樹脂對其的選擇性較大。對於強酸性陽離子交換樹脂來說,它對一些離子的選擇性順序為:Fe3+>A13+>Ca2+>Mg2+>K+>Na+>H+。離子交換反應是可逆反應,但是這種可逆反應並不是在均相溶液中進行的,而是在固態的樹脂和溶液的接觸界面間發生的。這種反應的可逆性使離子交換樹脂可以反復使用。
2、以001×7強酸陽離子交換樹脂為例說明:
001×7強酸陽離子交換樹脂是一種凝膠型離子交換樹脂,其內部的網狀結構中有無數四通八達的孔道,孔道裡面充滿了水分子,在孔道的一定部位上分布著可提供交換離子的交換基團。當原水當中的Ca2+,Mg2+等陽離子-擴散到樹脂的孔道中時,由於該樹脂對Ca2+,Mg2+等陽離子選擇性強於對H+的選擇性,所以H+就與進入樹脂孔道中的Ca2+,Mg2+等陽離子發生快速的交換反應,Ca2+,Mg2+等陽離子被固定到樹脂交換基團上面,被交換下來的H+向樹脂的孔道中-擴散,最終擴散到水中。
(1)邊界水膜內的擴散
水中的Ca2+,Mg2+等陽離子向樹脂顆粒表面遷移,並擴散通過樹脂表面的邊界水膜層,到達樹脂表面;
(2)交聯網孔內的擴散(或稱孔道擴散)
Ca2+,Mg2+等陽離子進入樹脂顆粒內部的交聯網孔,並進行擴散,到達交換點;
(03)離子交換
Ca2+,Mg2+等陽離子與樹脂基團上的可交換的H+進行交換反應;
(4)交聯網孔內的擴散
被交換下來的H+在樹脂內部交聯網孔中向樹脂表面擴散。
(5)邊界水膜內的擴散
最終擴散到水中。
鑒於離子交換樹脂反應的可逆性,反應後的樹脂通過處理,重新轉化為原來的離子交換樹脂,這樣又可以進入下一循環,其循環次數視所用樹脂類型不同而定。
⑩ 離子交換樹脂和吸附樹脂使用中應該注意那些問題
樹脂使用時的注意事項:
1.樹脂在使用的過程中,要防止與金屬、油污、有機分子微生物、強氧版化劑等接觸,否權則可能會造成樹脂的離子交換能力下降,嚴重的話可能會導致樹脂失去效果。
2.當樹脂需要更換時,廢舊樹脂不能隨便處理,要將樹脂裝入容器中,交給專業單位進行處理,防止污染環境。
3.在一定的條件下,氧化性試劑(如硝酸)會侵蝕有機的離子交換樹脂。這種影響可能小到只會導致輕微的樹脂降解,大到會導致劇烈的放熱反應(如爆炸)。在使用強氧化劑之前,要先向技術人員或者有經驗的人員咨詢。
4. 樹脂內含有反應溶劑、還沒有參加反應的物質和一些低分子量的聚合物,還有一些雜質,在使用的時候,一些雜質就會一起流入水裡,在一開始就污染了水質,所以新樹脂在使用之前要進行預處理。
5.樹脂最好不要用手直接接觸,防止引起皮膚過敏,如果直接用手接觸,需要用清水清洗干凈,萬一誤食,應立即到醫院處理。