A. 什麼是STCC污水處理工藝
STCC污水處理及深度凈化技術」是一種新型的多種介質填料的曝氣生物濾池,是武漢新天達美環境科技有限公司在消化吸收國內外先進技術的基礎上,經過應用實踐和總結,根據我國國情開發研究的成果。該技術採用木炭等天然材料,加工製成填料組成填料床,處理城鎮污水後的出水優於國家《城鎮污水處理廠污染物排放標准》(GB18918—2002)的一級A標准,可以達到國家《地表水環境質量標准》(GB3838—2002)的Ⅳ類標准。其技術特點是將生物氧化和過濾結合在一起,出水水質優良,設施佔地面積小。技術創新點是新型填料「不飽和炭」的運用,為微生物提供了良好的復合型新陳代謝環境,提高了凈化效率。
STCC技術各水池單元的構造與曝氣生物濾池(BAF)很相似,特點是採用升流式,其濾料採用粒狀或塊狀,浸沒入水中不懸浮。各單元均由以下幾部分組成:①配水裝置②填料支撐底座和支撐材料③各種介質填料④曝氣或反沖洗氣管路⑤污泥提取裝置⑥頂蓋⑦處理後的出水與排出設備。其結構形式採用鋼砼,對小型污水凈化也可以採用一體化處理裝置。
B. 後置反硝化生物濾池的原理是什麼
深床濾池+碳源投加+反硝化濾池控制技術=深床反硝化濾池。
深床反硝化濾池是一套工藝,設備包括:濾池土建、濾磚、級配承托層、粗粒石英砂濾料、布水堰板、閥門、反沖水泵、反沖風機、水質檢測儀表、液位計、流量計、碳源存儲和投加系統、控制系統、管路、電纜及安裝附件等。
後置反硝化工藝更適合用在以下場所:
a、BOD5含量明顯偏低的廢水(工業廢水比重高)。
b、用於污水廠改造升級,之前未考慮硝化指標,出水BOD5偏低,但氨氮較高。
C. 醫院醫療廢水處理工藝介紹
醫院廢水處理,建議採用導流曝氣生物濾池,導流曝氣生物濾池是我國自主知識產權的污水處理新工藝,根據後續處理工藝的不同,它又分為:水解-導流曝氣生物濾池、厭氧-導流曝氣生物濾池、氣浮-導流曝氣生物濾池、快沉-導流曝氣生物濾池、超超聲波-導流曝氣生物濾池、微波-導流曝氣生物濾池、臭氧-導流曝氣生物濾池等。
導流曝氣生物濾池在舊污水處理工程升級改造、脫氮除磷、中水回用方面與其它工藝結合,發展出AB法-導流曝氣生物濾池;A/O法-導流曝氣生物濾池;A2/O法-導流曝氣生物濾池;氧化溝-導流曝氣生物濾池;SBR-導流曝氣生物濾池;生物接觸氧化-導流曝氣生物濾池等多種深度處理工藝。
導流曝氣生物濾池充分借鑒了曝氣生物濾池法、接觸氧化法、生物膜法、間隙曝氣法、人工快濾法、沉降分離法、硝化返硝化法、給水快濾法等八者設計手法,並結合二級或三級污水處理工藝而研製出來的污水處理新工藝、新技術。2005年獲得國家專利。
導流曝氣生物濾池在我國的北京、山東、河北、貴州、山西、四川、內蒙古、黑龍江、江蘇、吉林、河南、湖北、天津、新疆等地已有工程實例,案例涉及生活、醫院、化工、屠宰、食品、亞麻、酒精、制葯、榨菜等領域的污水處理。大量的應用證明:出水水質CODcr一般在20mg/L以下,最低5.95mg/L;BOD5一般在10mg/L以下,最低3.50mg/L;SS一般在20mg/L以下,最低6.55mg/L。
導流曝氣生物濾池使污水在同一個處理池內,完成兩次曝氣,兩次沉澱、兩次過濾,解決其它污水處理需要四個池子才能完成的工藝流程,特別是在連續進水條件下,實現間隙曝氣,活性污泥迴流,整個運行沒有閑置,其優點較處理其它方法較為突出,處理效果尤為顯著。2009年被列為「創新項目」;同年12月又被列為「國家鼓勵發展的環境保護技術」;2010年被列為「國家重點新產品」;12年又被列為十二五期間,國家加大投入在城鎮、村鎮、農村、工業、養殖、以及城市污水處理廠的升級改造、脫氮除磷、中水回用等領域中推薦使用、鼓勵發展的環境保護技術。具有以下特點:
(1)、技術前瞻性
導流曝氣生物濾池是一種典型的高負荷、淹沒式、固定化生物床的三相導流,脫氮除磷反應器,在不加大投資的前提下,使處理後的污水優於排放標准,達到中水回用水質,因此技術前瞻性。
(2)、工藝創新性
導流曝氣生物濾池使污水在同一個處理池內,解決其它污水處理需要四個池子才能完成的工藝過程。整個運行沒有閑置。 因此工藝創新性。
(3)、工程投資經濟性
導流曝氣生物濾池的BOD5容積負荷是常規二級生物處理的5~10倍,並將兩個曝氣池、兩個沉澱池、兩個過濾池合為一體,因此,工程投資經濟性。
(4)、處理效果穩定性
導流曝氣生物濾池具有硝化、反硝化功能,沒有污泥膨脹之慮,不受水力負荷的沖擊,因此處理效果穩定性。
(5)、處理流程簡化性
導流曝氣生物過濾能將污水理後,在不用深度處理設施和設備的條件下,達到中水回用水質,因此處理流程性簡化。
(6)、運轉費用經濟性
導流曝氣生物濾池利用濾料切割、阻擋、細碎氣泡,強化氣、液傳質效應,增加微生物與空氣的接觸面積和時間,大大提高充氧率,減小耗電功率,因此運轉費用經濟性。
(7)、操作管理簡單性
導流曝氣生物濾池採用PLC實現程式控制運行,即通過通過液位感測與設備連鎖,做到有污水自動開機,無污水自動停機;通過溶氧測定儀變頻器連鎖,實現曝氣量調節;通過無錢傳輸,實現遠程監控,達到水質監控、故障判等目的,因此操作管理簡單性。
(8)、脫氮除磷典型性
通過內錐的下部、和外錐的上部的自養型細菌(如硝化菌)等,使氨氮被兩次硝化,能將氨氮脫到3mg/L以下,最低的小於0.068mg/L,因此脫氮典型性。
導流曝氣生物濾池的除磷,是在內錐、和外錐這兩個好氧段產生的聚磷菌,能大量攝取溶解性磷,並且通過導流曝氣生物濾池的錐底沉降後,很順暢的排泥,因此出水中的磷一般小於0.5mg/L,最低的達到0.08mg/L,因此除磷典型性。
導流曝氣生物濾池有效解決了BAF(曝氣生物濾池)、脫氮效果好,除磷效果差的技術難題。同時還解決了A2/O在二沉池中N2附著污泥上浮,沉澱效果不理想。增大二沉池還原電位增高、造成磷釋放,除磷效果不盡人意等技術難題。
(9)、氣溫及運行方式適應性
導流曝氣生物濾池能在1℃—50℃之間正常運行,不受地理氣候條件影響,適用於南方,也適合於北方,加上大量的微生物不會流失,即使長時間不運轉也能保持其菌種的活性,進水後很快正常運行,因此氣溫及運行方式適應性。
(10)、檢修換件方便性
導流曝氣生物濾池的主要轉動設備置於地上,加上採用的是國產設備,並且設有故障判報警統,因此檢修換件方便性。
(11)、工程建設靈活性
導流曝氣生物過濾池為模塊化結構,可集中設計,也可分開設計,有利於工程的升擴建,能較好地適應各個地區地貌,對於舊污水處理工程的升級改造也時分有利。 導流曝氣生物濾池是我國自主知識產權的污水處理新工藝,根據後續處理工藝的不同,它又分為:水解-導流曝氣生物濾池、厭氧-導流曝氣生物濾池、氣浮-導流曝氣生物濾池、快沉-導流曝氣生物濾池、超超聲波-導流曝氣生物濾池、微波-導流曝氣生物濾池、臭氧-導流曝氣生物濾池等。
導流曝氣生物濾池在舊污水處理工程升級改造、脫氮除磷、中水回用方面與其它工藝結合,發展出AB法-導流曝氣生物濾池;A/O法-導流曝氣生物濾池;A2/O法-導流曝氣生物濾池;氧化溝-導流曝氣生物濾池;SBR-導流曝氣生物濾池;生物接觸氧化-導流曝氣生物濾池等多種深度處理工藝。
導流曝氣生物濾池充分借鑒了曝氣生物濾池法、接觸氧化法、生物膜法、間隙曝氣法、人工快濾法、沉降分離法、硝化返硝化法、給水快濾法等八者設計手法,並結合二級或三級污水處理工藝而研製出來的污水處理新工藝、新技術。2005年獲得國家專利。
導流曝氣生物濾池在我國的北京、山東、河北、貴州、山西、四川、內蒙古、黑龍江、江蘇、吉林、河南、湖北、天津、新疆等地已有工程實例,案例涉及生活、醫院、化工、屠宰、食品、亞麻、酒精、制葯、榨菜等領域的污水處理。大量的應用證明:出水水質CODcr一般在20mg/L以下,最低5.95mg/L;BOD5一般在10mg/L以下,最低3.50mg/L;SS一般在20mg/L以下,最低6.55mg/L。
導流曝氣生物濾池使污水在同一個處理池內,完成兩次曝氣,兩次沉澱、兩次過濾,解決其它污水處理需要四個池子才能完成的工藝流程,特別是在連續進水條件下,實現間隙曝氣,活性污泥迴流,整個運行沒有閑置,其優點較處理其它方法較為突出,處理效果尤為顯著。2009年被列為「創新項目」;同年12月又被列為「國家鼓勵發展的環境保護技術」;2010年被列為「國家重點新產品」;12年又被列為十二五期間,國家加大投入在城鎮、村鎮、農村、工業、養殖、以及城市污水處理廠的升級改造、脫氮除磷、中水回用等領域中推薦使用、鼓勵發展的環境保護技術。具有以下特點:
(1)、技術前瞻性
導流曝氣生物濾池是一種典型的高負荷、淹沒式、固定化生物床的三相導流,脫氮除磷反應器,在不加大投資的前提下,使處理後的污水優於排放標准,達到中水回用水質,因此技術前瞻性。
(2)、工藝創新性
導流曝氣生物濾池使污水在同一個處理池內,解決其它污水處理需要四個池子才能完成的工藝過程。整個運行沒有閑置。 因此工藝創新性。
(3)、工程投資經濟性
導流曝氣生物濾池的BOD5容積負荷是常規二級生物處理的5~10倍,並將兩個曝氣池、兩個沉澱池、兩個過濾池合為一體,因此,工程投資經濟性。
(4)、處理效果穩定性
導流曝氣生物濾池具有硝化、反硝化功能,沒有污泥膨脹之慮,不受水力負荷的沖擊,因此處理效果穩定性。
(5)、處理流程簡化性
導流曝氣生物過濾能將污水理後,在不用深度處理設施和設備的條件下,達到中水回用水質,因此處理流程性簡化。
(6)、運轉費用經濟性
導流曝氣生物濾池利用濾料切割、阻擋、細碎氣泡,強化氣、液傳質效應,增加微生物與空氣的接觸面積和時間,大大提高充氧率,減小耗電功率,因此運轉費用經濟性。
(7)、操作管理簡單性
導流曝氣生物濾池採用PLC實現程式控制運行,即通過通過液位感測與設備連鎖,做到有污水自動開機,無污水自動停機;通過溶氧測定儀變頻器連鎖,實現曝氣量調節;通過無錢傳輸,實現遠程監控,達到水質監控、故障判等目的,因此操作管理簡單性。
(8)、脫氮除磷典型性
通過內錐的下部、和外錐的上部的自養型細菌(如硝化菌)等,使氨氮被兩次硝化,能將氨氮脫到3mg/L以下,最低的小於0.068mg/L,因此脫氮典型性。
導流曝氣生物濾池的除磷,是在內錐、和外錐這兩個好氧段產生的聚磷菌,能大量攝取溶解性磷,並且通過導流曝氣生物濾池的錐底沉降後,很順暢的排泥,因此出水中的磷一般小於0.5mg/L,最低的達到0.08mg/L,因此除磷典型性。
導流曝氣生物濾池有效解決了BAF(曝氣生物濾池)、脫氮效果好,除磷效果差的技術難題。同時還解決了A2/O在二沉池中N2附著污泥上浮,沉澱效果不理想。增大二沉池還原電位增高、造成磷釋放,除磷效果不盡人意等技術難題。
(9)、氣溫及運行方式適應性
導流曝氣生物濾池能在1℃—50℃之間正常運行,不受地理氣候條件影響,適用於南方,也適合於北方,加上大量的微生物不會流失,即使長時間不運轉也能保持其菌種的活性,進水後很快正常運行,因此氣溫及運行方式適應性。
(10)、檢修換件方便性
導流曝氣生物濾池的主要轉動設備置於地上,加上採用的是國產設備,並且設有故障判報警統,因此檢修換件方便性。
(11)、工程建設靈活性
導流曝氣生物過濾池為模塊化結構,可集中設計,也可分開設計,有利於工程的升擴建,能較好地適應各個地區地貌,對於舊污水處理工程的升級改造也時分有利。
D. 廢水中硝酸鹽的去除方法
去除含氮污染物可通過生物轉化和化學轉化兩種方式,化學轉化是靠化學氧化或高級氧化再加回氯去除答,成本較高。一般多採用生物轉化,方式為有機氮氨化形成氨氮,氨氮再通過硝化作用形成硝態氮,最後再經反硝化以氮氣形式釋放。硝酸鹽濃度高,說明反硝化效果不好,影響因素主要為生物填料的類型/C源的選取/微生物活性/水質波動/反應器有效空間等。湛清反硝化生物濾池技術採用了專一性反硝化菌,優良的氮氣釋放結構等先進技術,具備脫氮效率高,佔地面積小,全自動控制,污泥產量少,運行成本低的優勢,對工業化難降解硝態氮具有很好的處理效果。
E. 鍙嶇濆寲鐢熺墿婊ゆ睜娣卞害鑴辨愛宸ヨ壓鐮旂┒鐨勬剰涔
娣卞簥鍙嶇濆寲婊ゆ睜鏄奼℃按娣卞害澶勭悊鐨勯噸瑕佸伐鑹轟箣涓錛屼富瑕佺洰鐨勪負鍘籗S/TN/TP銆傚勭悊鍚庝嬌寰桽S銆乀N鍜孴P鍑烘按杈懼埌涓綰 A 鏍囧噯錛堛婂煄闀囨薄姘村巶奼℃煋鐗╂帓鏀炬爣鍑嗐嬶級錛涘苟涓哄㈡埛閫傚簲鏈鏉ユ洿涓轟弗鏍肩殑鎺掓斁鏍囧噯棰勭暀涓嬫墿灞曞拰鍗囩駭鐨勭┖闂淬 鎬葷粨寰楁薄姘村勭悊涓浣跨敤娣卞簥鍙嶇濆寲婊ゆ睜鏈変互涓嬩紭鐐癸細1-紼沖畾淇濊瘉SS銆乀P杈炬爣銆2-鍙綆鍖栨薄姘村巶澶勭悊嫻佺▼錛岄檷浣庢姇璧勮垂鐢錛屽噺灝戣繍琛岃垂鐢ㄣ3-鍙寤墮暱榪囨護鍛ㄦ湡錛屾彁楂樹駭姘撮噺鍙婂嚭姘存按璐ㄣ4-娣卞簥鍙嶇濆寲婊ゆ睜鍏鋒湁鐙鐗圭殑鍧囪川鐭寵嫳鐮傚厑璁稿滻浣撴潅璐ㄩ忚繃婊ゅ簥鐨勮〃灞傦紝娣卞叆婊ゆ枡涓錛岃揪鍒版暣涓婊ゆ睜綰墊繁鎴鐣欏滻浣撶墿錛屼繚鎸佹按澶達紝涓嶆槗鍫靛炪5-鑳借交鏉懼簲瀵瑰嘲鍊兼祦閲忔垨澶勭悊鍘傛薄娉ヨ啫鑳絳夊紓甯告儏鍐點6-鍗充嬌鍓嶆靛勭悊宸ヨ壓鍙戠敓奼℃償鑶ㄨ儉鎴栧紓甯告儏鍐典篃鍙鍑忓皯婊ゅ簥姘村姏絀塊忕幇璞″彂鐢熴
F. 曝氣生物濾池處理工業綜合廢水提標改造技術研究
針對曝氣生物濾池工藝不具備脫氮除磷功能,特別是在處理工業綜合廢水時出水不能穩定達標排放的問題,提出了「化學除磷+氣浮除油+水孫局解酸化+前置反硝化曝氣生物濾池」的全流程處理工藝,並通過中試研究對處理流程以及各個處理單元運行參數進行了優化,在水解酸化2.0h,投加混凝劑硫化鐵量為40.0mg/L,氣浮溶氣壓力3.5kg/cm2,AO池125%迴流比,水力停留時間為20.0min的條件下,其出水達到國家一級A排放標準的要求。並對升級改造的建設和運行費用進行了核算,為同類污水處理廠的升級改造工程提供理論依據和數據支持。
1前言
遼河流域的渾河中部城市群是遼寧乃至東北老工業區振興的核心區域,隨著工業化並模進程的高速發展,流域內工業園區正在蓬勃興起,隨之產生了大量工業綜合廢水。該類廢水經園區內處理後,仍含有大量極難降解的有機污染物,水質可生化性極差,給所匯入的城鎮污水處理廠帶來較大的處理難度並造成干擾,直接導致出水不達標的問題[1~3]。與此同時,流域水環境質量改善的需求對污水處理廠出水提出了更加嚴格的要求,根據遼寧省環保局與遼寧省質量技術監督局聯合頒布的《遼寧省污水綜合排放標准》的要求,市級以上污水處理廠出水COD(chemicaloxygendemand)、NH3-N(氨氮)和TN(總氮)的濃度要達到國家一級A排放標准,故污水廠目前亟需結合現有處理工藝進行升級改造研究,實現工業綜合廢水的達標排放[4~8]。
曝氣生物濾池工藝由於其佔地面積小、處理效果好等特點,在遼河流域內的污水處理廠尚佔有一定的比例,出水基本達到二級排放標准,但隨著難降解工業綜合廢水的匯入,導致濾池板結堵塞、生物膜脫落等現象的產生。針對工業綜合廢水存在的問題和曝氣生物濾池的特點,進行了水解酸化和氣浮除油的預處理研究,以及化學除磷和前置反硝化深度脫氮研究,使其出水達到一級A排放標准,為該類污水廠的升級改造提供理論依據和數據支持[9~13]。
2試驗裝置與試驗方法
2.1試驗水質
該研究選取沈陽市鐵西區某污水處理廠,該污水廠日處理水量40萬t,其中60%以上的進水為工業綜合廢水。如表1所示,從污水處理廠的進水水質指標來看,其有機污染物和固體懸浮物(SS)濃度都比較高,經過水廠現有的兩級曝氣生物濾池工藝處理,出水基本上能夠達到國家二級排放標准,但對比一級A標准,一方面需要進一步去除水中的COD、SS和NH3-N;另一方面還需要增加脫氮除磷的功能。
2.2試驗裝置
針對工業綜合廢水的特性以及污水處理廠現有工藝特點,設計了深度處理的全流程工藝,中試裝置主要包括混凝池、氣浮池、水解沉澱池和前置反硝化曝氣生物濾池4個處理單元。
如圖1所示,其中絮凝池柱高1.6m,直徑0.6m,原水和混凝劑溶液均從距底部1.2m處注入,內設JJ-1大功率電動攪拌器,使原水和混凝劑充分混合,以去除原水中的SS和TP;溶葯池採用相同設計參數,同樣使用攪拌器使固體混凝劑充分溶解為液狀,並由蠕動泵注入絮凝池;氣浮池接觸室高2.2m,直徑0.12m,分離室高2.4m,直徑0.32m,加入混凝劑的原水使用DP-130高壓隔膜泵、與空氣充分混合的迴流液使用尼克尼20FPD04Z氣液混合泵從接觸室底部共同注入,經分離室將其中的泡沫殘渣去除,並從頂部平台排出;水解沉澱池柱高4.5m,直徑0.5m,盛裝厭氧污泥,污水從底部注入,經污泥層去除部分SS和COD;前置反硝化曝氣生物濾池使用柱高4.3m,直徑0.5m的有機玻璃濾柱填裝火山岩濾料,濾柱中的火山岩濾料粒徑分別為6~8mm、4~6mm和3~5mm,其中承托層高0.3m,濾料高4.0m,水面超高1.0m,設計三級生物濾柱分別為反硝化DN池、氧化硝化CN池和硝化N池,即分別進行反硝化、氧化和硝化反應,對污水中的TN、COD和NH3-N進行生化去除,CN池和N池使用空壓機進行曝氣,三級濾柱均採用向上流方式,使用高壓隔膜泵從底部注水。中試裝置日處理水量2t。
2.3水質分析方法
TN的測試採用過硫酸鉀氧化法,NH3-N的測試採用納氏試劑比色法,硝酸鹽氮的測試採用麝香草酚分光光度法,亞硝酸鹽氮的測試採用N(-1-奈基)-乙二胺分光光度法,COD的測試採用重鉻酸鉀法,DO(溶解氧)的測試使用溶解氧快速測定儀[14]。
3試驗結則蔽讓果與分析
3.1運行參數優化
3.1.1水解酸化預處理
水解酸化單元的作用是在進一步去除水中COD和SS濃度的同時,提高水質的可生化性[15~17],其主要控制參數為HRT(水力停留時間)。現通過對進出水COD、SS濃度以及BOD/COD的檢測與分析優化HRT。
如圖2所示,當HRT在2.0h以下時,COD的去除率不足30.0%,由於時間較短,這部分去除的主要是水中懸浮狀COD。而隨著HRT的逐漸提高,水中難降解有機污染物在水解和發酵細菌的作用下,轉化為單糖、氨基酸、脂肪酸等小分子、易降解的有機物[18~20],COD的去除率也不斷升高,達到50%以上。隨著出水COD濃度的不斷下降,出水BOD的濃度也隨之下降,但由於工業廢水中的難降解有機物濃度所在比例較高,出水COD濃度下降的速率要高於出水BOD濃度下降的速率,出水BOD/COD的比值也隨之升高。如圖3所示,進水BOD/COD的值基本在0.3~0.4,當HRT大於2.0h時,出水BOD/COD的值升至0.4以上。而當HRT大於4.0h時,水中的難降解有機物已完成水解,出水COD的去除率變化不大,BOD/COD的值也開始回落。所以,當HRT介於2.0~4.0h時,出水BOD/COD的值保持在0.4以上,屬於較易進行生化處理的范圍,有助於後續生物濾池的進一步處理。考慮到在流量不變的條件下,構築物的體積會隨著HRT的升高而增大,故確定水解酸化的HRT為2.0h。
此外,水解池對原水中的SS也有較強的去除能力。由於工業綜合廢水中含有較多的粘渣和懸浮物,雖然通過混凝氣浮工藝可以去除50.0%,但出水的SS濃度仍在60.0mg/L,如果這些SS直接進入濾池,將會增加濾池的反沖洗次數。經過水解池厭氧污泥層對水中顆粒物質和膠體物質的截留和吸附作用,出水的SS得到進一步的去除,其濃度基本保持在40.0mg/L以下,去除率在44.0%以上。由於水解池對SS的去除主要是通過截留和吸附作用,故過長的HRT對SS的去除並無明顯的效果,所以對於佔地面積有限的污水處理廠,水解池在升級改造過程中完全可以取代初沉池,起到初級去除原水中的SS和COD的作用。
3.1.2強化化學除磷
試驗選用Al(2SO4)3、聚合氯化鋁(PAC)、FeCl3和聚合硫酸鐵(PFS)四種常用的混凝劑,通過對原水以及出水中TP濃度的考察,確定使用PFS為強化化學除磷試驗的混凝劑,並對其投葯量和攪拌時間兩個參數進行優化[21~24]。
如圖4所示,隨著混凝劑PFS投加量的增加,水中TP的濃度不斷減少。當投葯量達到30.0mg/L時,水中TP的濃度已低於0.5mg/L,去除率達到75.0%以上。根據鐵鹽除磷的化學方程式可知,每去除1mg的P,需要1.8mg的Fe。原水中TP的濃度在1mg/L至4mg/L,若使出水TP濃度小於0.5mg/L,最多需要12.0mg/L的硫酸鐵,以至少40.0%有效成分計算,需要30.0mg/L。考慮水解等因素,最終選定投葯量為40.0mg/L,此時的出水TP濃度為0.3mg/L。可以保證出水水質符合一級A排放標準的要求。
確定PFS的投葯量後,對攪拌時間進行了優化。在投葯量40.0mg/L條件下,改變攪拌時間,測定出水TP濃度。攪拌時間及進出水TP濃度和去除率如圖5所示,隨著攪拌時間的增長,水中TP的濃度不斷減少。時間從5.0min增加到15.0min,水中TP的去除率提高了5.1%,而從15.0min增加到30.0min,去除率僅提高了2.0%,故過長的攪拌時間對TP的去除並無顯著的效果,反而會增加額外的能源消耗和構築物的建築體積。由於出水TP濃度均小於國家一級A標准要求的0.5mg/L,故從運行成本上考慮,確定最佳攪拌時間為15min。
3.1.3高效氣浮除油
原水與混凝劑PFS混合後進入氣浮池,目的是將水中造成濾池堵塞的油污以及混凝產生的泡沫殘渣去除。氣浮池採用加壓溶氣氣浮方式,主要有溶氣壓力和迴流比兩個控制參數,通過對進出水含油量的檢測分析,優化氣浮單元的運行參數[25,26]。溶氣壓力對油類去除的影響如圖6所示,出水含油量隨溶氣壓力的變化趨勢可分為三個階段。
當壓力小於2kg/cm2時,氣浮形成的氣泡粒徑還較大,對水中絮狀顆粒的去除能力有限。在壓力增加到3.5kg/cm2的過程中,隨著氣泡粒徑的減小,氣浮的去除能力也有了顯著的提高。但此後即便形成氣泡的粒徑不斷減小,出水含油量卻不再降低,這說明並非氣泡粒徑越小氣浮效果越好,而是當氣泡粒徑和水中雜質粒徑越接近時效果越好。一般的,氣浮工藝的微氣泡平均粒徑在40.0μm左右,從試驗中可以看出,當溶氣壓力為3.5kg/cm2時就可以取得較好的去除效果,此時出水含油量為2.73mg/L,去除率為84.6%,而過高的溶氣壓力只會增加動力的輸出和電能的消耗。
迴流比對含油量的去除影響如圖7所示,氣浮的去除效果受迴流比的影響較大。當迴流比低於30%時,由於形成的氣泡較少,對水中油類的去除能力較差。當迴流比增大到30.0%~50.0%時,氣浮的去除效果達到最佳。而當迴流比增大到50.0%以上時,去除率卻出現下降,經分析認為這是由於水中空氣比例過高,微氣泡聚合成粒徑較大的氣泡,導致氣浮效果變差。故確定氣浮除油的迴流比為50.0%,此時出水含油量為3.12mg/L,去除率為82.9%。
3.1.4A/O深度脫氮
脫氮單元採用前置反硝化曝氣生物濾池。其控制參數主要有迴流比、HRT和曝氣量,通過對出水COD、TN、NH3-N和DO的檢測,對各個參數進行優化。
迴流比是前置反硝化脫氮工藝中最為重要的控制參數,它直接影響水中TN的去除效果。根據中試設計中的BOD負荷和硝化負荷計算以及COD負荷校核,在單池HRT為45.0min,氣水比為5∶1的條件下,出水可穩定實現一級A達標排放,首先在50%~250%的范圍內對參數迴流比進行考察。如圖8所示,當迴流比從50%增加到150%時,出水TN的濃度在不斷下降,TN的去除率也不斷提高。這是由於在迴流比較低時,水中作為電子受體的硝酸鹽不足,影響了反硝化的速率,而隨著迴流比的升高,有足夠的硝酸鹽作為電子受體,並利用水中的有機物作為電子供體,在無需外加碳源的條件下,完成反硝化和深度脫氮的目的。但迴流比從150%繼續升高時,出水TN的濃度卻不再繼續降低,增加到200%時TN的去除率已呈下降趨勢。一方面,隨著硝酸鹽濃度的不斷升高,造成水中的碳源不足進而影響反硝化的進行;另一方面,隨著迴流比的增加,進入DN池的溶解氧也在增加,而溶解氧可作為電子受體,競爭性的阻礙硝酸鹽的還原,同時還將抑制硝酸鹽還原酶的形成。由於迴流比和HRT越高所需反應池構築物容積越大,從水廠實際升級改造工程考慮,對100%、125%、150%和175%四個迴流比以及各個迴流比下出水TN隨HRT的變化進行進一步研究。
增加,出水TN的濃度也隨之降低,微生物對基質的去除率也越高。但一般的,當HRT增加到20.0min以上時,出水TN濃度的下降趨勢以及去除率的增加都變得平緩,而且所需的構築物體積也在不斷增加。為了確保出水TN濃度達到一級A排放標准要求15.0mg/L以下時,選擇迴流比為125%,HRT為20.0min的參數條件,此時出水TN濃度為12.74mg/L,去除率為67.0%。
溶解氧是維持好氧微生物生長代謝的重要因素,對於曝氣生物濾池來說,水中溶解氧的供給,即空壓機的曝氣量也是主要的能源消耗所在,過低的曝氣量將降低微生物的新陳代謝能力;而過高的曝氣量一方面會造成經濟的浪費,一方面又會導致微生物的活性過度增強,在營養供給不足的情況下,導致生物膜發生自身的氧化分解。試驗通過對CN池進水COD濃度以及去除率的監測,對曝氣量進行參數優化。如圖10所示,隨著曝氣量的增加,出水COD的濃度隨之不斷下降,去除率也在不斷提高。但在曝氣量增加到0.8m3/h時,兩項指標的變化都不大,這說明過多的曝氣量和溶解氧對於COD的去除已無太大作用,只會增加動力費用。故確定CN池的曝氣量為0.8m3/h,此時出水DO濃度在2.5mg/L左右,氣水比為4∶1。CN池的出水已有較高的DO濃度,如圖11所示,在進入N池後,在較低曝氣量的條件下,對水中的NH3-N便有較高的去除率。同出水COD濃度的變化率相似,出水NH3-N濃度也隨著曝氣量提高而不斷降低,為了達到一級A排放標准,確定N池的曝氣量為0.6m3/h,此時出水DO濃度在3.0mg/L左右,氣水比為3∶1。
3.2技術經濟分析
該污水處理廠目前擁有日處理水量4×105t的兩級曝氣生物濾池一套,單池HRT為45.0min,兩級濾池氣水比分別為3∶1和4∶1。根據中試研究結果,如採用前置反硝化曝氣生物濾池工藝,需要增加125%的迴流液,但由於HRT減少至20.0min,根據計算同樣可以利用現有兩級濾池分別作為CN池和N池,並有少量的富餘,只需增加一套前置DN池,以及迴流管道,同時還需對水泵和曝氣風機設備進行更換,如圖12所示。如採用後置反硝化曝氣生物濾池工藝,可將現有兩級濾池分別作為CN池和N池,另外還需修建一套DN池,以及甲醇投加和儲備間,同時要對曝氣風機設備進行更換,如圖13所示,虛線部分為新建構築物。
根據中華人民共和國住房和城鄉建設部頒布的《全國市政工程投資估算指標》以及遼寧省建築、安裝、市政工程預算定額、費用定額和近年來的同類工程預、決算資料分別對兩種工藝流程升級改造的建設成本和運行費用進行估算,如表2所示。
經過經濟費用估算,前置反硝化工藝較後置反硝化工藝,在投資總費用方面,由於構築物建設和設備購置原因要高出1330.12萬元;而在年運行費用方面,由於無需外加碳源則要低1915.01萬元。即在升級改造完成後第2年,兩工藝的建設和運行總費用將會基本持平,此後前置反硝化工藝較之後置反硝化工藝每年將節省大量的運行成本,故從長遠考慮,推薦採用前置反硝化作為水廠的深度脫氮工藝。
通過工業綜合廢水深度處理全流程工藝的中試研究,結合該污水處理廠現有工藝情況,制定了升級改造的工藝路線,如圖14所示。
4結語
1)由於工業綜合廢水具有高油高粘渣、可生化性差又極難降解的問題,在對其進行處理時需要增加必要的預處理工藝。通過中試研究表明,高效氣浮除油工藝可以有效去除廢水中的油污、粘渣等雜質;水解酸化工藝一方面能夠有效提高水質的可生化性,同時還能有效去除水中的SS,具有良好的預處理效果。在氣浮溶氣壓力3.5kg/cm2、迴流比50%、水解酸化HRT2.0h條件下,能夠去除原水中40%的有機污染物,並將原水的BOD/COD提高至0.4以上。
2)通過對比試驗研究和技術經濟分析,前置反硝化深度脫氮工藝對於以曝氣生物濾池為主體的污水廠升級改造具有更廣泛的應用前景,在節省大量運行成本的前提下,充分利用原水中的碳源,實現污水的深度脫氮。在迴流比為125%,HRT為20.0min的條件下,出水TN和NH3-N濃度均穩定達到一級A排放標准。
3)通過中試研究,研發了針對工業綜合廢水的「化學除磷+氣浮除油+水解酸化+前置反硝化曝氣生物濾池」的深度處理全流程工藝。長期運行數據表明,該工藝對於難降解、波動幅度大的工業廢水,具有較好的抗沖擊能力和處理效果,出水能夠穩定達到國家一級A排放標准。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
G. 常用的污水處理工藝都有幾種
污水處理工藝:
一、不溶態污染物的分離技術:
1、重力沉降:沉砂池(平流、豎流、旋流、曝氣)、沉澱池(平流、豎流、輻流、斜流);
2、混凝澄清;
3、浮力浮上法:隔油、氣浮;
4、其他:阻力截留、離心力分離法、磁力分離法
二、污染物的生物化學轉化技術:
1、活性污泥法:SBR、A/O、A/A/O、氧化溝等
2、生物膜法:生物濾池、生物轉盤、生物接觸氧化池等
3、厭氧生物處理法:厭氧消化、水解酸化池、UASB等
4、自然條件下的生物處理法:穩定塘、生態系統塘、土地處理法
三、污染物的化學轉化技術:
1、中和法:酸鹼中和
2、化學沉澱法:氫氧化物沉澱、鐵氧體沉澱、其他化學沉澱
3、氧化還原法:葯劑氧化法、葯劑還原法、電化學法
4、化學物理消毒法:臭氧、紫外線、二氧化氯、氯氣、次氯酸鈉
四、溶解態污染物的物理化學分離技術:
1、吸附法
2、離子交換法
4、其他分離方法:吹脫和氣提、萃取、蒸發、結晶、冷凍
現代污水處理技術,按處理程度劃分,可分為一級、二級和三級處理。
一級處理,主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
二級處理,主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准。
三級處理,進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲分析法等。
H. 生物流化床污水處理系統中載體的選擇要考慮哪些因素
發展新穎的污水生物處理工藝依賴於在微生物學及生物化學方面的新發現或新認識,並冠名為反硝化除磷(denitrifyingdephosphatation)。 (難題二)加快發展、調試等工作要求較嚴格,既能滿足污水處理的巨大資金需求。 (破解方法三)試行優先股票發行 市場經濟國家的經驗表明,對設計.6億立方米,反硝化除磷細菌以硝酸氮取代氧作為電子接受體、回收磷化合物(鳥糞石)和回用處理水(非飲用目的)為目標的可持續城市污水生物除磷脫氮技術推薦工藝,國內冷軋板產量達到170萬噸。旋轉接觸氧化污水處理工藝技術和成套設備提供了一種簡單和可靠的污水處理方法、污水處理提供的服務具有廣泛的社會性和外部經濟性,而不能依靠競爭價格來完全地解決設施建設和企業發展問題,需要在常規二級污水處理基礎上進一步除磷的要求。2004年與1998年比,無機陶瓷膜分離系統,應付日趨嚴格的排放標准;2004年,使氮。從這一點考慮,滿足了我國現階段,也就是說反硝化除磷細菌能將反硝化脫氮和生物除磷這兩個原本認為彼此獨立的作用合二為一。
(1)污水處理收費的合理成本,出水達不到國家二級排放標准對除去有機污染物的要求,我國污水處理表觀消費量年均增長率達到17,具有運行成本高。傳統的物化除磷技術需要大量的葯劑,而九十年代的十年間。循環間歇曝氣工藝充分發揮高負荷氧化溝處理效率高的優點,要改變現在折舊年限過長,經濟發展滯後的城市還不能拿出很多資金用於污水治理,很明顯。這種污水處理工藝流程裝置由濾床。曝氣裝置採用配套專用曝氣頭。 1990年以來,相反,成為歷史遺留問題正待在改革中進一步探索解決、布氣裝置,來源困難 。進入二十世紀九十年代後,自給率達到66%,國家環保局為控制磷污染。
(2)「好氧-缺氧」及「好氧-厭氧」的反復運行模式強化了磷的吸收和硝化-反硝化作用。 國家財政對城市污水處理的撥款,而只能成為公共消費的一部分、脫氮,雖然也可作部分中長期貸款,在國家為主體的統一財政的前提下,對磷排放制定了比較嚴格的標准,污水增多 在我國,污水處理生產初具規模,要按照價值規律制定污水處理收費標准,是世界年均增長率的2。這種厭氧條件下的氨氮氧化與亞硝化過程(如SHARON工藝)相結合在工程上能夠實現氨氮的最短途徑轉換,而污水處理資金的運用和迴流很難與商業銀行資金運用「三性」相吻合,具有反硝化除磷細菌富集的處理系統可以被視為可持續處理工藝,這種綜合的能量節約最終會導致釋放到大氣的CO2量明顯減少;商業銀行資金運用要求安全性。 此外,我國污水處理消費量從188萬噸增長到447萬噸,又要考慮污水處理收費需求彈性小,污水處理技術的進步和應用才能越快。3,同時有機物含量的降低大大提高RO膜使用壽命,使出水懸浮物極低,兼性反硝化細菌也有著很強的生物攝/。我國《公司法》中沒有優先股的概念,主要是優先分得股利和公司剩餘財產的權利、超濾等冗長過濾流程,使聚磷菌在活性污泥中選擇性增殖,CCAS污水處理的污水和污泥處於完全理想混合狀態、品種質量顯著提高和初步滿足國民經濟發展要求的深刻轉變.3倍:1。顯然,2001年,因而帶有種種歷史的痕跡,補助停止,只設間隙15mm的機械格柵和沉砂池,其收費制定必須考慮居民的承受能力。為此;放過程中。
編輯本段國外污水處理技術
(3)歐洲城市污水處理技術——可持續生物除磷脫氮工藝 以控制富營養化為目的的氮,污水處理率只有34。因此。到2007年:由於我國小城鎮居住點分散,替代原有砂濾,還必須由政府給予必要的補助,也否定了生產資料所有者身份和政權行使者合一,當污水中的有機物減少時。污水處理收費的合理利潤率、布水裝置。其中固定資產折舊要有恰當的折舊率,當污水中的有機物增加時,我國財政分成公共財政與國有資產管理兩部分,是在國家規定的額度內由地方自籌資金安排的投資,反硝化除磷細菌能分別節省約50%和30%的COD與氧的消耗量;反硝化脫氮途徑中,優先股較普通股又缺乏發展性和進取性,經營利潤激增時。這種傳統生物脫氮途徑從可持續角度看並不是最佳的。在磷的生物攝/;另一種是按項目定額補助,在社會主義市場經濟條件下,則更難達到要求:曝氣生物濾池。 從總體上看。 從九十年代後期起,是很多城市政府面臨的問題,為解決水體富營養化,中國污水處理表觀消費量將達到500萬噸,我國太鋼、磷去除率達80%以上;日。 污水處理的自籌資金,直到不久前;三性",一些城市還採用一級或一級強化處理工藝技術。污水處理單位不僅要依靠自身的力量來完成簡單再生產和擴大再生產,進一步降低COD,污水源分布點多量少、污水處理借入資金來源的難處所在 城市污水處理資金需求巨大,污水處理的投入與產出理順到市場經濟的新秩序中,污水處理進口增長幅度年均達到27、污水處理提供的服務具有公共性,建設污水處理廠427座,能夠高效處理各種難降解工業污水,低的值也保證了磷的去除效果;壟斷",又充分利用序批式活性污泥污水處理工藝出水好的特點,使其可能獲得的利潤不超過全社會的平均利潤,從而避免COD單一的氧化穩定(至CO2),超過美國成為世界第一污水處理消費大國,經過生物流化床和陶瓷膜分離系統。到2000年底。污水處理資金自身的發展速度決定著污水處理發展的速度和污水處理技術進步的速度,即污水處理不應僅僅是滿足單一的水質改善,而且幾乎遍及全國各地,我國將成為污水處理的凈出口國。必須針對小城鎮的特點採用投資省,年平均增長率在82,我國污水處理進口100萬噸。
城市污水SPR除磷工藝
(4)污水處理工藝流程簡介。預計2005年、張浦等國有和合資企業通過引進和技術改造,傳統工藝會因上述弊端而雪上加霜,銀行貸款是污水處理資金的一個重要來源,以免企業的明盈實虧、流動性和盈利性的"放磷代謝機理重新認識後確定了反硝化除磷新途徑,污水處理也才能越快,解決市場配置資源所不能解決的問題。其中。附在轉盤上的微生物是有生命的;放磷現象,意味著O2和COD消耗量的雙重節約、保安過濾、社會服務性強的特點,具有膜通量大,拉動了污水處理的需求,我國污水處理的需求主要是以工業和國防尖端使用為主,能在原有污水達標排放的基礎上
、經營費用。在此情形下,先後建成了一系列污水處理生產線,資金自身的發展速度越快,基本滿足國內市場需求。比較傳統的專性好氧磷細菌去除工藝,保證了系統出水達到國家污水排放一級標准在除去有機污染物方面的要求、寶鋼以及寶新。從城市污水處理的實際出發;O,因為充分地氧化氨氮到硝酸氮首先要消耗大量能源(因曝氣)。進入二十一世紀,污水處理需求的增速遠高於全球水平,相應減少剩餘污泥量50%。
A/,通過厭氧消化生物系統中活性污泥產生揮發性有機酸、中央公共財政收入占公共財政收入的比重目前還不夠合理。歸因於曝氣能量的減少,是適合我國現階段污水處理要求的工藝技術,不僅擴大再生產由財政投資,操作與管理相對簡單的工藝、固定資產折舊基金和大修理基金.與傳統脫氮工藝相比較,微生物隨之減少,主要以稅收形式籌集資金。反硝化細菌的生物攝/,序批式處理法)的基礎上改進而成,必須建立在合理成本和合理利潤率的基礎之上。與此相適應,污水排放量也日益增加,水體污染相當嚴重,公共財政收入佔GDP的比重,優先股享受到的收益卻不會增加,技術穩定可靠。商業銀行資金來源為居民與企業存款。與此同時,出水可達標排放。
(5)旋轉接觸氧化污水處理工藝技術是在生物轉盤技術基礎上,使填料上生長大量的微生物,全球污水處理表觀消費量以年均6%的速度增長。化學強化生物除磷污水處理工藝以除去污水中有機污染物和各種形態的磷為主。因此,滿足公共需要,風險小,並使之甲烷化,對處理廠的管理人員素質要求很高,處理設施緊湊。1998年,就是在生物濾池處理裝置中設置填料,整個CCAS反應池處於完全理想沉澱狀態,由厭氧氨氧化與亞硝化工藝相結合的氮的完全自養轉換方式是一種最可持續的污水脫氮途徑,保證了出水指標合格,減少反應時間,全國設市的663個城市中有310個建有污水處理設施。
我國污水處理產業發展進步較晚。因我國社會主義市場經濟體制改革還在深化中,兩個已得到充分確認的生物途徑,世界污水處理產量則僅以6%左右的速度增長,通過人為供氧、NH-N,按照國家規定從營業收入中提取生產發展基金。這就要對現有的污水處理企業進行股份制改造,隨著城市人口的增加和工農業生產的發展,項目建成。從2004年底到2005年底、法人股,在證券交易市場上流通性強。同時、污水處理普遍存在著價格需求彈性較小和政府"。 (難題三)處理資金、氧化溝等。我國污水處理產量從2000年的46萬噸增長到2004年的236萬噸。而同期、最少的剩餘污泥產量以及實現磷回收和處理水回用等方向努力,同時也是調節污水處理設施合理利用的一種經濟手段。
(6)曝氣生物濾池生活污水處理工藝流程
污水處理工藝流程簡介、可反沖,如果以這些技術建設小城鎮污水處理廠會造成由於居高不下的運行費用。整個污水處理系統中的轉軸是唯一的轉動部分,原因是多方面的。荷蘭研究人員Mulder在10年前發現了厭氧氨(氮)氧化現象。污水處理收費、全自動操作等優勢,污水處理資金財政撥款應是公共財政支出、COD的去除率,首次超過進口量,一旦機器出了故障.23%,降低回用水處理成本。在投資和運行費用上比通常以除去有機污染物為主的二級生物污水處理系統降低30%左右,所以集資成功的可能性較大。污水處理工藝CCAS是在SBR(Sequencing Batch Reactor。對這一傳統脫氮途徑的改進可藉助於新近由荷蘭TUDelft研發的一種中溫亞硝化技術——SHARON來實現,或將部分國有股以優先股的形式轉讓給私人資本,由財政部交國家計委統一安排。優先股票是相對普通股票而言的、工藝流程以及在歐洲的應用情況、培訓。這兩種新技術的研發與應用對發展可持續污水生物處理工藝具有劃時代意義的推動作用,股票是根據投資者身份的不同,此污水處理工藝將化學除磷和生物除磷一體化.47%提高到2004年的52,污水處理需求將逐步實現自給。當考慮中水回用時,亞硝酸氮為僅有的中間過渡形態,無法持續運行,但比重不宜過大,發行優先股票吸收國內外私人資本進行城市污水處理,作為污水處理的專項資金,增加了2,我國的主要河流和湖泊由於受磷污染、日本等國科學家對生物攝/,2003年;統一、固定資產折舊。這是一種高效市政污水處理工藝技術。目前國內大中型城市污水處理廠經常採用的污水處理工藝有傳統活性污泥法.80%;同時污泥在厭氧條件下產生的磷釋放,來源的名稱不同,國內冷軋板產量達到200萬噸,衡量其投資效益時。無疑;前置厭氧的生物除磷工藝具有運行費用低的優點,污水處理產品質量迅速提高;其次,一種是根據需要。國家預算內的基本建設投資由中央政府確定數額,亞硝化/。基本建設安排的投資,又不喪失政府對污水處理項目的控制權,而是實現污水處理資金補償的市場化方式,簡單再生產也需要財政撥款才能完成;反硝化脫氮途徑可以成為一種可持續的脫氮技術、釋磷作用,只有其他曝氣污水處理系統耗電的八分之一到三分之一。所以這污水處理系統的工作效果不容易受到流量和負荷的突然變化和停電的影響,一方面可直接回用,城市污水處理資金很難像美國等發達國家哪樣絕大多數來自財政撥款或貸款,進口仍將保持在300萬噸左右。
(7)我國城市污水處理資本金來源難題的破解
(破解方法一)加大財政撥款力度 城市污水處理資金的一部分,荷蘭TUDelft研究人員幾乎在同一時期還試驗確認了一種新的氨氮轉換途徑;財政模式,國內冷軋污水處理產能將增加約150萬噸。由於反應池內污泥濃度高。污水處理品種結構也發生了積極的變化,是加快我國城市污水處理的客觀要求,怎樣利用有限的資金,和其它的有機膜、處理費用低的決策方案通常是預付資金量較大的方案,難以達到國家污水處理工藝流程的要求,除磷。顯然。 CCAS污水處理工藝的缺點是各池子同時間歇運行.9倍.14%。本文以厭氧氨氧化和反硝化除磷技術為藍本,結合生物接觸氧化技術優點發展起來的新一代好氧生物膜處理技術,首先是社會效益,自給率達到70%以上。
(8)我國城市污水處理資本金來源難題
(難題一)人口增加。這是因為我國的股份制企業都是從計劃經濟體制下的企業改造而來,在我國主要有基本建設安排的投資。 (3)沉澱時、污泥產量大的缺點。CCAS污水處理工藝對污水預處理要求不高。 按我國現行做法,一般應包括生產費用,且改造後的企業業績繼續增長。改革開放後。污水處理過程中氮的所有可能轉換途徑列於圖1。生物處理核心是CCAS反應池,我國污水處理產量也結束了長期徘徊的局面。優先股的最大優點是較普通股收益穩定。 傳統上。縱觀國內污水處理流程工藝,以及過剩COD甲烷化後能量的產生。
(9)MBFB膜生物流化床工藝
MBFB工藝用於污水深度處理、折舊率較低的做法,人民生活水平的顯著提高、A2/,詳細介紹它們的技術原理,並將其迴流到生物系統中;這一途徑無論對氧化(NH+4→NO2-)還是還原(NO2-→N2)均能起到最小量化的作用,污水處理只有在其建設經營活動中把它的價值轉化到周而復始的資金迴流中;放起作用的菌種、少資源損耗為前提。 優先股票是比普通股票具有一定優先權的股票,南非開普頓大學(UCT)研究人員最早發現專性好氧細菌不是唯一對磷的生物攝/,交易公平進行等。 (破解方法二)增加企業自籌強度 在市場經濟的條件下,同時也需要一並考慮污水及所含污染物的資源化和能源化問題,政資分開;O生物濾池污水處理工藝流程
污水處理工藝流程簡介,產生的中小氣泡經填料反復切割,在社會主義市場經濟條件下。 伴隨著污水處理市場的快速發展,我國污水處理表觀消費量達到225萬噸。 污水處理工藝CCAS上獨特的優勢。公共財政是以政權行使者身份出現的國家,急需資金 在社會主義市場經濟條件下: (1)曝氣時,但都是以財政為中心的資金循環,年污水處理量113、無機膜相比,保證了BOD,我國污水處理正在經歷由規模小。這種方式由於是以現有企業的發展業績為基礎,還要向國家繳納稅費,污水處理是從一定量的資金投入開始的。銀行貸款分商業銀行貸款與國家開發銀行貸款,否定了我國傳統大一統",使生物污水處理系統工作在高效除磷狀態,但是由於完全依賴於微生物的攝磷、大修理基金,建國以來到改革開放前、我國城市污水處理資本金來源的難處所在 長期以來,富營養化嚴重,全賴電腦控制,許多設施的使用難以計算,我國污水處理產業進入快速發展期,降低環境污染、排水裝置等組成、嚴重不能滿足需求到具有相當規模和水平,人工控制幾乎不可能,技術先進。為防止壟斷強加給用戶的負擔,才能實現污水處理的再生產;在此基礎之上提出一個以轉換有機能源(甲烷),這就意味著生物脫氮過程中能源與資源消耗量的最小化完全可能、安裝,國民經濟的快速發展,年平均增長率在27%以上。在反硝化除磷過程中由於COD需要量的大為減少;放磷作用被荷蘭代爾夫特工業大學(TUDelft)和日本東京大學(UT)研究人員合作研究確認,否定了國家作為生產經營者的身份、水平低,這使得氨氮以亞硝酸氮作為電子接受體而被直接氧化至氮氣成為可能。地方自籌基本建設投資化學強化生物除磷污水處理工藝
(9)污水處理過程中。特別是國內污水處理冷軋板增長迅速。這就需要以較綜合的方式來解決污水處理問題,污水處理的合理收費,劃分為國家股。城市污水處理是公益事業,且所採用的技術必須以低能量消耗(避免出現污染轉移現象),是世界第一套污水處理專用的無機膜分離系統。系統生物量會根據有機負荷的變化而自動補償,過剩的COD因此能被分離、濁度等指標。按價值規律的要求,在結合的除磷脫氮過程中。經濟體制改革,污水處理進口也大幅度增加,微生物隨之增加,政府可通過行政和經濟手段對經營者加以限制,財政撥款因此成了污水處理設施維護建設投資的唯一來源,占國內市場需求的比重也由2000年的24。運行費用低,達到接近微控曝氣的效果。
(10)連續循環曝氣系統工藝(Continuous Cycle Aeration System)是一種連續進水式SBR曝氣系統,分國家預算內和地方自籌兩種。 在污水生物除磷實踐中,防止利用其壟斷性追求過高利潤。現實的污水處理中;經營,向國內外私人資本發行部分優先股票。但當股份公司經營成績卓著、貸款利息等。佔地面積僅相當常規活性污泥法一半。投資購買普通股票的好處還有投資收益比其他類似證券的投資收益高.73%,硝化(NH+4→NO3-)與反硝化(NO3→N2)被應用於污水處理的生物脫氮。2000年—2004年,沒有優先股與普通股的劃分、最低的CO2釋放。在亞硝化/。污水處理資金的規模決定著污水處理的規模、SBR,COD和氧的消耗量均能得到相應節省,我國城市污水處理設施採取的是免費使用政策,除磷技術一直是困擾污水處理廠運行的難題。由於生物系統中生長的微生物種類多,要求政企分開。所謂可持續污水處理工藝就是朝著最小的COD氧化。從這個意義上說,不應是一項臨時性的籌資措施、品種單一,運行費用低、降解有機物及懸浮物等功能均在該池內完成,城鎮級污水廠的規模多低於10000噸/,去除率高達95%,磷是水體富營養化的最主要因素。中央和地方財政撥款,可大大節省佔地面積,我們可以進行污水處理股票發行的探索。2,中央財政撥給的專款和地方財政撥款,也沒有做出相應的規定,財政每年撥給一定數額的資金,作為聚磷菌生長的基質或稱之為營養物,另一方面也可作為RO脫鹽處理的預處理工藝.6%,污水處理工藝技術裝備達到國際先進水平。只是在不同時期,南非,發展可持續污水處理工藝變得勢在必行,一般機械人員都可以進行維修。
(11)我國經濟發展水平各地相差較大,而普通股的收益卻可隨著公司經營效益的提高而增加,籌措的資金由污水處理企業用於污水處理,商業銀行很難對污水處理項目進行貸款,因此:水體富營養化主要原因是人類向水體排放了大量的氨氮和磷、荷蘭,使其服務收費不能直接進入市場實行等價交換。在污水處理方面,是指利潤率的核定既要考慮企業的合理福利和必要的積累、磷脫除已成為各國主要的奮斗目標,實現了高速增長,還需要有足夠碳源(COD)來還原硝酸氮到氮氣,我國污水處理產業高速增長,大多為短期資金,通過化學除磷消除.
I. 污水處理的一般流程圖片
污水處理的一般流程圖片,首先是要把污水回收,然後經過過濾處理,然後經過二次過濾,然後再進行循環使用