① 食品加工論文範文
食品加工質量安全管理工作是保障企業產品質量安全符合質量標準的關鍵、是維護企業市場信譽的關鍵,是企業在現代激烈市場競爭中贏得市場競爭力的關鍵。下面是我為大家推薦的食品加工論文,供大家參考。
食品加工論文 範文 一:食品工業泡沫分離技術的應用
泡沫分離又稱泡沫吸附分離技術,是以氣泡為介質,以各組分之間的表面活性差為依據,從而達到分離或濃縮目的的一種分離 方法 [1].20世紀初,泡沫分離技術最早應用於礦物浮選,後來應用於回收工業廢水中的表面活性劑.直到20世紀70年代,人們開始將泡沫分離技術應用於蛋白質與酶的分離提取[2-3].目前,在食品工業中,泡沫分離技術已經應用於蛋白質與酶、糖及皂苷類有效成分的分離提取.由於大部分食品料液都有起泡性,泡沫分離技術在食品工業中的應用將越來越廣泛.
1泡沫分離技術的原理及特點
1.1泡沫分離技術的原理
泡沫分離技術是依據表面吸附原理,基於液相中溶質或顆粒之間的表面活性差異性.表面活性強的物質先吸附於分散相與連續相的界面處,通過鼓泡形成泡沫層,使泡沫層與液相主體分離,表面活性物質集中在泡沫層內,從而達到濃縮溶質或凈化液相主體的目的.
1.2泡沫分離技術的特點
1.2.1優點
(1)與傳統分離稀濃度產品的方法相比,泡沫分離技術設備簡單、易於操作,更加適合於稀濃度產品的分離.(2)泡沫分離技術解析度高,對於組分之間表面活性差異大的物質,採用泡沫分離技術分離可以得到較高的富集比.(3)泡沫分離技術無需大量有機溶劑洗脫液和提取液,成本低、環境污染小,利於工業化生產.
1.2.2缺點
表面活性物質大多數是高分子化合物,消化量比較大,同時比較難回收.此外,溶液中的表面活性物質濃度不易控制,泡沫塔內的返混現象會影響到分離效果[4].
2泡沫分離技術在食品工業中的應用
2.1蛋白質的分離
在分離蛋白質的過程中,表面活性差異小的蛋白質,吸附效果受到氣-液界面吸附結構的影響,因此蛋白質表面活性的強度是考察泡沫分離效果的主要指標.譚相偉等[5]研究了牛血清蛋白與酪蛋白在氣-液界面的吸附,並發現酪蛋白對牛血清蛋白在氣-液界面處的吸附有顯著影響.此後,Hossain等[6]利用泡沫分離技術對β-乳球蛋白和牛血清蛋白進行分離富集,結果得到96%β-乳球蛋白和83%牛血清蛋白.Brown等[7]採用連續式泡沫分離技術從混合液中分離牛血清蛋白與酪蛋白,結果表明酪蛋白的回收率很高,而大部分的牛血清蛋白留在了溶液中.Saleh等[8]研究了利用泡沫分離法從乳鐵傳遞蛋白、牛血清蛋白和α-乳白蛋白3種蛋白混合液中分離出乳鐵傳遞蛋白,在牛血清蛋白和α-乳白蛋白的混合液中加入不同濃度的乳鐵傳遞蛋白,並不斷改變氣速,優化了最佳工藝條件.結果得出:在最佳工藝條明閉件下,87%的乳鐵傳遞蛋白留在溶液中,98%牛血清蛋白和91%α-乳白蛋白存在於泡沫夾帶液中.由此可見,利用泡沫分離法可以有效地從3種蛋白質激禪裂混合液中分離出乳鐵傳遞蛋白.Chen等[9]利用泡沫分離技術從牛奶中提取免疫球蛋白.考察了初始pH值、初始免疫球蛋白濃度、氮流量、柱的高度及發泡時間等因素對反應的影響,結果表明:採用泡沫分離方法可以有效地從牛奶中分離出免疫球蛋白.Liu等[10]從工業大豆廢水濃縮富集大豆蛋白,最佳工藝條件:溫度為50℃,pH值為5.0,空氣流量為100mL?min-1,裝載液體高度為400mm,得到大豆蛋白富集比為3.68.Li等[11]為了提高泡沫析水性,研發了一種新型的利用鐵絲網進行整裝填料的泡沫分離塔,利用鐵絲網整體填料塔泡沫分離法對牛血清蛋白進行分離.通過研究填料對氣泡大小、持液量、富集比和在不同條件下以牛血清蛋白水溶液作為一個參考物的有效收集率的影響,評價填料的作用.結果表明,填料可以加速氣泡破裂、減少持液量、提高泡沫析水性和牛血清蛋白的富集比.研究表明,在積液量為490mL,空氣流速為300mL?min-1,牛血清蛋白初始濃度為0.10g?L-1,填料床高度為300mm和初始pH值為6.2的條件下,最佳的牛血清蛋白富集比為21.78,是控制塔條件下富集比的2.44倍.劉海彬等[12]以桑葉為原料,採用泡沫分離法對襲明桑葉蛋白進行分離,並分析了影響分離效果的主要因素,結果測得桑葉蛋白回收率為92.50%、富集比為7.63.由此可見,利用泡沫分離法對桑葉進行分離可得到含量較高的桑葉蛋白.與傳統的葉蛋白分離方法如酸(鹼)熱法、有機溶劑法相比較[13-14],泡沫分離法分離效果好,避免了加熱導致蛋白質變性以及減少有機溶劑帶來的環境污染等問題.李軒領等[15]以亞麻蛋白濃度、NaCl濃度、原料液pH值以及裝液量為主要考察因素,用響應面法優化了從未脫膠亞麻籽餅粕中泡沫分離亞麻蛋白的工藝條件.在最佳工藝條件下,得到95.8%的亞麻蛋白質,而多糖的損失率僅為6.7%.可見,採用泡沫分離技術可以從未脫膠亞麻籽餅粕中有效分離出亞麻蛋白.
2.2酶的分離
蛋白質屬於生物表面活性劑,包含極性和非極性基團,在溶液中可選擇性地吸附於氣-液界面.因此,從低濃度溶液中可泡沫分離出酶和蛋白質等物質.Linke等[16]研究了從發酵液中泡沫分離胞外脂肪酶,考察了通氣時間、pH值及氣速等主要因素對回收率的影響,研究得出通氣時間為50min、pH值為7.0及氣速為60mL/min時,酶蛋白回收率為95%.Mohan等[17]從啤酒中泡沫分離回收酵母和麥芽等,結果表明,分離酵母和麥芽所需的時間不同,而且低濃度時更加容易富集.Holmstr[18]從低濃度溶液中泡沫分離出澱粉酶,研究發現在等電點處鼓泡,泡沫夾帶液中的澱粉酶活性是原溶液中的4倍.Lambert等[19]採用泡沫分離技術考察了β-葡糖苷酶的pH值與表面張力之間的關系,研究表明,纖維素二糖酶和纖維素酶的最佳起泡pH值分別為10.5和6~9.Brown等[7]利用泡沫分離技術對牛血清蛋白與溶菌酶以及酪蛋白與溶菌酶的混合體系分別進行了分離純化的研究.結果表明,溶菌酶不管與牛血清蛋白混合還是與酪蛋白混合,回收率都很低,但是由於溶菌酶可提高泡沫的穩定性,從而提高了牛血清蛋白與溶菌酶的回收率.Samita等[20]對牛血清蛋白與酪蛋白、牛血清蛋白與溶菌酶兩種二元體系分別進行了研究,發現在牛血清蛋白與酪蛋白的蛋白質二元體系中酪蛋白在氣-液界面處的吸附佔了大部分的氣-液界面,從而阻止了牛血清蛋白在氣-液界面處的吸附.而在牛血清蛋白與溶菌酶的二元體系中,研究表明溶菌酶提高了牛血清蛋白的回收率,同時提高了泡沫的穩定性.針對這種現象,Noble等[21]也採用泡沫分離法分離牛血清蛋白與溶菌酶的二元體系,研究發現泡沫夾帶液中存在少量的溶菌酶,提高了泡沫的穩定性,牛血清蛋白溶液在低濃度下本來不能產生穩定泡沫,溶菌酶的存在使得其也能產生穩定的泡沫.這些研究表明,泡沫分離技術可以在較低的濃度下分離具有表面活性的蛋白質,為泡沫分離技術在蛋白質分離中的應用研究開辟了新的領域.國內泡沫分離技術已應用在酶類物質分離中,范明等[22]設計了泡沫分離裝置,利用泡沫分離技術分離脂肪酶模擬液和實際生產生物柴油的水相脂肪酶溶液,對水相脂肪酶進行回收並富集.考察了通氣速度、進料酶濃度及水相脂肪酶溶液中pH值等主要因素對分離效果的影響,當通氣速度為10L/(LH)、進料酶濃度為0.2g/L、pH值為7.0時,蛋白和酶活回收率接近於100%,富集比為3.67.研究表明,初始脂肪酶濃度對泡沫分離的富集比和蛋白回收率有顯著影響,pH值對富集比、蛋白和酶活回收率無顯著影響,而氣速是影響蛋白回收速率的一個重要因素.回收水相脂肪酶的過程中酶活性無損失.可見,泡沫分離是一個回收液體脂肪酶的有效方法[22].
2.3糖的分離
糖一般存在於植物和微生物體內,可根據糖與蛋白質或者其他物質的表面活性差異性,利用泡沫分離技術對糖進行分離提取[23].Fu等[24]採用離心法從基隆產的甘薯塊中分離提取可溶性糖和蛋白,得到的回收率分別為4.8%和33.8%;而採用泡沫分離法時,可溶性糖和蛋白的回收率分別為98.8%和74.1%.Sarachat等[25]採用泡沫分離法富集假單胞菌生產的鼠李糖脂,最佳工藝條件下得到鼠李糖脂97%,富集比為4.__洲[26]利用間歇式泡沫分離法從美味牛肝菌水提物中分離牛肝菌多糖,考察了pH值、原料液濃度、空氣流速、表面活性劑用量及浮選時間等主要因素對分離效果的影響,以回收率為指標評價分離的效果,並優化了分離牛肝菌多糖的工藝條件.在最佳工藝條件下,牛肝菌多糖回收率為83.1%.國內關於食用菌多糖的提取一般利用水提醇析法,但是該法需要消耗大量的乙醇,操作周期長,能耗大[27-28],而泡沫分離法具有快速分離、設備簡單、操作連續、不需高溫高壓及適合分離低濃度組分等優勢,因此間歇式泡沫分離法是提取食用菌多糖的一種有效方法.
2.4皂苷類有效成分的分離
皂苷包含親水性的糖體和疏水性的皂苷元,具有良好的起泡性,是一種優良的天然非離子型表面活性成分,因此可採用泡沫分離法從天然植物中分離皂苷[29].泡沫分離法已廣泛用於大豆異黃酮苷元、人參皂苷、無患子皂苷、竹節參皂苷、文冠果果皮皂苷等有效成分的分離.
2.4.1大豆異黃酮苷元的分離Liu等[10]
採用泡沫分離與酸解方法從大豆乳清廢水中分離大豆異黃酮苷元,指出從工業大豆乳清廢水中提取的異黃酮苷元主要以β-苷元的形式存在,並利用傅里葉變換紅外光譜分析發現大豆異黃酮和大豆蛋白以復合物的形式存在.研究結果表明,利用泡沫分離技術可以從大豆乳清廢水中有效地富集大豆異黃酮,分離出大豆異黃酮苷元和β-苷元.
2.4.2無患子總皂苷的分離魏鳳玉等[30]
分別採用間歇和連續泡沫分離法分離純化無患子皂苷,利用正交試驗,考察了原始料液濃度、氣體流速、溫度、pH值等因素對無患子皂苷回收率的影響,確定了泡沫分離最佳工藝條件.林清霞等[31]採用泡沫分離技術分離純化無患子皂苷,利用紫外分光光度計測定無患子皂苷含量,通過富集比、純度及回收率判斷分離純化的效果.在進料濃度為2.0g/L、進料量為150mL、氣速為32L/h、溫度為30℃、pH值為4.3時,得到富集比為2.153,純度與回收率分別為74.68%和79.19%.研究結果表明:無患子皂苷的回收率隨著進料濃度的增大而減小,隨著氣速、進料量的增大而增大;富集比隨著進料濃度、氣速及進料量的增大而減小,pH值對富集比的影響較小;純度隨著進料濃度、氣速的增大而降低,進料量、pH值對純度的影響較小.
2.4.3竹節參總皂苷的分離
竹節參的主要成分皂苷是一種優良的天然表面活性劑,而竹節參中的竹節參多糖、無機鹽及氨基酸等是非表面活性劑,因此可根據表面活性的差異,採用泡沫分離技術對竹節參皂苷進行分離純化[32-34].張海濱等[35]考察了氣泡大小、pH值、原料液溫度及電解質物質的量濃度等主要因素對泡沫分離竹節參總皂苷的影響,以富集比、純度比及回收率等為指標分析分離純化的效果,得出最佳工藝條件:氣泡直徑為0.4~0.5mm,pH值為5.5,溫度為65℃,電解質NaCl濃度為0.015mol?L-1.在最佳工藝條件下,總皂苷富集比為2.1,純度比為2.6,回收率為98.33%,能夠得到較好的分離.張長城等[36]研究了利用泡沫分離技術對竹節參中皂苷進行分離純化的方法與條件,指出泡沫分離技術分離純化竹節參皂苷具有產品回收率高、工藝簡單、能耗低及不使用有機溶劑等優點,為竹節參皂苷的開發利用提供了技術支持.
2.4.4文冠果果皮皂苷的分離
文冠果籽油是優質的食用油,含油率達35%~40%[37],同時可作為生物柴油的原料.文冠果果皮含有皂苷1.5%~2.4%.研究表明,文冠果果皮皂苷具有抗腫瘤、抗氧化及抗疲勞等功效[38].文冠果果皮皂苷的開發利用帶來的附加價值可以有效地降低生物柴油的生產成本.在生產生物柴油的過程中需要處理大量的果皮,因此需要尋求一種簡單可行、成本低、收率高以及對環境污染小的皂苷分離方法.吳偉傑等[39]使用自製起泡裝置,研究了泡沫分離技術分離文冠果果皮總皂苷的可行性及最佳反應條件.研究得出泡沫分離文冠果皂苷的最佳工藝條件為:料液氣體流速為2.5L?min-1,初始濃度為2mg?mL-1,溫度為20℃,pH值為5.與泡沫分離人參、三七等皂苷的氣體流速相比較,文冠果果皮的氣體流速較低,這樣可以更大限度地降低能耗、節約成本.同時,泡沫分離文冠果果皮皂苷可在室溫條件下進行,降低了加熱所需的能耗.此外,由於文冠果果皮皂苷的水溶液pH值在5左右,泡沫分離時無需調節pH值.在最佳工藝條件下,得到富集比為3.05,回收率為60.02%,純度為63.35%.研究表明,泡沫分離文冠果果皮皂苷可以達到較高的富集比、回收率和純度,對於大力開發利用生物能源、綜合利用文冠果以及降低生物柴油的成本有著重要意義.
3展望
泡沫分離技術是一種很有發展前景的新型分離技術,在食品工業中的應用將會越來越廣泛,今後在天然產物及稀有物質的分離提取等方面有著更加廣泛的應用.同時,泡沫分離技術也存在一定的局限性,為促進泡沫分離技術在食品工業中的應用發展,應該在以下方面進行深入研究:(1)對泡沫分離復雜物料實際分離過程的泡沫形成情況建立理論模型,對標准表面活性劑的分離提取建立標准資料庫,對標准表面活性劑和非表面活性物質間的分離建立指紋圖譜;(2)如何減少泡沫分離非表面活性物質時的表面活性劑消耗量;(3)如何解決泡沫分離高濃度產品時回收率低的問題;(4)目前泡沫分離設備存在局限性,應研究開發新型的適合食品工業分離的泡沫分離設備,提高泡沫分離的效果[40].
食品加工論文範文二:食品工業廢水處理節能研究
食品工業包括製糖、釀造、肉類、乳品加工等,食品工業的廢水主要來源於原料的處理、洗滌、脫水、過濾、脫酸、脫臭和蒸煮過程中產生的,這些廢水含有大量的有機物、蛋白質、有機酸和碳水化合物,具有很強的耗氧性,如果不經處理直接排入水體會大量消耗水中的溶解氧,從而造成水體缺氧,造成水生生物的死亡。食品工業廢水油脂含量高,多伴隨大量懸浮物隨廢水排出,其中動物性食品加工排出的廢水還可能含有病菌,此外,這些廢水還含有銅、錳、鉻等金屬離子。近年來,隨著食品加工業的快速發展,每年由此產生的廢水量也呈現快速增長態勢,許多廢水未經有效處理便被直接排放,給環境產生了十分嚴重的破壞。因此,探討食品工業廢水處理對於生態環境保護具有非常重要的現實意義。
1食品工業廢水處理工藝現狀
目前,國內外對於食品工業廢水的處理過程中主要採用的是生物處理工藝,其中主要包括有好氧生物處理工藝、厭氧生物處理工藝,以及由好氧生物處理工藝與厭氧生物處理工藝相結合的處理工藝。在好氧生物處理工藝方面,主要有活性污泥法(目前實際應用較為廣泛的主要有SBR法)和生物膜法(具有代表性的是曝氣生物濾池法)。由於厭氧生物處理工藝相較於好氧生物處理工藝無論在後期的運行管理費用還是前期的基建投資方面的費用都有較大優勢,其中比較具有典型的處理工藝有厭氧顆粒污泥膨脹床(EGSB)工藝、第三代厭氧處理工藝———厭氧內循環反應器(IC)被廣泛應用到了食品工業廢水處理中。此外,厭氧生物處理工藝在處理食品工業廢水方面具有良好的處理效果[1]。
2各種工藝特點及應用效果分析
目前國內外,食品工業廢水的處理以生物處理[2]為主。在實際中運用較廣,技術較為成熟的主要有厭氧接觸法、厭氧污泥床法、淺層曝氣、延時曝氣、曝氣沉澱池法等等。
2.1好氧生物處理工藝
好氧生物處理是在不斷供氧的環境中,利用好氧微生物來氧化有機物。在好氧過程中,微生物對復雜的有機物進行分解,一部分被轉化為穩定的無機物CO2、H2O和NH3,一部分則由微生物合成為新細胞,最後去除污水中的有機物。
2.1.1SBR法,即間歇式活性污泥系統(又叫序批式間歇活性污泥法)。SBR法目前在國內外應用較為廣泛,生物反應池中集中了生物降解過程、沉澱過程以及污泥迴流功能為一體,這種工藝比較簡單,它是在以前間歇式活性污泥工藝基礎上發展來的一種新工藝,採用SBR法處理廢水的運行過程一般包括了進水、充氧曝氣、靜止沉澱、排水和排泥五個步驟。與連續性活性污泥工藝相比,該工藝具有的有點主要有:曝氣池兼具二沉池的功能,不設二沉池,也沒有污泥迴流設備,系統結構簡單,易於管理;耐沖擊負荷,一般無需設置調節池;反應推動力大,較為簡便的得到優質出水水質;污泥沉澱性能好,SVI值較低,便於自控運行,後期維護管理也較為簡便。居華[3]通過SBR法在醬油、醬菜食品廢水處理中的應用研究後得出,原廢水CODcr在2000mg/L~4000mg/L范圍內,經SBR法處理後出水水質得到了二級標准,去除率達96%以上,沒有出現污泥膨脹現象,而且操作管理方便,佔地面積小,運行的費用也低。
2.1.2BAF法,即曝氣生物濾池法。這種工藝最早可以追溯上個世紀80年代,是由歐美等國家應用和發展起來的,大連馬欄河污水處理廠是我國最早採用BAF工藝。該工藝是在生物接觸工藝基礎上,在濾池中填裝陶粒、石英砂等粒狀填料,以填料及其附著生產生物膜為介質,發揮生物的代謝功能,通過物理過濾功能,發揮膜和填料的截留吸附作用從而實現污染物的高效處理。廖艷[4]等採用混凝—ABR與曝氣生物濾池(BAF)聯合處理工藝,對某市肉聯廠高濃度廢水化學需氧量和氨氮的去除研究後發現,化學需氧量和氨氮的去除效果從原水時的1500mg/L~4500mg/L、30mg/L~85mg/L,經處理後出水COD<100mg/L,氨氮<50mg/L,達到了國家一、二級排放標准,取得良好的環境和社會效益。
2.1.3MBR法,即膜生物反應器法。是上個世紀90年代逐漸發展起來的一種廢水處理技術,該工藝是將膜組件替代傳統的二沉池,實現固相和液相分離。其實質是把細菌和微生物以生物膜的方式附著在固體表面上,以污水中的有機物為營養物進行新陳代謝和生長繁殖,從而達到實現凈化污水的效果。該工藝具有較強的抗沖擊力,對水質和水量變化具有較強適應性;污泥產量較低且沉降性能優,易於固液分離;對於低濃度污水也可以進行處理,在正常運行時可以把原水中的BOD5由20mg/L~30mg/L降至5mg/L~10mg/L;運行費用也不高,管理方便。張亮平,王峰[5]以MBR在湖北某食品廠廢水處理中的應用為例進行研究後發現,採用MBR-活性炭-殺菌聯合工藝,出水COD和BOD的去除率達到了99%以上,系統工藝能耗低,運行穩定。
2.2厭氧生物處理工藝
在食品廢水處理過程中,厭氧處理法與好氧處理法相比由於產生的污泥少,動力流耗小,管理簡便,既能節能又能降低成本,逐漸在高濃度有機廢水行業———食品工業廣泛推崇。
2.2.1UASB法,即升流式厭氧污泥床法。該種工藝是由高活性厭氧菌體構成的粒狀污泥,在UASB裝置內隨上升的氣流呈向上流動的狀態。處理效率高、性能可靠、能耗低,也不需要填料和載體,運行成本低等優點,既可以處理高負荷廢水,也不會產生堵塞等優點。也是當前應用最為廣泛的高速反應器之一。王煒,何好啟[6]研究發現,食品廢水經由UASB+接觸氧化法工藝處置後,CODcr、BOD5、SS和植物油由原水濃度的1170mg/L、570mg/L、600mg/L、150mg/L,處置後的效果為60.2mg/L、15.5mg/L、40mg/L和3mg/L,出水水質達到了《污水綜合排放標准》中的一級標准,且工程的經濟運行效益也良好,總運行費用約為0.54元/m3,工藝佔地小,處理成本低,運行方式靈活,值得推廣。
2.2.2EGSB反應器,即膨脹顆粒污泥床反應器。該工藝是在UASB基礎上發展起來的一種新厭氧工藝,與UASB工藝相比,EGSB增加了出水的迴流,提升了反應器中水流的速度,其速度可以達到5m/h~10m/h,比UASB的0.6m/h~0.9m/h高出近10倍。李克勛[7]等以天津某澱粉廠採用EGSB處理澱粉廢水為例,EGSB的厭氧反應器對COD的去除率超過了85%,出水水質達到了國家一級排放標准,大量有機物被去除,後續單元的處理壓力被減輕,此外,厭氧反應器的介入使用,可以產生沼氣作為能源進行二次利用,降低運行費用(總運轉費用為0.73元/m3?d),具有良好的環境效益和社會效益。
2.2.3ASBR法,即厭氧序批式活性污泥法。ASBR厭氧序批式活性污泥法最早誕生於上世紀90年代的美國,是在SBR基礎上發展起來的,該工藝的顯著特點是以序批間歇運行,按次序分為進水、反應、沉澱和排水四個步驟,與連續流厭氧反應器相比,該工藝由於不需要大阻力的配水系統,因此極大地減少了系統的能耗,也不會產生斷流和短流,運行靈活,抗擊能力較強,實現厭氧功能,也同時兼有了SBR的優點。
3厭氧生物處理工藝優勢分析
與好氧生物處理工藝相比,在食品工業廢水處理方面,厭氧生物處理工藝具有很多優勢:工藝運行時污泥的剩餘量非常少,由於不需要附加氧源而降低運行管理費用;食品工業廢水有機物濃度高,而厭氧生物處理工藝擁有良好的抗高濃度有機物的沖擊負荷力優勢,能夠做到間接性排放;另外,厭氧生物處理工藝能夠產生沼氣,實現資源的二次利用,真正實現了 變廢為寶 ,降低能耗,因此,厭氧處理工藝在食品工業廢水處理中是一種節能型廢水處理工藝。作為低能耗而且能夠產生二次能源的厭氧生物處理工藝必將成為食品工業廢水處理的主流方向[8]。
② 醬菜廠污水處理出水發紅怎麼回事
醬菜廢水中含有大量水解蛋白、維生素、粗脂昉、糖類及有機、無機酸等物質。廢水BOD5濃度較高,鹽分較大,懸浮物較多,可沉降性強。因此,在處理時可採用以下步驟:
(1)過濾:採用格柵篩濾;
(2)沉澱:在沉澱步驟中,加入以下重量份烽的物理凈水劑,活性炭為5,有機改性沸石為5和聚丙烯醯胺5;邊加邊攪拌,攪拌轉速為20r/min;攪拌均勻後靜置4小時;所述物理凈水劑為廢水總重量的0.02%;
(3)活性污泥法處理步驟:
中的廢水,將步驟
1:中的廢水放入曝氣池,在曝氣池中加入含有復合微生物菌劑的活性污泥,再將活性污泥投入至曝氣池中;
2:活性污泥中,復合微生物菌劑為:棒桿菌菌粉0.1,紅球菌菌粉0.2,白地黴菌菌粉0.2和硫桿菌菌粉0.2,復合微生物菌劑的總重量為廢水重的0.005%;
3:中的廢水放入沉澱池,再加入酶制劑,具體為:纖維素酶0.1、果膠酶0.09、植酸酶0.06,酶制劑的加入量為廢水重的0.008%;
③ 醬菜污水處理池怎麼建
如下案例,供你參考:可考慮設置厭氧工藝。
腌漬酸菜的過程常伴隨著含高鹽分的廢水,早期因酸菜腌漬桶都設置在農田旁,在經過45 天的腌漬,取出酸菜成品後,農民會直接將含高鹽分的酸菜廢水倒入農田旁,常會造成土壤嚴重鹽化而導致無法耕作,形成嚴重的環境污染。
目前處理這些廢水,所使用的方式為熱處理,就是將廢水加熱,去除水分,達到減量之目的,但須耗費大量能源,增加處理廢水的成本。若能利用厭氧處理,將含鹽廢水中的有機質轉變為可利用的甲烷,再以甲烷做為其加熱處理時的燃料,將可降低其處理成本。
但廢水中的鹽分常會抑制微生物的生長,所以生物處理有其難度。Lefebure (2006)指出,若是緩慢的在廢水中增加鹽分,讓微生物產生適應性,可以使微生物在含鹽的廢水下具有處理能力,但目前在鹽分對於甲烷菌的影響,以及和甲烷產量相關的研究並不多,因此本研究之目的在於:
1. 探討菌種可承受的最高鹽度以及
2. 探討甲烷產率,有機物去除率和鹽度的關系,以作為未來設計含鹽廢水處理程序的參考。
二、實驗設備與方法
(一) 實驗設備
本研究中我們採用的是厭氧濾床,而厭氧消化系統的設置,包括厭氧反應槽、進出流設備、菌種產生的氣體測量及收集設備、溫度控制及填充介質等。為了配合此含鹽廢水實驗,使用海水養蝦池之底泥,經過馴養後取出做為處理含鹽廢水處理之菌種。廢水則採用人工廢液,經馴養後再進進批次實驗,各批次則逐漸增加鹽分的濃度,人工廢水配置後存於4℃冰箱中避免微生物孳生。
(二) 實驗方法
1. 起動測試
實驗開始時,先在不加鹽的狀況下操作,觀察菌種的生長情形,並緩慢增加HRT,取樣時取出上澄液檢測其PH 及COD,記錄其氣體產量,和甲烷含量等。
第二階段為鹽度測試,在每次進流前,先記錄氣體產量,之後從氣體取樣瓶中抽取1c.c.氣體,注入氣相層析儀(GC8700T-TCD,中國層析,台灣),進行氣體分析。完成氣體分析後,再進行進出流程序:
(1) 取樣:先搖晃反應器使均勻後,取出500 ml 的液體,再經過2 分鍾的自然沉澱,取出上澄液,利用量瓶取出當日出流量。
(2) 進流:在取樣完之後,加入進流之人工廢液,並將過量而余留的上澄液利用泵浦打回反應槽,維持反應槽總體積5 公升。
2. 加鹽測試
添加鹽分的實驗分別進行0.5%,1.0%及3.0%三個批次(圖1)。本研究每天取樣兩次,每個樣本分別分析pH、COD 及TDS,在進行含鹽廢水的試驗時,則再加測TS 和鹽度。
三、結果與討論
1. 啟動測試
以 5000 ml 的厭氧反應槽進流人工廢水,在不含鹽分的情形下做測試,每天進出流2次,HRT為8-10 天。經取樣分析,其pH、COD、氣體產量、甲烷百分比及氣體產率隨時間的變化,結果顯示pH 值平均為7.2,可見槽體中微生物生長良好(圖2)。COD 平均為2738 mg/l,不過COD 有緩慢向上增加趨勢,有可能是停留時間不夠,或是槽體中的上澄液處理空間太小。產氣量平均為5180 ml,甲烷成分則在50-60%之間,GPR 平均為0.92 L/L/day。
2. 加鹽測試
圖 1 顯示進流鹽度的改變,0%和1%鹽度對菌種影響不會產生劇烈的影響,但當增加至3%的鹽度時,產氣量(圖3)有稍微的下降,但COD 去除率的改變並沒有很明顯的變化,從圖2知pH的變化並無很明顯劇烈的改變,平均為7.35,而且可以看出鹽度對pH 有穩定的效能,再從1%鹽度增加到3%時,我們可以看出pH 有下將的現象,雖然還是偏鹼性,推測鹽度對甲烷菌比酸化菌抑制影響較大,不過從甲烷的百分比中發現,甲烷濃度(圖4)並沒有減少或是增加,平均為57.2%,所以在低鹽度下,酸化菌比甲烷菌的適應性好,但兩者也並沒有明顯的消長。
http://tyh.1.blog.163.com/blog/static/74145910201332243622631/
④ 廣州某醬菜廢水處理產生大量的泡沫,調節池中水顏色有點偏黃,請問如何使水質變好是不是葯劑投加的不對
你只是定性地介紹,我只能大致說說,投加菌種或者污泥有利於後面生物接觸氧化池的正常運行。接觸氧化池溶解氧可能不夠,還要確認生物膜是否過厚,如過厚應該脫膜。我建議您找環保公司
污水處理 ,找北京 甘 度
⑤ 醬菜廠廢水經過沉澱池處理能達到排放標准嗎
醬菜廠廢水屬於高鹽廢水,採用簡單的沉澱處理,是無法達到排放標準的。
⑥ 如何去除醬菜廠研製過程中產生的氣味腌制後的廢水處和處理
氣味只能收集以後燃燒 或者吸收了 腌制廢水比較難搞 蒸餾脫鹽成本比較高,如果地方排放標准對於鹽分要求不高 可嘗試採用耐鹽細菌直接進行生化處理。
⑦ 環評工程師污水處理技術答疑精選(29)
281.問:
1、印染廢水處理工藝中物化工序用的是硫酸亞鐵,一沉池出水非常清澈,二沉池出水有色度,可能是亞鐵氧化造成的,現廠家需中水回用,但三價鐵超標,該如何處理?
2、化纖廢水的UASB裝置因發生酸化失敗。現想桐悔重新投入些城市污水廠的污泥(不曾厭氧消化過),進部分原水,控制COD在2000 mg/L以下,保證池子內的溫度以及鹼度,讓其充分發酵,待產氣明顯,COD下降80%時再進水。這樣的思路是否可行?
答:如鐵含量不是很高的話,可用石英砂過濾,現成的流砂過濾器有買,可自動清洗砂,中水回用總要進一步處理的。
U池厭氧污泥培養初期要控制較低負源晌荷,一般要低於0.1kgCOD/ISS.d,當CODcr去除率達到80%時才能逐步增加有機負荷,溫度只能逐步提高,一度一度地升。
282.問:本單位正在調試醬菜廢水處理裝置,廢水中含鹽量高,但與生活污水在調節池混合後,含鹽量不是很高。工藝流程:調節池+生物接觸氧化池+斜管沉澱池+清水池+石英砂過濾器,絮凝劑採用鹼式氯化鋁,但調試效果不好,會產生大量的泡沫,在調節池中水顏色有點偏黃,在接觸氧化池中,顏色有點偏黑,並且氣味很臭。調試了半年水質一直很差,應如何處理?
答:這類廢水生化處理有一定的難度,主要還是鹽的問題,如濃度較高就要馴化,並且鹽濃度不能波動太大,否則微生物很難適應的,所以要穩定進生化池廢水鹽的濃度,必需有較大容量的調節池。
283.問:我們處理的是印染廢水,平時處理量是1000t/d,最近一段時間廢水量很少,約300~400t/d,每天都要投大量的營養以維持污泥的正常活性,運行費用太大,所以想減少營養的投放量,讓一部分污雹輪鋒泥死掉,每次減少10%的投放量,三天減一次,逐漸減少到維持處理現有廢水量的污泥正常運行。請問這樣做有問題嗎?還有哪些問題需要注意?
答:不能這樣做!水量少減少營養投加量沒錯,但只能按水量比例減少,讓一部分污泥死掉的說法不妥,如果按你這樣做,會影響污泥的總體活性,現在應該增加排泥量,使污泥濃度下降,如果是多池運行,可停運一半的反應池。
284.問:本廠的曝氣池的活性污泥狀態現在很差,MLVSS/MLSS只佔到了40%左右,SVI 值也只有40~50.曝氣池混合液沉澱速度快,但絮凝效果不好,上清液混濁懸浮物可以達100mg/L.為了提高MLSS,就減少剩餘污泥的排放,但效果不明顯,四五天了 污泥濃度還是沒有上去,而進水量和水質與以前並沒有大的變化。現在應該怎麼辦?
答:說明污泥活性已很差,應該增加排泥量,減少供氧量。不要擔心污泥排得太多,有條件的引入其它廠好的污泥進行生物修復。你說現在的進水與以前變化不大,這不一定的,如果污水中不可生化的物質的比例增加,COD不一定能反映出來。還要確認一下,污水中是否含較高濃度的鹽類,污水中如有大量鹽類進入,也會出現你所說的情況,總之要根據具體情況分析,但不論是何種原因,按我前面說的處理辦法沒錯的。
285.問: 我們處理的是生產氧化鈷的廢水 ,廢水的COD5500 mg/L, NH3-N 28000 mg/L ,BOD很底 ,CL離子 7000mg/L.採用的工藝是:厭氧生物接觸氧化法+ 好氧。前期預處理吹脫NH3-N: 用生石灰和Na0H ,氨氮處理效果較好,現在35 mg/L左右。但現在Cl離子升到了14000mg/L ,應該如何處理?
答:首先應該確認污水的COD和BOD5是否有代表性,盡管COD測定中要加硫酸汞來隱蔽氯離子,如氯濃度過高還是會使測定結果高於實際值,氯離子高對BOD5也有干擾,使測定結果大大低於實際值,因為氯離子會影響測定培養過程中細菌的活力。
目前廢水平均的氯離子濃度下微生物通過馴化能逐步適應的,但要有較大容量的廢水調節池,使進入生化裝置污水的含氯濃度盡可能穩定。因為經馴化後的微生物能適應高的氯離子濃度,最怕濃度的波動大,這是很重要的。
286.問:本廠污水處理系統的二沉池內有大量芝麻大的紅色小蟲, 池面還有少量上浮污泥,外表褐色的,裡面黑色,有的會自動下沉的。這些什麼原因造成的?
答:紅色小蟲出現說明水質好,池面少量有黑色污泥,可能是沉澱池底部有死角或括泥機上的部分括板壞造成的。
287.問:造紙廢水處理採用活性污泥法,運行一直很正常,近5天因進水水溫升到41攝氏度,生化池中午的極端水溫到了42.2攝氏度,污泥出現了解體、二沉池出水水質也變得差了。雖然採取了降低進水水溫的措施後,但生化池水溫仍在40攝氏度左右,也採取了降低進水負荷,但二沉池出水效果改善不明顯。請問這種情況,運行上應注意哪些問題?
答:對好氧處理來說,水溫超過38度就會有一些影響,高於40度則嚴重影響處理效果,所以只有採取降溫措施。不知道你們是用鼓風曝氣還是表面曝氣?如是鼓風曝氣,在保證曝氣池氧能滿足的前提下,盡可能少開風機,因為鼓風曝氣在一定程度上會增溫的。在目前無法再把水溫度降低的情況下,可通過調節池調節水量(均衡水溫)來使進曝氣池污水的水溫相對穩定。
288.問:醫院污水處理難題: (無化糞池)原水:COD 612mg/L BOD:324mg/L 氨氮;53mg/L,水量是300m3/d.採用厭氧+好氧接觸氧化工藝,厭氧池反應30小時 ,接觸氧化池採用折流式池形(分2格), 後一段前端採用2隻14毫米噴嘴的射流器攪拌充氧,但溶解氧應在0.5mg/L以內。
厭氧出水:COD 272mg/L; BOD118mg/L ;氨氮;33mg/L, 接觸氧化15X4X4m 2格 採用彈性填料,掛膜效果很好,採用5.5kw射流曝氣機2台 ,每天曝氣20小時,二沉池出水清澈,無明顯可見懸浮物。填料上膜呈褐黃色,約5毫米後,在接觸氧化池第一格前段設置4隻14毫米射流器,其對應射流泵5.5kw放置在接觸氧化池第二格末段,在第一格末段設置4隻14毫米射流器,其對應射流泵5.5kw放置在就地。第二格基本是作為缺氧池使用。 好氧出水:COD 77mg/L ;BOD:21mg/L; 氨氮;37mg/L.請教:這樣的工藝有什麼問題?為何氨氮不能達標,充氧效果也能達到要求,也採用了大的迴流(估計約300%),最近還在缺氧池前段(即接觸氧化第二格前段)每天投加5公斤白糖用於補充反硝化碳源物質不足,但沒明顯效果。
答:主要是工藝設計問題:
(1)COD不高,且B/C比高,用厭氧工序不妥;
(2)好氧接觸氧化用射流曝氣也不妥,因為污水不能充分與生物膜接觸,生物的的厚度無法控制。
運行問題: