㈠ 污水處理系統流程有哪些
1、一級處理
主要去除污水中呈懸浮狀態的固體污染物質,物理處理法大部分只能完成一級處理的要求。經過一級處理的污水,BOD一般可去除30%左右,達不到排放標准。一級處理屬於二級處理的預處理。
2、二級處理
主要去除污水中呈膠體和溶解狀態的有機污染物質(BOD,COD物質),去除率可達90%以上,使有機污染物達到排放標准,懸浮物去除率達95%出水效果好。
3、三級處理
進一步處理難降解的有機物、氮和磷等能夠導致水體富營養化的可溶性無機物等。主要方法有生物脫氮除磷法,混凝沉澱法,砂濾法,活性炭吸附法,離子交換法和電滲析法等。
工業污水、農業污水以及醫療污水等,而生活污水就是日常生活產生的污水,是指各種形式的無機物和有機物的復雜混合物,包括:
①漂浮和懸浮的大小固體顆粒;
②膠狀和凝膠狀擴散物;
③純溶液。
按水污的質性來分,水的污染有兩類:一類是自然污染;另一類是人為污染,當前對水體危害較大的是人為污染。水污染可根據污染雜質的不同而主要分為化學性污染、物理性污染和生物性污染三大類。污染物主要有:
⑴未經處理而排放的工業廢水;
⑵未經處理而排放的生活污水;
⑶大量使用化肥、農葯、除草劑的農田污水;
⑷堆放在河邊的工業廢棄物和生活垃圾;
⑸水土流失;
⑹礦山污水。
㈡ 污水處理廠自動化系統的分析與應用
一、引言
水是人類生活和國民經濟發展的不可或缺的重要部分,隨著科技水平的飛速發展和人類生活水平的巨大提升,對於潔凈的優質的水源的需求也不斷急劇釋放。為建設可靠、穩定、先進、經濟以及可擴展的合理的水處理自動化系統成為工程界和城市水行業營運管理部門共同關心的問題。微電子、通信、計算機技術的發展大大提高了水處理控制系統的信息化和智能化程度,與3C技術相結合的PLC以其卓越的可靠性、抗干擾性以及靈活的控制方式成為水處理自動化系統的核心控制器,其與開放的網路通信系統一起,共同推動著水處理自動化系統的智能化程度的發展。
水處理行業主要分為凈水處理和污水處理兩大部分。凈水廠控制系統通常分為水廠調度系統、加葯間(加氯間)PLC控制站、濾站PLC控制站、送水泵房PLC控制站等。各個控制站相對獨立工作,通過有線網路進行通訊,將所有的數據信息送到水廠調度室進行處理,或將一部分數據通過調度系統以無線(或有線)通訊的方式送到城市的調度中心。對於污水處理來說,要根據污水水源地狀況來確定污水處理的工藝流程,由於污水處理工藝的不同而自控系統應用PLC的要求也有所不同。一般講,整個污水處理廠都有總控室和多個現場控制站,站與站之間通過控制器層網路或信息層網路相連,然後全部連接到總控室,總控室的多台計算機、工作站和圖形站都用信息層網路連接,這樣和現場控制站構成了集中管理,分散控制,高速數據交換的工廠級自動化網路[1].PLC自控系統是水處理廠的控制核心部分,對其合理的選型和設計,對污水廠能否高效、自動化的運行非常重要。然而,PLC網路又是其中的重中之重,網路的好壞直接影響到污水廠的正常運行。
二、系統構成
污水處理廠自控系統一般包括污水廠部分和廠外泵站部分。監控系統通訊網路和PLC是污水處理自動化系統的核心組成部分,它們的性能對污水處理自動化系統會起到決定性的作用[2].根據污水處理自動化本身的特點和監控需求選擇合適的PLC及通訊網路是保證污水處理自動化系統性能的重要因素。
通信網路:
在污水處理自動化系統的結構上,國內在管理體制上主要採用三級管理,即監控總中心、區域監控分中心和監控站。由於監控站不直接對污水處理廠的外場設備進行直接控制,因此工程界按照系統結構的劃分把監控系統劃分為信息層、控制層和設備層。
第一層為信息層,主要負責大量信息及不同廠家不同設備之間的信息傳輸,工業乙太網Ethernet為目前較常用的一種信息網路,世界各大PLC生產廠商均支持工業乙太網,並且他們在原有TCP/IP的基礎上,相繼開發出實時性更高的工業乙太網,如歐姆龍和羅克維爾支持的Ethernet/IP,施奈德支持的Modbus-TCP/IP以及西門子支持的ProfiNet等。由於Ethernet的信息量大,因此在污水處理廠自動化系統中乙太網主要用於各個控制分站與監控中心的數據傳輸,包括各種感測器數據等大量歷史數據信息。
第二層為控制層,主要採用現場匯流排組成隧道區域控制器網路,其特點是由於採用了標准匯流排組網,既能滿足實時通信的要求,又具有開放協議的標准介面,能在匯流排上方便的掛接各種外場設備,有利於監控系統的擴展。目前,現場匯流排有40多種,在污水處理廠自動化系統中應用的現場匯流排主要有ControllerLink、LonWorks、Inetrtbus、Profibus、Can和Modbus.他們的共同特點是高速、高可靠,適合PLC與計算機、PLC與PLC及其它設備之間的大量數據的高速通訊。為使系統的穩定可靠,控制層的網路結構多採用環網的方式組成,包括線纜型和光纖作為傳輸介質,具體組網將在後面作出實例說明。
第三層為設備層,這一層用於PLC與現場設備、遠程I/O端子及現場儀表之間的通訊,它們有DeviceNet、Modbus以及Profibus/DP等,其中DeviceNet已經成為工業界的標准匯流排而得到了廣泛的應用,而Profibus/DP雖然沒有成為標准,但是它的應該也相當廣泛。
值得指出的是,近來年乙太網的廣泛應用使得人們把目光投向了現場匯流排上來,工業乙太網是否最終將取代現場匯流排仍然是一個爭論的話題。然而,不論是Ethernet/IP還是Modbus-TCP/IP,乙太網在一些重要的性能指標上仍然無法具有現場匯流排的特點和優勢。從本質上來講,乙太網的載波幀聽沖突監測CSMA/CD的訪問方式,實時性並沒有現場匯流排採用的令牌匯流排和令牌環的訪問方式高,不論人們採用何種方式,如協議封裝、分時訪問控制等,都只能改善乙太網的實時性,起不到本質的改變。在當前技術還未完全成熟之前,現場匯流排應用於控制層,是一個積極和穩妥的選擇。隨著乙太網技術的不斷發展,今後其取代現場匯流排而用於控制層也是很有可能的。
監控分中心及上位監控軟體:
監控分中心一般將設置多台SCADA工作站(工控機)。分別用於水廠調度系統、加葯間(加氯間)、濾站、送水泵房等監控,完成污水廠內各種設備的狀態顯示、自動控制、半自動控制、列印報警、分析報表等工作。同時,監控分中心還將設置了多台伺服器,為其它計算機提供支援和與監控總中心進行通信。
PLC的選擇:
施奈德(Schneider)、西門子(Siemens)、歐姆龍(Omron)、羅克維爾(Rockwell)、通用電氣(GE)是全球五大PLC製造廠商和整體方案的提供者,他們的產品面向各自不同的領域,其中在污水處理自動化系統的應用方面,又以羅克維爾、歐姆龍和施奈德的應用最為廣泛。
污水處理自動控制系統對PLC的性能提出了更高的要求,作為污水處理自動控制系統的核心控制器,其必須具備以下幾大功能特點:首先本身必須穩定可靠,並具有預先處理數據和集中傳輸數據的能力,具有較高的故障保護能力;其次,控制分站本地控制器可以獨立承擔控制分區的基本控制任務,即使監控站或者監控中心因故障停止運行,相鄰區域的控制器也能交換數據信息;再次,當某控制站的控制量出現變化時,可按預定方案和程序採取相應的演算法,對相關區域的控制對象,比如泵或者加葯系統等做出相應的調整。因此,它必須至少有如下功能模塊,數據採集存儲處理功能(實現集中和獨立工作方式,尤其是在獨立控制時能與相鄰控制器實現數據交換);通信功能、容錯功能、自動診斷功能和本地操作功能(即能帶觸摸屏)。
必須綜合考慮整個監控系統的性能要求和自然條件以及運營周期對設備的要求進行選擇,尤其在極端氣候和惡劣環境狀況條件下或較大規模的污水處理廠,需要選擇性能更好的雙機熱備冗餘的PLC,如Schneider的2Quantom系列、Rockwell的2ControlLogix、Omron的CS1D系列、Siemens的S7-417系列;區別在於Omron的雙系統是在一個底板上實現,而Siemens等是兩個底板通過光纖連接,會在一定程度上佔用控制櫃的空間,但他們的配置都很靈活,可以任意實現雙CPU雙電源、雙CPU單電源、單CPU單電源多種冗餘結構。
在一般的環境狀態的時候或較小規模的污水處理廠,多採用標準的機型作為現場控制器,如Schneider的Quantom140系列、Rockwell的ControlLogix、Omron的CS1系列、Siemens的S7-400系列等;他們都支持工業乙太網和多種現場匯流排,控制方式採用遠程帶CPU的智能分布式結構,系統開放性和兼容性強,豐富的I/O及高功能模塊,完全滿足污水處理自動控制系統對信號處理的要求。
三、應用案例
下面以天津咸陽路污水處理廠為例[3],具體說明污水處理廠自動控制系統的組成,控制系統拓撲圖如圖一所示:
信息層:咸陽路污水處理系統因其分布面積較大,廠區內共有5個PLC分站:預處理系統分控主站PLC1、生物處理系統分控主站PLC2、污泥處理系統分控主站PLC3、出水及雨水系統分控主站PLC4和污泥消化系統PLC5,使用的CPU均為OMRON的CS1H-CPU66H.該功能層實現污水處理廠各單元過程所有過程參數、設備運行狀態及電氣參數的數據採集,單元過程及設備的控制,並通過OMRON網路模塊CS1W-ETN21,和中央控制室通過赫斯曼太網交換機,組成100M光纖以太環網,向監控層傳送數據和接受監控層控制指令。在中控室中,作為工業乙太網結點的系統數據伺服器、兩台工程師/操作員站計算機、列印機、UPS電源及監視屏等設備,其主要職能是進行系統中的信息交換與信息顯示及控制。該層通過上位監控軟體實現對主要工藝設備的控制和調度,對污水處理全過程中的工藝參數進行數據採集、監控、優化和調整,對主要工藝流程進行動態模擬和趨勢分析、實時數據處理和實時控制,在控制組態上實現各種常規與復雜的優化控制、專家控制、模糊控制等先進的智能控制。同時,功能強大與穩定的實時和歷史資料庫亦通過乙太網成為上下層間的信息通道。污水廠中控室控制站還通過RIAMBView和信息中心、便攜計算機及廠外泵站(咸陽路泵站、密雲路泵站)等處進行遠程通訊,RIAMBView具備遠程數據服務(最適合SCADA)功能,通過寬頻接收或發送相關數據,實現遠端對部分實時畫面、進程資料庫的訪問。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
㈢ 廢水排放量與用水量的關系(比例多少)
一、統計用水、排水等有關指標,必須首先對給水系統有個概略了解。在工業生產中按給水的路線和利用程度,分為直流、循環和循序三種給水系統。
1、直流給水系統指工業生產用水由就近水源取消,水經過一次使用後便以廢水形式全部或大部分排走。其生產用水量等於企業從地下水源和地面水源取用的新鮮水量。
2、循環給水系統指使用過後的水經適當處理重新回用,不再排走。在循環過程中所損耗的水量,須從水源取水加以補充。
3、循序給水系統是根據各車間對水質的要求,將水重復利用,將水源送來的水先供甲車間使用,甲車間使用後的水或直接送乙車間使用,或經適當處理(冷卻、沉澱等)後加壓送乙車間或丙車間使用,然後排放。這種系統也叫串級給水系統。
二、廢水排放量的計算有兩種:
1、使用各種流量計進行測量,如監測數據、各種流量計測得的數據和連續自動監控測得的數據等。
2、系數估演算法。從排污單位的新鮮用水量來估算其污水排放量。
(1)排污單位的新鮮水量沒有進入其產品,一般其污水排放量可以估算為新鮮水量的0.8―0.9倍。
(2)有相當部分變成產品(如啤酒、飲料行業),則其污水排放量應以新鮮水量減去轉成產品數量的0.8―0.9倍。
(3)部分行業水的重復利用率很高,如軋鋼、選礦等行業水的重復利用率都高達80%~90%,水經過多次使用,蒸發和流失都很大,這時用新鮮水量推算污水排放量時所用的系數就比較小,有時甚至會達到40%~50%。還可以利用產污系數進行測算。
㈣ 油氣田上,使用的污水緩沖罐的作用和原理是什麼
使用的污水緩沖罐的作用主要是增加停留時間,一個過程保護,必要時可以採取應急處理手段。
緩沖水箱在工程中應用非常廣泛,而且不同的場合有不同的名稱,比如中間存儲容器、滯留罐、平衡罐、儲液器、混合罐、中和容器等等。其實基於以上的說法,我們可以下一個通用的定義。緩沖罐就是這樣一種裝置,它能夠使得運行更平穩。它的介質可以是液體,也可是氣相或固相的物質。名義上,可以將它分為兩類:I)擾動衰減類;II)獨立運行類。本文介紹的應用在空調閉式水系統中冷凍水緩沖水箱,它的介質是水,屬於II 類。
㈤ 污水處理入門必看的幾個關鍵點
1COD、CODcr、BOD、BOD5差別
B/C比是BOD5比CODcr,B不是BOD。以實例來看,如好氧進水CODcr=1000mg/L,BOD5=400 mg/L,出水CODcr=100 mg/L,BOD5=20 mg/L。那麼CODcr共去除900 mg/L,BOD5共去除不到400 mg/L。900-380 mg/L的CODcr怎麼去除的?
1))BOD-BOD5那一部分被生化;
2)污泥吸附(低負荷下要忽略些) 這個BOD5還是BOD都很復雜,出口的一般不是進水中的那些,而是基質、菌類的相關產物;詳細的說比較復雜,理解一二就可以,而且最主要的是認定不可降解的不會發生變化,其餘的可能都是變的。不可生物降解的是沒有變化的,除去吸附等等之類的作用,無論是厭氧還是好氧SMP都是一樣的。
一般情況,污水處理的CODcr可以達標,BOD5是都達標的。
2COD檢測方法的差別
嚴格規范的蒸餾法和快速消解法,以前者為准。操作中為了簡便想採取後者怎麼辦?取同濃度范圍內的實測水樣做兩種方法的對比試驗,找到二者的近似關系。
偷懶法:同濃度范圍內實測水樣,蒸餾一小時和蒸餾兩小時,對比試驗,找關系。
3關於溶解氧
好氧池中的溶解氧是曝氣設備供氧與有機物或無機物被活性微生物氧化或自然氧化兩種過程達到平衡之後的結果。或者可以說成曝氣供氧,發生生化或化學反應和散失兩個過程的殘余。所以曝氣池,控制溶氧2.0mg/L,只要設計與實際不差太多,那麼OK。
但是如果沒有持續的供氧,比如曝氣調節池的出水不在有氧氣供入(跌水曝氣之類的忽略),而有機物含量有比較高,碰巧還遇上可以利用氧的大量微生物(比如UASB污泥中的兼性細菌或者A池中的好氧細菌),那麼殘留的那一個左右的DO顯然不是成百上千的COD的對手。
4關於厭氧
厭氧是什麼?是UASB?是A2/O一部分?是水解酸化?是消化池?其實厭氧是一種生化反應的條件,它不是厭氧工藝,是厭氧的工藝。為什麼談到這個問題,歸根是有眾多諸如:XX厭氧和XX厭氧有什麼差異,溶解氧應該控制多少的問題;在這之前則需要搞明白厭氧這個條件是針對誰的。厭氧反應,主體是有機物逐步轉化為甲烷和CO2的過程,注意這里的「逐步」。
再者,很多人又說了厭氧反應器就得與空氣隔絕,所以要進行封頂。對此,想說以下幾點:
說厭氧反應器,明顯沒搞懂厭氧的是什麼?厭氧的是反應器?是水?還是微生物?
與空氣隔絕,這個更可悲了,姑且不說他分不清水中的溶解氧和微生物環境的溶解氧,單是溶解氧與空氣中的氧就搞不清楚。我們不妨回顧一下曝氣設備的氧利用率,穿孔管3-5%,曝氣軟管8-12%,曝氣頭10-20%。如果空氣向水中溶氧那麼無敵,那麼我們對出售曝氣頭的該如何處置?
對於封頂並不反對,厭氧消化池和EGSB等厭氧反應器都是利用封頂去收集沼氣,(當然UASB和IC不是,靠三分)還可以減少臭味擴散。不過把封頂放在廣泛使用的UASB上並且以此來隔絕空氣,實在是有些搞笑。
下面再簡單科普下厭氧的工藝如何簡單識記:
A、厭氧接觸:消化池+厭氧沉澱池+厭氧污泥迴流系統,這個與好氧工藝中的接觸氧化沒有關系,莫聯想到填料上。
B、UASB:上流式厭氧污泥床反應器,污水從下而上穿過污泥床體,但是有很多UASB的布水器是位於池頂的,也不是UASB就沒有迴流。
C、UBF:就是UASB+AF,形象點說UASB上面再加上填料層。
D、EGSB:UASB拉高,做上迴流,上流速度比UASB高很多,要力圖控制污泥顆粒化。
E、IC:甭管有沒有外迴流(水泵迴流),有內迴流就行。
F、ABR:上下折流板。
有關厭氧產甲烷去除水中有機物的原理在這里也多說幾句。
先是「厭氧產甲烷」,厭氧過程,如果我們不談釋放磷,常見的是水中有機物厭氧發酵的過程。有機物好氧發酵的過程,大家都清楚是一個氧化還原反應,進入水中的氧氣作為氧化劑,氧化水中的有機污染物變成CO2和H2O,使得(還原性的)COD得以氧化去除。所以很多人理所應當的認為,厭氧是個還原反應嘍。
這就有必要讓抱有該觀點的朋友先回憶一下初中化學,氧化反應和還原反應,可以剝離開嗎?
顯然是不能的,厭氧也是,在進行到產甲烷之前的厭氧發酵過程,基本上是有機物自身相互的氧化和還原(這話說得並不嚴謹,但是方便理解),也就是說有機物本身是還原性的,它反應之後變成一部分還原性更強,一部分還原性相對弱一些的兩種有機物,而這總體上相抵消。所以如果厭氧發酵未到產甲烷地步,COD變化可以忽略不計(這就是水解酸化COD去除率低下的原因)。
當這個過程進行的非常徹底時,產物逐漸轉化為CO2和CH4,主要體現還原性也就是導致水中COD的甲烷因為溶解度低,脫離水相,這是產甲烷過程去除有機物COD的原因。
5
關於水解酸化
水解酸化的目的是改善生化性,為下一個生化處理單元服務,其評價指標有酸化度、pH、B/C、COD去除率等,其中COD去除率是裡面可靠性最差的。
對於在上一環節說到的「水解酸化COD去除率低下」,有水友可能要反駁說「我的水解酸化去除率不低下呢」;對此,澄清下這一水解酸化去除率是從哪裡來的。
1)水解酸化純粹的控制到產甲烷之前,是不可能的,也就是說,或多或少總有一點甲烷產生;而且厭氧過程產生一點氫氣也很正常,有聽說過產氫產乙酸過程吧。所以,水解酸化池表面浮起的一個個泡泡,也許就是你想找的原因之一。
2)細菌不管是什麼樣的,總有繁殖下一代的職責,水解酸化菌群也是,它們或多或少的總要利用有機物合成點細胞物質。
3)進水SS如果量很大,會被水解酸化污泥吸附相當量的一部分,這個對COD的影響不可忽略,有時甚至十分巨大。
6
工藝中的兩級與兩相
眾所周知,不同的水質決定不同的工藝。產甲烷是厭氧去除水中有機物的關鍵因素,兩級和兩相的差別也就在第一個厭氧反應器是否產甲烷上;如果第一個產甲烷,第二個有機負荷勢必要小很多,這是問題的關鍵。
一般來說,兩級厭氧適應的水質是較高濃度的廢水,它的生化性並不很差,第一級通過沉降和發酵產氣降低第二級的負荷。兩相厭氧,一是主要針對難生化降解廢水,靠第一相改善生化性,二是針對硫酸鹽廢水,靠第一相進行硫酸鹽還原,然後去除硫化物再進第二相產甲烷,三是針對易酸化廢水易波動廢水,放在前面徹底酸化掉以穩定pH。
如酒精項目常用兩級,那些幾萬以上的,如果生化性不差並且水量不小,個人建議也用兩級,但是控制其實並不簡單,尤其是第一級在高濃度、高VFA下運行。生化性較差用兩相的就很多了,其實生化性不差的也常常用兩相。
有的工藝是用水解酸化+氧化(處理COD較低的廢水),有的是UASB+氧化(一相厭氧,處理COD高的廢水),有的是水解酸化+UASB+氧化(就相當於兩相厭氧);對此分析如下:
1)水解+好氧工藝,處理的廢水濃度確實常見的要低一些,因為水解並不能提供較有力的COD消解能力,當然這個工藝相比較直接好氧而言,更多的可以用在進水COD1k-2k之間的項目,這種水質進厭氧節約的曝氣能耗和提升水用的動力能耗差不多,厭氧降解程度上優勢也不明顯,但是直接進好氧濃度又偏高。因此常搞出水解+好氧,利用水解過程微量講解和吸附去除COD來減少好氧的負擔。當然這是在不討論改善生化性方面的前提下。
2)假如水解酸化+UASB+氧化就相當於兩相厭氧,有文章說「厭氧發酵產生沼氣過程可分為水解階段、酸化階段、乙酸化階段和甲烷階段等四個階段。水解池(水解池進行的就是水解酸化反應吧)是把反應控制在第二階段完成之前,不進入第三階段。」
那麼水解酸化產生的應該是有機酸吧,那乙酸化階段在哪發生的?兩相厭氧的產酸相產的是什麼酸?它的乙酸化階段又是在哪發生的呢?
產乙酸這個詞和產乙酸階段是應該分開的,因為在產酸階段就會產生一部分乙酸了但並不一定作為過程的主體,這要看廢水的有機物組成。產乙酸階段,這裡麵包含了兩類反應,一是更長碳鏈的VFA以及乳酸、丙酮酸和醇類等分解產生乙酸,二是同型產乙酸菌,利用CO2和H2的無機組合進行產乙酸。兩相的水解酸化過程中產生的有機酸,有可能是甲酸、乙酸、丙酸、丁酸…以及乳酸中的任一種,也有可能是未完全降解的長鏈脂肪酸。
個人認為在實際工程中,兩相的分界線並不徹底分明,水解酸化相先後延伸至產乙酸甚至少量產甲烷都是經常遇見的。至於產甲烷相,它就沒有不含水解酸化這兩個過程的時候,產甲烷相四個過程都會存在,只不過前兩個過程被之前的相分擔了一部分。乙酸化發生在哪裡,這個過程應該大部分在後一相,兩相的定義並不是「水解酸化階段+乙酸化產甲烷階段」,只要在流程上將其主體分開即可叫做兩相,至於分界線模糊,沒有關系。
基於水解和酸化兩個過程無法分開的事實,三相取決於產乙酸和產甲烷是否可以分開。
對於三相分離器的工作原理大致可表述為:氣液固三相在氣體擾動和液體升流的作用下從下方進入三相分離器;污泥(固)撞擊在三相分離器上,上面吸附的沼氣氣泡釋放出來;沼氣氣體被三角形集氣罩收集;脫離氣體的泥水(固液相)穿過三相分離器集氣罩之間的縫隙,到達沉澱區;污泥(固)在沒有氣體擾動的條件下沉澱,落回三相分離器下方。核心是氣體被收集和污泥沉澱。