導航:首頁 > 污水知識 > 造紙污水沉澱劑加入量

造紙污水沉澱劑加入量

發布時間:2025-07-04 22:51:43

1. 污水處理時每噸污水要加多少pAC

一、每噸水要加的pac:

高色度、高濃度廢水處理時每噸水需要添加700-900g的pac。

處理溴氨酸活性染料生產廢水時,當PAC的投加量2kg每噸

這個要看懸浮物濃度,通常的加葯量是3%左右加葯量400L/H,將固體溶於水,以液體形式經計量加入准備處理的水中(3%~5%),攪拌均與,加入量以實驗確定, PH=6-9之間處理最佳,用量少,效果好,與有機高分子絮凝劑配合使用,效果會更好。

二、聚合氯化鋁處理高色度、高濃度廢水的投加量:

高色度、高濃度廢水,用混凝法對此廢水進行處理時,聚合氯化鋁投加量為700~900mg/L,pH值控制在5.4~6.6時,脫色率可達93%,並且聚合氯化鋁較其它絮凝劑所產生的礬花大、沉降速度快,另外,對於以活性染料為主的印染廢水,PAC的投加量要比處理疏水性染料時的投加料要多。

三、聚合氯化鋁產品處理溴氨酸活性染料生產廢水時,當PAC的投加量:

在利用聚合氯化鋁產品處理溴氨酸活性染料生產廢水時,當PAC的投加量2g/L時,脫色率和COD去除率均在90%以上。

此外,通過對染色廢水混凝脫色機理的研究進一步說明,聚鋁混凝脫色的pH值范圍廣,對於大部分染料廢水,都可獲得較理想的脫色效果,但鹼式氯化鋁對單偶氮、低分子量含水溶性基團較多的親水性染料,則不能採用聚鋁絮凝劑脫色。

(1)造紙污水沉澱劑加入量擴展閱讀:

固體聚合氯化鋁稀釋成液體時,首先要根據原水情況,使用前先做小試求得最佳葯量。在生產上使用聚合氯化鋁時,按聚合氯化鋁固體:清水=1:9-1:15質量比混合溶解即可。

氧化鋁含量低於1%的溶液易水解,會降低使用效果,濃度太高不易投加均勻。葯劑投用後,如見沉澱池礬花少,余濁大,則投加量過少;如見沉澱池礬花大且上翻,則加葯量過大,應適當調整。

聚合氯化鋁的顏色一般有白色、黃色、棕褐色,不同顏色的聚合氯化鋁在應用及生產技術上也有較大區別。國家標准范圍內的三氧化鋁含量在27%~30%之間的聚合氯化鋁多為土黃色、到黃色、淡黃色的固體粉狀。

這些類型的聚合氯化鋁水溶性比較好,在溶解的過程中伴隨電化學、凝聚、吸附和沉澱等物理化學變化,絮凝體形成快而粗大、活性高、沉澱快、對高濁度水的凈化效果明顯。

2. 含砷的廢水該如何處理

處理含砷廢水,目前國內外主要有中和沉澱法、絮凝沉澱法、鐵氧體法、硫化物沉澱法等,適用於高濃度含砷廢水,生成的污泥易造成二次污染。在化學法方面的研究已經比較成熟,很多人曾在這方面做了深入的研究。1 化學法處理含砷廢水中和沉澱法作為工程上應用較廣的一種方法,很多人在這方面作了深入的研究,機理主要是往廢水中添加鹼(一般是氫氧化鈣)提高其pH,這時可生成亞砷酸鈣、砷酸鈣和氟化鈣沉澱。這種方法能除去大部分砷和氟,且方法簡單,但泥渣沉澱緩慢,難以將廢水凈化到符合排放標准。絮凝共沉澱法,這是目前處理含砷廢水用得最多的方法。它是藉助加入(或廢水中原有)Fe3+、Fe2+、Al3+和Mg2+等離子,並用鹼(一般是氫氧化鈣)調到適當pH,使其形成氫氧化物膠體吸附並與廢水中的砷反應,生成難溶鹽沉澱而將其除去。其具體方法有,石灰-鋁鹽法、石灰-高鐵法、石灰-亞鐵法等。鐵氧體法,在國外,自70年代起已有較多報道,工藝過程是在含砷廢水中加入一定數量的硫酸亞鐵,然後加鹼調pH至8.5-9.0,反應溫度60-70℃,鼓風氧化20-30分鍾,可生成咖啡色的磁性鐵氧體渣。Nakazawa Hiroshi 等研究指出,在熱的含砷廢水中加鐵鹽(FeSO4或Fe2(SO4)3),在一定pH下,恆溫加熱1 h。用這種沉澱法比普通沉澱法效果更好。特別是利用磁鐵礦中Fe3+鹽處理廢水中As(III)、As(V),在溫度90℃,不僅效果很好,而且所需要的Fe3+濃度也降到小於0.05mg/L。趙宗升曾從化學熱力學和鐵砷沉澱物的紅外光譜兩個方面探討了氧化鐵砷體系沉澱除砷的機理,發現在低pH值條件下,廢水中的砷酸根離子與鐵離子形成溶解積很小的FeAsO4,並與過量的鐵離子形成的FeOOH羥基氧化鐵生成吸附沉澱物,使砷得到去除。馬偉等報道,採用硫化法與磁場協同處理含砷廢水,提高了硫化渣的絮凝沉降速度和過濾速度,並提高了硫化劑的利用率。研究發現經磁場處理後,溶液的電導率增加,電勢降低,磁化處理使水的結構發生了變化,改變了水的滲透效果。國外曾有人提出在高度厭氧的條件下,在硫化物沉澱劑的作用下生成難溶、穩定的硫化砷,從而除去砷。化學沉澱法作為含砷廢水的一種主要處理方法,工程化比較普遍,但並不是採用單一的處理方式,而是幾種處理方式的綜合處理,如鈣鹽與鐵鹽相結合,鐵鹽與鋁鹽相結合等等。這種綜合處理能提高砷的去除率。但由於化學法普遍要加入大量的化學葯劑,並成為沉澱物的形式沉澱出來。這就決定了化學法處理後會存在大量的二次污染,如大量廢渣的產生,而這些廢渣的處理目前尚無較好的處理處置方法,所以對其在工程上的應用和以後的可持續發展都存在巨大的負面作用。
2 物化法處理含砷廢水物化法一般都是採用離子交換 、吸附、萃取、反滲透等方法除去廢液中的砷。物化法大都是些近年來發展起來的較新方法,實用的尚不多見,但是有眾多學者在這方面做了深入的研究,並取得了顯著的成果。陳紅等曾利用MnO2對含As(III)廢水進行了吸附實驗,結果表明,MnO2對As(III)有著較強的吸附能力,其飽和吸附量為44.06mg/g(δ-MnO2)和17.9 mg/g(ε-MnO2),陰離子的存在使MnO2吸附量有所下降,一些陽離子(如Ga3+、In3+)可增加其吸附量,吸附後的MnO2經解吸後可重復使用。胡天覺等報道,合成制備了一種對As(III)離子高效選擇性吸附的螯合離子交換樹脂,用該離子交換柱脫砷:含As(III)5 g/L的溶液脫砷率高於99.99%,脫砷溶液中砷含量完全達標,而且離子交換柱用2mol/L的氫氧化鈉(含5% 硫氫化鈉)作洗脫液洗滌,可完全回收As(III)並使樹脂再生循環利用。劉瑞霞等也曾制備了一種新型離子交換纖維,該離子交換纖維對砷酸根離子具有較高的吸附容量和較快的吸附速度。實驗表明該纖維具有較好的動態吸附特性,30mL 0.5mol/L氫氧化鈉溶液可定量將96.0 mg/g吸附量的砷從纖維上洗脫。另外,還有不少人作了用鋼渣、選礦尾渣、高爐冶煉礦渣等廢渣處理含砷廢水的研究,取得了不錯的成果。但由於物化法只能處理濃度較低,處理量不大,組成單純且有較高回收價值的廢水,而工業廢水的成分較復雜,所以物化法的工程化程度較低。3 微生物法處理含砷廢水與傳統物理化學方法相比,用微生物法處理含砷廢水具有經濟、高效且無害化等優點,已成為公認最具發展前途的方法。3.1 活性污泥國內外諸多研究表明,活性污泥ECP(胞外多聚物)能大量吸附溶液中的金屬離子,尤其是重金屬離子,他們與ECP的絡合更為穩定。關於吸附機制,在ECP的復雜成分中吸附重金屬離子的似乎是糖類。Brown和Lester(1979)指出ECP中的中性糖和陰離子多糖有著吸附不同金屬離子的結合點位,不同價態或不同電荷的金屬離子可以在不同的點位與 ECP結合,如中性糖的羥基、陰離子多聚物的羥基都可能是金屬的結合位。Kasan、Lester、Modak和Natarajam等認為:活性污泥對重金屬離子的吸附有兩種機制即表面吸附和胞內吸收;表面吸附是指活性污泥微生物的胞外多聚物(甲殼素、殼聚糖等)含有配位基團—OH,—COOH,—NH2,PO43-和—HS等,他們與金屬離子進行沉澱、絡合、離子交換和吸附,其特點是快速、可逆和不需要外加能量,與代謝無關;胞外吸收通過金屬離子和胞內的透膜酶、水解酶相結合而實現,速度較慢需要能量,而且與代謝有關。
此外,Ralinske指出:好氧生物能大量富集各種重金屬離子,這些離子積累於細胞外多聚物中,並在厭氧條件下釋放回液相中。這就有利於我們在二沉池中分離和沉降重金屬離子。在活性污泥法處理含砷廢水的實驗中,存在許多影響因素,主要影響因素如下:
(1)砷的濃度及價態不同價態的砷對活性污泥的毒性不同。實驗表明,As(III)對脫氫酶的毒性比As(V)平均大53倍。As(III)對蛋白酶活性的毒性約為As(V)的75倍。還有,As(III)對活性污泥脲酶活性的毒害作用是As(V)的35倍。所以處理含砷廢水時有必要將As(III)氧化成As(V)。實驗還表明,活性污泥對低濃度砷的去除率高於對高濃度砷的去除率,這是由於污泥的吸附能力有限所造成的。
此外,重金屬離子濃度小於5mg·L-1時,活性污泥法對污水中有機物的處理效果不受重金屬影響,當重金屬離子濃度大於30mg·L-1時,活性污泥法污水中有機物的處理效果則大大受到影響。
(2)有機負荷有機負荷對活性污泥去除五價砷也有較大的影響,有機負荷高,去除率也高。主要有兩方面的原因:
一是污水中的有機物本身可和五價砷相結合,降低了污水中砷的濃度;二是有機物濃度高有利微生物生長繁殖,這進一步提高活性污泥對五價砷的去除率。
此外,有機負荷高還可以防止污泥膨脹。因為在高有機負荷環境中絮狀菌比大多數絲狀菌有更強的吸附和存貯營養物能力,能夠充分利用高濃度的底物迅速增殖,具有較高的比生長速率,抑制了絲狀菌的生長。在低負荷下混合液中底物濃度長時間都低,由於缺少足夠的營養底物,絮狀菌的生長受到抑制,而絲狀菌具有較大的比表面積,當環境不利於微生物的生長時,絲狀菌會從菌膠團中伸展出來以增加其攝取營養物質的表面積。一方面,伸出絮體之外的絲狀菌更易吸收底物和營養,其生長速率高於絮狀菌,從而成為活性污泥中的優勢菌種;另一方面,絲狀菌越多,其菌絲越長,活性污泥越不易沉降,SVI越高,導致了污泥膨脹。
(3)pHpH 對金屬去除影響很大,因為pH不僅影響金屬的沉降狀態,而且影響吸附點的電荷。一般pH 升高有利於污泥對陽離子金屬的吸附。直至產生氫氧化物沉澱,反之則有利於對呈負電荷狀態存在的金屬的吸附。但是,過高或過低的pH對微生物生長繁殖不利,具體表現在以下幾個方面:
①pH過低(pH=1.5),會引起微生物體表面由帶負電變為帶正電,進而影響微生物對營養物的吸收。
②過高或過低的 PH還可影響培養基中有機化合物的離子化作用,從而間接影響微生物。
③酶只有在最適宜的pH時才能發揮其最大活性,極端的pH使酶的活性降低,進而影響微生物細胞內的生物化學過程,甚至直接破壞微生物細胞。
④過高或過低的pH均降低微生物對高溫的抵抗能力。
(4)生物固體停留時間(Qc)Qc對陽離子金屬去除有較大影響,因為活性污泥表面常被難溶性或微溶性的多聚物所包圍(如多糖),這些多聚物表面的電荷可使金屬迅速地得以去除。已經證實,細菌多聚物產生和細菌生長相有關,穩定相和內源呼吸階段多聚物產量最大,而Qc增大,污泥中細菌處於穩定相和內源呼吸階段,有利於對金屬的去除。
(5)污泥濃度污泥濃度高,吸附點也隨著增加,從而有利於金屬的去除。從去除金屬的角度出發,高有機負荷,高污泥濃度的運行方式最為理想。活性污泥法處理含砷廢水,不論在處理費用,還是二次污染,或者工程化方面,都比傳統處理方法具有相當突出的優勢。雖然在理論研究方面還不是十分完善,但是在處理機制和影響因素方面都已達成一定的共識。如果在處理工藝上再進行一定的改進,如往污泥中投加優勢菌種,可以改善污水的處理效果;此外,還可以引進生活污水進行混合處理並進行曝氣,這樣不僅降低了砷的濃度以及砷對污泥的毒害作用,同時還解決了活性污泥的營養源問題,為活性污泥法處理含砷廢水的工程化應用開辟了一片新天地。3.2 菌藻共生體國外研究表明,生物遷移轉化作為一種新的微生物法處理重金屬廢水,與傳統方法相比,具有更高效,費用更低等優點。用小球藻的生物遷移轉化處理重金屬廢水的工藝,有一些已投入工程運作。菌藻共生體對砷的去除機理可認為是藻類和細菌的共同作用。許多研究表明,在去除金屬過程中,微生物的表面起著重要作用。菌藻共生體中,藻類和細菌表面存在許多功能鍵,如羥基、氨基、羧基、硫基等。這些功能鍵可與水中砷共價結合,砷先與藻類和細菌表面上親和力最強的鍵結合,然後與較弱的鍵結合,吸附在細胞表面的砷再慢慢滲入細胞內原生質中。因而在藻類和細胞吸附砷中,可能經過快吸附過程和較慢吸附兩過程後,吸附作用才趨於平衡。廖敏等人曾研究了菌藻共生體對廢水中砷的去除效果。研究發現:培養分離所得菌藻共生體中以小球藻為主,此時菌藻共生體積累砷達7.47 g/kg乾重。在引入菌藻共生體並培養16h後,其對無營養源的含As(III),As(V)的廢水除砷率達80%以上,並趨於平衡,含營養源的As(III)、As(V)的廢水中,菌藻共生體對As(V)的去除率大於As(III),對As(V)去除率超過70%,但對As(III)的去除率也在50%以上,在除砷過程中同時出現砷的解吸現象。在無營養源條件下,對As(III)、As(V)混合廢水的除砷率超過80%。菌藻共生體是一種易培養獲得的材料。其對廢水中的砷具有較強的去除力,並能同時去除廢水中的營養物,因此其在含砷廢水的處理運用中有著廣闊的前景。3.3 投菌活性污泥法投菌活性污泥法(Application of Bio-Augmentation Process with Liquid Live microorganisms)是將具有強活力的細菌投入到曝氣池裡去,使曝氣池混合液內的各種細菌處於最佳活性狀態,這樣.不僅投入了吸氣池內所缺少的細菌,在流入污水水質不變的條件下,微生物氧化作用顯著,而且,當污水水質改變,環境變異的情況下,微生物仍能適應,保持活性,其氧化代謝過程依然充分,投入菌液後使曝氣池耐沖擊負荷,提高污水處理廠的處理效果,改善了出水水質。投菌活性污泥法(LLMO)是出之一種新的概念,它是根據在同一環境里,最適宜的細菌能自然繁殖,同樣,污水處理廠曝氣池混合液內的細菌也會自然繁殖到一定數目,自然界無處不可找到細茵,然而,在同一環境里並非可以找到一切細菌這一原則,作為理論指導,從自然界土壤內篩選出污水廠中的有用細菌製成液態的或固態的產品。液態菌液微生物成活率高;固態菌使用前需先用水溶成液態,細菌的成活率較液態菌液低,使用時按一定比例將液態菌液投入曝氣池內或投到需用處,投菌活性污泥法(LLMO)在國外已收到良好的應用效果。因此,我們可望通過向活性污泥中投加對砷具有高耐受力,對砷具有特殊處理效果的混合菌種,達到對砷的高效處理,凈化工業含砷廢水。
4 前景展望隨著冶金、化工等產業的日益發展,以及含砷製品市場的日益拓大,含砷廢水的排放和污染問題,必將影響到人們的生活水平的提高,影響到人類生存環境的改善,所以解決含砷廢水的污染問題已迫在眉睫。然而傳統的處理方法都存在一定的問題。如化學法,雖然在工程上有了一定的應用,處理效果也較明顯,但由於化學葯劑的添加,導致了產生大量的廢渣,而這些廢渣目前尚無較好的處置辦法。而物理法的處理費用較高,處理投資非常大,無法進行工程運作。微生物法作為一種最有前途的處理方法,不僅具有高效、無二次污染,而且處理費用低等優點。其中,活性污泥法處理含砷廢水的理論在國內外處於熱點研究探索中,又由於活性污泥具有的來源廣泛,容易培養,處理後二次污染小等一系列優點,使其在工程上的應用成為可能,成為含砷廢水的主要處理方法。
此外,若對單純活性污泥法進行工藝上的改進,如引進優勢菌種,或摻入生活污水進行混合處理等工藝上的改進,都可能為活性污泥法的應用創造更為廣闊的前景。

3. 廢水處理投加磷酸氫二鈉和氯化鎂的作用

加磷酸氫二鈉以及氯化鎂與水中的氨氮形成磷酸銨鎂去除水中的氨氮.,減少水中氮專元素含量。(磷屬酸銨鎂(MAP)法處理高濃度氨氮廢水,採用磷酸氫二鈉和氯化鎂作為沉澱劑,按照Mg:N:P=1.1:1:1比例投料,調節反應pH=10.使氨氮轉化成MgNH4PO4·6H2O沉澱.實驗結果表明氨氮去除率〉99%,出水氨氯濃度〈60mg/L,總磷1mg/L左右,為後續深度處理創造了條件.

4. 直接把硫酸鋁撒入污水中能把水變清嗎

硫酸鋁抄凈水的原理是鹽類的水解。
硫酸鋁溶於水後電離出的鋁離子會發生水解生成氫氧化鋁膠體,而氫氧化鋁膠體具有吸附性,可以吸附雜質使之沉降,從而達到凈水的目的。
用法:直接撒入水中,攪拌後靜置即可。處理後上層溶液變清。
注意:僅僅使用硫酸鋁進行污水處理只是初級的處理,得到的水雖然會清,但水質仍然需要進一步處理才能達標。

5. 污水中的氨氮超標應該怎麼處理

污水中氨氮超標可採用多種處理方法。
一是物理化學法。吹脫法,將污水pH值調節至鹼性,通過曝氣使氨從液相轉為氣相逸出,降低氨氮含量;離子交換法,利用離子交換樹脂對氨氮的選擇性吸附,去除污水中的氨氮。
二是生物處理法。傳統活性污泥法,利用活性污泥中的微生物將氨氮轉化為亞硝酸鹽氮和硝酸鹽氮,進而通過反硝化作用轉化為氮氣逸出;生物膜法,使微生物附著在載體表面形成生物膜,對污水中的氨氮進行降解,處理效果穩定,抗沖擊能力強。
三是化學沉澱法。向污水中加入沉澱劑,如磷酸氫二鈉和硫酸鎂,與氨氮反應生成磷酸銨鎂沉澱,從而去除氨氮,操作簡單、反應速度快。可根據污水性質、處理要求和成本等因素,選擇合適方法處理氨氮超標問題。

6. 污水處理中PAC及PAM的投加量約是多少

具體情況試驗確定,大體如下
PAC 配置濃度10%--20% 投加量1——2ml/L
PAM 配製濃度1——2‰ 投加量1——2ml/L

7. 三氯異氰尿酸用於醫院污水處理的投放劑量是多少

檢測水的PH值,一般經過了下雨及使用了三氯異氰尿酸消毒劑,水的PH值肯定會偏低,因此只要使用回提高答PH值的調節劑(片鹼)就能提高水的PH值,加入量是按每1000立方水加入10kg可以提高1度來計算加入量。最好將PH值調節到7.5;
4、在晚上加入沉澱劑,加入量按每1000立方水5-8kg為標准,這樣就可以將水中已經被殺滅的細小藻類及其他懸浮物沉澱到池底
國標規定

閱讀全文

與造紙污水沉澱劑加入量相關的資料

熱點內容
輻射4凈水設備怎麼取水 瀏覽:413
正品殼牌環氧樹脂出售 瀏覽:437
火車廢水如何處理 瀏覽:220
艾力紳裝燃油濾芯多少錢 瀏覽:717
實驗室排水提升泵 瀏覽:472
污水管道內部的水怎麼抽 瀏覽:799
bmi樹脂和雙馬樹脂的區別 瀏覽:222
布克飲水機報故障是怎麼回事 瀏覽:371
鹼為什麼要用陽離子交換樹脂 瀏覽:746
公司污水管道整改計入什麼科目 瀏覽:594
上海進口煙塵凈化器值多少錢 瀏覽:120
福島核污水多少 瀏覽:582
什麼叫暢呼吸凈化器 瀏覽:185
純凈水管軟化怎麼處理 瀏覽:741
水蒸氣蒸餾加水量 瀏覽:246
重金屬污水處理設備多少錢 瀏覽:937
水處理有離子交換器 瀏覽:842
侯馬污水提升泵英文字母 瀏覽:871
即熱式飲水機鎖住了怎麼解開 瀏覽:941
噴漆設備空氣過濾乾燥機 瀏覽:763