❶ 氨氮高了,高氨氮廢水有哪些處理方法
隨著我國經濟的高速發展,產生了大量高濃度氨氮廢水。氨氮廢水的大量排放,導致水體中氨氮大量富集,引起水體的富營養化與惡化,對水環境造成巨大危害,不僅嚴重影響了人們的正常生活,甚至危害了人們的身體健康,社會影響巨大。因此,國家在氨氮廢水的排放要求方面也制定了越來越嚴格的法規與排放標准。目前,除了合成氨、肉類加工、鋼鐵等12個行業執行相應的國家行業標准(通常一級標准為25mg/L)外,其他均需遵守國家標准GB8978-1996«污水綜合排放標准»。該標准明確1998年後新建單位氨氮最高允許排放濃度為15mg/L。
氨氮廢水的處理方法和工藝有很多種,主要有物化法和生物法。物化法包括吹脫法、離子交換法、折點氯化法、化學沉澱法、膜分離法、高級氧化法、電解法、土壤灌溉法等。生物法包括硝化—反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、SBR、氧化溝等。
1、物化法
1.1 吹脫法
在廢水中氨氮多以銨離子(NH+4)和游離氨(NH3)的狀態存在,兩者保持平衡,平衡關系為:NH3+H2O→NH+4+OH-。這個平衡受pH值影響。當廢水pH值升高時,OH-離子增多,該平衡反應向左移動,有利於NH+4生成游離態的NH3,從而使得游離氨所佔比例增大,游離氨易於從水中逸出。當廢水的pH值升高到11左右時,廢水中的氨氮幾乎全部以NH3的形式存在,再加上曝氣吹脫的物理作用,則可促使NH3更容易從水中逸出,向大氣轉移。此外,該反應為放熱反應,溫度升高,反應方程向左移動,也有利於NH3從水中逸出。依據此原理,可以採用吹脫法來去除廢水中氨氮,吹脫法一般分為空氣吹脫法、水蒸汽吹脫法(汽提法)和超重力吹脫法。
1.1.1 空氣吹脫法
空氣吹脫法去除氨氮的原理是:在鹼性條件下,通過外力將空氣鼓入需要脫氨處理的廢水中,同時在廢水中使鼓入的空氣和廢水充分接觸,廢水中溶解的游離態氨將穿過廢水界面,向外界空氣轉移,從而達到去除氨氮的目的。
目前,空氣吹脫法在高濃度氨氮廢水處理中的應用較多,吹脫速率高,處理費用相對較低,但隨著氨氮濃度的降低,特別是當氨氮質量濃度低於1g/L以下時,吹脫速率顯著降低。氣液比、pH值、氣體流速、溫度、初始濃度等是影響吹脫法處理效果的主要因素。
現有吹脫裝置主要有吹脫池和吹脫塔,由於前者效率低,易受外界環境影響,因此多採用吹脫塔裝置。通常採用逆流操作,塔內裝有一定高度的填料以增加氣—液傳質面積,從而有利於氨氣從廢水中解吸。常用填料有拉西環、聚丙烯鮑爾環、聚丙烯多面空心球等。
空氣吹脫法的優點是:具有穩定的氨氮去除率,工藝操作簡單,氨氮容積負荷大等。缺點是:吹脫過程中易使填料層結垢,使廢水流通不暢,從而影響設備的正常運行;同時,吹脫工藝需要調節廢水pH值,需投加大量鹼,從而使廢水處理成本增高;另外,經空氣吹脫處理後,廢水中還含有少量氨氮,處理後的廢水時常不能達到國家排放標准。因此,吹脫法通常與其他方法聯合使用。
1.1.2 水蒸汽吹脫法(汽提法)
汽提法去除氨氮的原理是:大量蒸汽與廢水接觸,將廢水中游離氨蒸餾出來,以達到去除氨氮的目的。當向廢水中通入水蒸汽時,兩液相在填料表面上逆流接觸進行熱和物質交換,當水溶液的蒸汽壓超過外界的壓力時,廢水就開始沸騰,氨就加速轉為氣相。此外,氣泡表面之間形成自由表面,廢水中的氨不斷向氣泡內蒸發擴散,當氣泡上升到液面上破裂釋放出其中的氨,大量的氣泡擴大了蒸發表面,強化了傳質過程,通入的蒸汽升高了廢水的溫度,從而也提高了一定pH值時被吹脫的分子氨的比率。
汽提法適用於處理連續排放的高濃度氨氮廢水,操作條件與空氣吹脫法類似,氨氮去除率高,但汽提法工藝處理成本高,操作條件難控制,消耗動力高等。
1.1.3 超重力吹脫法
空氣吹脫法和水蒸汽吹脫法一般採用填料塔作為吹脫設備,而超重力吹脫法是利用超重力設備———超重機取代傳統的填料塔作為吹脫設備,以空氣為氣提劑,將水中的游離氨解吸到氣相中的氨氮廢水治理方法。
氨氮廢水加鹼調節pH值為10~11後進入超重機處理。廢水經超重機分布器均勻噴灑在填料內緣,在超重力作用下,液體被填料粉碎成液滴,沿填料徑向甩出,經筒壁匯集後從超重機底部流出。同時,空氣經超重機進氣口進入超重機殼體,在一定風壓下,由超重機轉子外腔沿徑向進入內腔。在填料層內,氣液兩相在大的氣液接觸面積的情況下完成氣液接觸,將水中的游離氨吹出。氣體送至除霧器,將夾帶的少量液體分離後,至吸收裝置,脫氨後排空。利用超重機的水力學特性與傳遞特性,可獲得良好的吹脫效果並減少設備投資與運行費用。
與工業上傳統僅使用塔設備的吹脫法相比,超重力法吹脫法具有以下幾點優勢:
(1)設備體積質量小,設備及基建費用少,過程放大容易,啟動、停車迅速,運行更穩定;
(2)擺脫了重力場的影響,對物料粘度適應性廣,操作彈性大;
(3)氣相動力消耗小,物料停留時間短,傳質系數大;
(4)去除氨氮效率高,有利於氣相中氨的回收利用:
(5)能夠增加水中的溶解氧,為可能的後續生化處理提供充足氧源。但是目前超重力法吹脫氨氮技術的大規模工業應用較少,主要是因為該技術不夠成熟。特別是大型的結構,仍需要根據具體的物系進行合理設計和試驗。
1.2 離子交換法
離子交換法是一種特殊的吸附過程即交換吸附。其主要機理是:利用離子間的濃度差和交換劑上的功能基對離子的親和力作為推動力達到吸附特定離子的目的。吸附過程是可逆的,吸附飽和的交換劑通過添加特定的解吸液可對交換劑上吸附的離子進行解吸,從而實現交換劑的循環使用。常見的交換劑有沸石等天然交換劑和人工合成的離子交換樹脂兩大類,而後者還可根據樹脂上功能團的不同分為陽離子交換樹脂和陰離子交換樹脂。
天然沸石(主要是斜發沸石)對NH+4具有強的選擇吸附能力,並且天然沸石的價格低於人工合成的離子交換樹脂。因此,工程上常用沸石對NH+4的強選擇性,將NH+4截留於沸石表面,從而去除廢水中的氨氮。pH值=4~8是沸石離子交換的最佳范圍。當pH值<4時,H+與NH+4發生競爭;pH值>8時,NH+4變為NH3,從而失去離子交換性能。但是沸石交換容量容易飽和,吸附容量低,更換頻繁,飽和後的沸石需再生才能再次使用。
離子交換樹脂主要是利用特定陽離子交換樹脂與水中的NH+4進行交換,交換後的樹脂再通過解吸而還原。與沸石相比,強酸型陽離子交換樹脂吸附容量大,處理效果穩定,但目前對強酸型陽離子交換樹脂的研究多處於實驗室階段。
離子交換法的優點是去除率高,適用於處理中低濃度的氨氮廢水。處理含氨氮10mg/L~20mg/L的城市污水,出水濃度可達1mg/L以下。但對於高濃度的氨氮廢水,會造成短時間交換劑飽和,從而再生頻繁,使處理成本增大,且再生液仍為高濃度氨氮廢水,仍需進一步處理。在實際工程應用中,離子交換法常結合其它污水處理工藝來處理高濃度氨氮廢水,先用其它方法作預處理,使經預處理後的廢水濃度在100mg/L左右,然後再用離子交換法處理剩餘氨氮廢水。
1.3 折點氯化法
折點氯化法是將氯氣通入氨氮廢水中達到某一點,在該點時水中游離氯含量最低,而氨氮的濃度降為零。當通入的氯氣量超過該點時,水中的游離氯就會增多,該點稱為折點,該狀態下的氯化稱為折點氯化,折點氯化法的原理就是氯氣與氨反應生成了無害的氮氣。加氯量對反應有很大影響,當氯的投加量與氨的摩爾比為1∶1時,化合余氯增加,主要為氯氨。當該比例為1.5∶1時余氯下降至最低點即「折點」,反應方程式為:NH+4+1.5HClO→0.5N2+1.5H2O+2.5H++1.5Cl-。pH值也是主要影響因素,pH值高時產生NO-3,低時產生NCl3。為了保證完全反應,通常pH值控制在6~8,一般加9mg~10mg的氯氣可氧化1mg氨氮。
折點加氯法的優點是氨氮去除率高(可達90%~100%),不受水溫影響,處理效果穩定,反應迅速完全,設備投資少,並有消毒作用。缺點是由於在處理氨氮廢水中要調節pH值,處理成本較高。同時液氯使用安全要求高且貯存時要求的環境條件高。另外,折點加氯法處理氨氮廢水後會產生副產物氯代有機物和氯胺,會給環境帶來二次污染。因此,折點氯化法多用於較低濃度氨氮廢水,適用於廢水的深度處理,工業上一般用於給水處理,對於大水量高濃度氨氮廢水不適合。
1.4 化學沉澱法
化學沉澱法去除廢水中氨氮的原理是:向氨氮廢水中投加磷酸鹽和鎂鹽,使廢水中的氨氮與磷酸鹽和鎂鹽生成一種難溶性的磷酸氨鎂沉澱(MgNH4PO4•6H2O),從而達到去除廢水中氨氮的目的。
磷酸銨鎂(MAP)又稱鳥糞石,可溶於熱水和稀酸,不溶於醇類、磷酸氨以及磷酸鈉的水溶液,遇鹼易分解、在空氣中不穩定,升溫至100℃時便會失水變為無機鹽,繼續加熱至融化(約600℃)則會分解成焦磷酸鎂。MAP可以用作飼料和肥料的添加劑,是一種很好的長效復合肥;也可用於塗料生產、氨基甲酸酯、軟泡阻燃劑製造和醫葯行業。因此,磷酸銨鎂脫氮除磷技術既可以去除廢水中的氨氮,又可回收較有經濟價值的MAP,達到變廢為寶的目的。
化學沉澱法的優點是工藝簡單、效率高,經處理後產生的沉澱物MAP經進一步加工處理後,能成為性能優良的農家復合肥料。缺點是處理成本高。在處理氨氮廢水過程中需加入大量價格昂貴的混凝劑。此外,去除1gNH+4-N可產生8.35gNaCl,由此帶來的高鹽度將會影響後續生物處理的微生物活性。因此,該方法一直停留在實驗室規模未在工程上運用,較少用於實際氨氮廢水處理。
1.5 膜分離法
膜分離法包括反滲透法、液膜法、電滲析法等。
1.5.1 反滲透法
反滲透就是藉助外界的壓力使膜內部的壓力大於膜外的壓力,使小於膜孔徑的分子(水)透過,大於膜孔徑的分子截留在膜內,這種作用現象稱作反滲透。其作用機理關鍵在於半透膜的選擇透過性,半透膜上有好多細小的微孔,像水分子這樣的小分子可以自由的透過,而大於半透膜上微孔的NH+4則不能通過。當溶液進入膜系統後,在外加壓力的作用下半透膜就會選擇性的讓某些小分子物質透過,大分子物質NH+4則會留在半透膜內側通過管道另外的出口排出。
反滲透裝置處理廢水需要對原水進行預處理,不然會損壞裝置內的膜件,並且該裝置需要高質量的膜。
1.5.2 液膜法
液膜法又稱氣態膜法,目前已應用於水溶液中揮發性物質的脫除、回收富集和純化,如NH3、CO2、SO2、Cl2、Br2等。液膜法去除氨氮的機理是:採用疏水性中空纖維微孔膜,膜一側是待處理的氨氮廢水,另一側是酸性吸收液,疏水的微孔結構在兩液相間提供一層很薄的氣膜結構。廢水中NH3在廢水側通過濃度邊界層擴散至疏水微孔膜表面,隨後在膜兩側NH3分壓差的推動下,NH3在廢水和微孔膜界面處氣化進入膜孔,然後擴散進入吸收液發生快速不可逆反應,從而達到脫除氨氮的目的。
液膜法具有比表面積大,傳質推動力高,操作彈性大,氨氮脫除率高,無二次污染等優勢,適合處理含鹽量較高、油性污染物含量低的高氨氮廢水。氨氮或含鹽量較高時,能有效抑制水的滲透蒸餾通量,減弱對吸收液的稀釋作用;但當廢水中含有油性污染物時,會造成膜的污染,使膜的傳質系數不能得到完全恢復。由於廢水的復雜性、膜材料的研發更新換代、可逆吸收劑的研發以及後續副產品的生產應用等多種原因,氣態膜法脫氨工業化進程很慢,國內生產應用實例較少。不過對於高鹽高濃度氨氮廢水,氣態膜處理成本較低,其應用前景廣闊。
1.5.3 電滲析法
電滲析法的原理是:當進水通過多組陰陽離子滲透膜時,NH+4在施加的電壓影響下,透過膜到達膜另一側濃水中並集聚,從而從進水中分離出來,實現溶液的淡化、濃縮、精製和提純。國內外專家在電滲析法處理氨氮廢水方面作了大量研究,並取得了一定成績。但由於高選擇性的防污膜仍在發展中,且對廢水預處理的要求很高,電滲析法用於工業尚需時日。
1.6 高級氧化法
高級氧化法是通過化學、物理化學方法將廢水中污染物直接氧化成無機物,或將其轉化為低毒、易降解的中間產物。應用於脫除廢水中氨氮的高級氧化法主要有濕式催化氧化法和光催化氧化法。
1.6.1 濕式催化氧化法
濕式催化氧化法是20世紀80年代國際上發展起來的一種治理廢水的新技術,其原理是:在特定的溫度、壓力下,通過催化劑作用,經空氣氧化可使污水中的有機物和氨氮分別氧化分解成CO2、N2和H2O等無害物質,達到凈化的目的。
濕式催化氧化法技術優點是:氨氮負荷高,工藝流程簡單,氨氮去除率高,佔地面積少等。缺點是:在處理氨氮廢水中會使用大量催化劑,造成催化劑的流失和增加對設備的腐蝕,使氨氮廢水處理成本增大。
濕式催化氧化法從處理效果上來說適合高濃度氨氮廢水的處理,但這種方法對溫度、壓力、催化劑等條件要求非常嚴格,反應設備須抗酸抗鹼耐高壓,一次性投資巨大,而且處理水量較大時費用很高,經濟上不劃算,目前在國內還鮮有工程應用的實例。
1.6.2 光催化氧化法
光催化氧化法是最近發展起來的一種處理廢水的高級氧化技術,它可以使廢水中的有機物在特定氧化劑的作用下完全分解為簡單的無機物CO2和H2O,達到降解污染物的目的,處理方法簡單高效,沒有二次污染。但由於反應過程中需要的催化劑難以分離回收,使該方法在實際工程中一定程度上受到了限制。
1.7 電解法
電解法利用陽極氧化性可直接或間接地將NH+4氧化,具有較高的氨氮去除率,該方法操作簡便,自動化程度高,其缺點是耗電量大,因此並不適用於大規模含氨氮廢水的處理。
1.8 土壤灌溉法
土壤灌溉法是把低濃度的氨氮廢水(50mg/L)作為農作物的肥料來使用,該法既為污灌區農業提供了穩定的水源,又避免了水體富營養化,提高了水資源利用率。土壤灌溉法只適合處理低濃度氨氮廢水,當廢水中的氨氮濃度低於50mg/L左右時,廢水中的氨氮在土壤表層發生硝化作用,在土壤深度30cm左右達到峰值,隨後由於脫氮等作用,在100cm處減小到10mg/L左右,在400cm以下土壤中未測出NH+4,直接污染到地下水的可能性幾乎為零。
2、生物法
生物脫氨氮的原理:首先通過硝化作用將氨氮氧化成亞硝酸氮(NO-2-N),再通過硝化作用將亞硝酸氮進一步氧化為硝酸氮(NO3-N),最後通過反硝化作用將硝酸氮還原成氮氣(N2)從水中逸出。
生物法的優點是:可去除多種含氮化合物,對氨氮可以徹底降解,總氨氮去除率可達95%以上,二次污染小且運行費用低。然而生物法對水質有嚴格的要求,高濃度的氨氮對微生物活性有抑製作用,會降低生化系統對有機污染物的降解效率,從而導致出水難於達標排放。
因此,生物法主要用來處理低濃度的氨氮廢水,且沒有或少有毒害物質存在,主要在處理生活污水以及垃圾滲濾液等方面應用較廣泛。常見的氨氮廢水生物處理工藝有傳統硝化反硝化、同步硝化反硝化、短程硝化反硝化、厭氧氨氧化、A/O、A2/O、氧化溝和SBR。
3、方法比較
根據廢水中氨氮濃度不同可將廢水分為三類:
(1)低濃度氨氮廢水:氨氮濃度小於50mg/L;
(2)中濃度氨氮廢水:氨氮濃度為50mg/L~500mg/L;
(3)高濃度氨氮廢水:氨氮濃度大於500mg/L。
❷ 高濃度氨氮廢水的處理現狀與發展
高濃度氨氮廢水對環境的危害非常大,一旦進入水體,和棚備會對環境造成嚴重污染,其主要表現有:(1)引起水體富營養化;(2)消耗水體中的溶解氧。氨對生物體還會造成一定的毒害作用,氨可通過皮膚、呼吸道及消化道引起中毒。氨濃度在0.1mg/L時,人可感覺到刺激作用,濃度在0.7mg/L時可能危及生命。水中的氨氮在微生物作用下轉變為硝態氮和亞硝態氮,二者均為強化學致癌物質亞硝基化合物的前體物質,有致癌、致突變、致畸的性質,對人體危害十分嚴重。因為氨氮污染的種種危害和出水排放標準的不斷提高,高濃度氨氮廢水的處理受到了社會各界的重視。在高濃度氨氮廢水處理技術的研究、開發和應用中涌現了一大批行之有效的處理工藝,這些脫氮技術可分為物理化學脫氮技術和生物脫氮技術兩大類。
1 高濃度氨氮廢水處理的現狀
1.1 物理化學脫氮技術
目前我國常用的物化法脫氮技術主要和氏有吹脫法、折點加氯法、選擇性離子交換法、化學沉澱法等。
1.1.1 吹脫法。吹脫法是通過向廢水中加入鹼調節pH值,使水中離子氨(NH4+)轉為游離氨(喚毀NH3),再通入蒸汽或空氣進行吹脫,將廢水中氨轉化為氣相,從而達到去除氨氮的目的。一般採用NaOH或CaO調節廢水pH,採用冷卻塔作為吹脫裝置。吹脫法操作靈活,佔地面積小,脫氮效率高,對於處理濃度較高的氨氮廢水得到了較為廣泛的推廣和使用。但吹脫法也存在一些問題,比如冬季(低溫)氨吹脫效率不高;若以石灰調節pH,易在吹脫塔內形成水垢;逸出的氨會污染空氣,形成二次污染。
1.1.2 折點加氯法。折點加氯法是向廢水中投加足量氯氣,使水中離子氨(NH4+)氧化成氮氣的廢水脫氮技術。其化學反應式為:
NH4++1.5HClO→0.5N2↑+1.5H2O+2.5H++1.5Cl-(1-1)
在折點加氯法中,余氯濃度和殘留氨氮濃度與氯氣、氨氮質量之比有關。最佳理論投氯量(以Cl2計)與氨氮的質量之比為7.6:1。折點加氯法對於氨氮濃度低的廢水來說比較經濟適用,常常作為廢水深度處理的一個步驟連接在其他脫氮工藝之後。
1.1.3 化學沉澱法。化學沉澱法中應用較多的是磷酸銨鎂沉澱法,它是向廢水中投加磷酸鹽和氧化鎂,使氨形成磷酸銨鎂沉澱而被去除的廢水脫氮技術。其化學反應式為:
NH4++Mg2++PO43-→MgNH4PO4•6H2O↓ (1-2)
化學沉澱法工藝簡單、效率高,但投加葯劑量大,從而致使處理成本較高。另外,產生的磷酸銨鎂容易造成二次污染。研究開發磷酸銨鎂的回用和綜合利用技術,對於磷酸銨鎂沉澱法在高濃度氨氮廢水處理工程中的應用具有重要意義。
1.2 生物脫氮技術
生物脫氮技術是利用微生物的代謝作用使廢水中的氨氮轉化為氮氣從水體中逸出。氨氮的去除過程主要包括兩個步驟:硝化作用和反硝化作用。
硝化作用。包括兩個基本的反應步驟:(1)由亞硝酸菌參與的將氨氮轉化為亞硝酸鹽(NO2-)的反應;(2)由硝酸菌參與的將亞硝酸鹽轉化為硝酸鹽(NO3-)的反應。硝化作用過程需要在好氧條件下進行,並且以氧作為電子受體。其反應方程式如下:
亞硝化反應:2NH4++3O2→2NO2-+2H2O+4H+ (1-3)
硝化反應:2NO2-+2O2→2NO3- (1-4)
反硝化作用。將硝化過程中產生的硝酸鹽或亞硝酸鹽還原成氮氣的過程。反應過程中反硝化菌利用各種有機基質作為電子受體,以硝酸鹽作為電子受體而進行缺氧呼吸。
硝化菌是好氧、自養菌,反硝化菌是兼性、異養菌,因此硝化反應和反硝化反應實現的環境條件不同。現行的生物脫氮工藝一般是將缺氧(厭氧)和好氧區分開,如A/O工藝和A/A/O工藝,氨氮在好氧區被亞硝化菌和硝化菌氧化成亞硝態氮和硝態氮,然後將混合液迴流到前置缺氧段;在缺氧條件下,亞硝態氮和硝態氮被反硝化菌還原為氮氣,達到脫氮目的。另一種工藝是後置反硝化工藝,即把反硝化反應器放在硝化反應器之後,因混合液中缺乏有機物,一般需人工投加碳源。
2 高濃度氨氮廢水處理的未來發展
2.1 研究組合式的脫氮技術
物理化學脫氮技術和生物脫氮技術各自有其優勢及局限性。組合式處理技術就是把兩種及兩種以上的處理方法結合起來對高濃度氨氮廢水進行綜合處理。例如,當污水中氨氮濃度較高而營養物質較少時,先對高濃度氨氮污水進行吹托,可以提高去除效率;在低濃度條件下進行吸附可以減少吸附劑的用量和再生次數,提高出水水質。也可用生物法作後續處理,通過前面的吹脫處理,降低氨氮的濃度後,可減輕氨氮對微生物的抑製作用,降低營養物的投加量,提高出水水質。
2.2 對現有處理技術進行改進研究
現有的高濃度氨氮廢水處理工藝還有改進的潛力,應開展對現有工藝的改進研究。比如吹脫法中,可通過試驗考察各個處理因素(pH值、溫度、鼓風量、吹托時間等)對處理結果的影響,根據試驗結果分析得到最佳工藝參數,並對現有的氨吹脫設備進行改造。磷酸銨鎂沉澱法中,通過試驗選定沉澱效果最好的組合葯劑,確定其最佳反應條件,並對磷酸銨鎂晶體中營養物質的緩釋性能和磷酸銨鎂的循環性能進行研究。
2.3 研究和發展新型脫氮技術
操作簡便、處理性能穩定高效、運行費用低廉、能實現氨氮回收利用的處理技術是高濃度氨氮廢水處理的發展方向。物理化學脫氮技術方面,國內外研究者對超聲技術、電化學法、微波技術、高級氧化技術處理高濃度氨氮廢水進行了研究,部分工藝已有工程實例且取得了良好的處理效果。生物脫氮技術方面,隨著生物學機理的深入揭示和相關學科的發展和滲透,為高濃度氨氮廢水的高效生物脫氮提供了可能的途徑,發展出了一些新型的脫氮工藝,包括短程硝化反硝化工藝、同步硝化反硝化工藝和好氧反硝化工藝等。
3 結語
高濃度氨氮廢水對環境具有很大的危害性。目前,針對高濃度氨氮廢水的處理技術雖然眾多,且各具特點,但仍存在一定的局限性。操作簡便、處理性能穩定高效、運行費用低廉、能實現氨氮回收利用的處理技術是高濃度氨氮廢水處理的發展方向。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
❸ 求助高濃度化工廢水怎麼處理
化工廢水的特徵:
1、化工廢水成分復雜,反應原料常為溶劑類物質或環狀結構的化合物,增加了廢水的處理難度;
2、該廢水中含有大量污染物物質,主要是由於原料反應不完全和原料或生產中使用大量溶劑造成的。
3、有毒有害物質多,精細化工廢水中有許多有機污染物對微生物是有毒有害的,如鹵素化合物、硝基化合物、具有殺菌作用的分散劑或表面活性劑等;
4、生物難降解物質多,BOD/COD低,可生化性差;
化工污水處理
高濃度化工廢水的處理工藝是多種多樣的,不同的廢水採用的工藝和技術方法也是不同的,以上只是廣東青藤環境科技有限公司整理出來的一些關於高濃度廢水處理的一些資料方法。
❹ 離子交換法在廢水處理中有哪些應用
在廢水處理中,離子交換法可用於去除廢水中的某些有害物質,回收有價值化學品、重金屬和稀有元素,或為了實現水資源的重復利用。主要用於處理電鍍廢水,如鍍鉻廢水、鍍鎳廢水、鍍鎘廢水、鍍金廢水、鍍銀廢水、鍍鋅廢水、鍍銅廢水及含氰廢水等,在膠片洗印廢水中回收銀、CD-2、CD-3等貴重化學葯品,還可用於其他含鉻廢水、含鎳廢水和含汞廢水、放射性廢水的處理。
每升含鉻數十至數百毫克的電鍍廢水首先經過過濾去除懸浮物,再經陽離子交換器除去金屬離子,然後進入陰離子交換器除去Cr2O7-和Cr2O4- ,出水六價鉻的含量小於0.5mg/L,還可作為清洗水循環使用。陰樹脂用12%NaOH再生後,再生液含鉻可高達17g/L,將此再生液H型陽離子交換器使Na2CrO4 轉變成鉻酸,再經蒸發濃縮7~8倍後,可返回電鍍槽重新使用。
離子交換法處理電鍍廢水,第一個陽離子交換器的作用有兩個,一是除去金屬離子及雜質,減少對陰樹脂的污染,因為重金屬對樹脂的氧化分解能起催化作用;二是降低pH值,使六價格以Cr2O7- 存在,因為陰樹脂Cr2O7- 的選擇性大於Cr2O4- 和其他陰離子的選擇性,而且交換一個Cr2O7- 除去兩個Cr6+,面交換一個Cr2O4- 只能除去一個Cr6+。由於Cr2O7- 是強氧化劑,容易引起樹脂的氧化性破壞,因此一定要選用化學穩定性較好的強鹼性樹脂
詳情請向上海立昌環境了解,不懂請繼續追問!
❺ 重金屬廢水要怎麼處理呢
含重金屬廢水處理:為使污水中所含的重金屬達到排水某一水體或再次使用的水質要求,對其進行凈化的過程。目前,重金屬廢水處理的方法大致可以分為三大類:化學法;物理處理法;生物處理法。化學法。化學法主要包括化學沉澱法和電解法,主要適用於含較高濃度重金屬離子廢水的處理,化學法是目前國內外處理含重金屬廢水的主要方法。化學沉澱法。化學沉澱法的原理是通過化學反應使廢水中呈溶解狀態的重金屬轉變為不溶於水的重金屬化合物,通過過濾和分離使沉澱物從水溶液中去除,包括中和沉澱法、硫化物沉澱法、鐵氧體共沉澱法。由於受沉澱劑和環境條件的影響,沉澱法往往出水濃度達不到要求,需作進一步處理,產生的沉澱物必須很好地處理與處置,否則會造成二次污染。電解法。
電解法是利用金屬的電化學性質,金屬離子在電解時能夠從相對高濃度的溶液中分離出來,然後加以利用。電解法主要用於電鍍廢水的處理,這種方法的缺點是水中的重金屬離子濃度不能降的很低。所以,電解法不適於處理較低濃度的含重金屬離子的廢水。螯合法。螯合法又稱高分子離子捕集劑法,是指在廢水處理過程中通過投加適量的重金屬捕集劑,利用捕集劑與金屬離子鉛、鎘結合時形成相應的螯合物的原理實現鉛、鎘的去除分離。該反應能在常溫和較大pH范圍(3?11)下發生,同時捕集劑不受共存重金屬離子的影響。因此該方法去除率高,絮凝效果佳,污泥量少且整合物易脫水。
❻ 重金屬廢水處理方法 重金屬廢水怎麼處理
1、沉澱法:沉澱法一般是通過化學反應把水體中的重金屬離子從游離態的轉變為含重金屬的沉澱物,再過濾和分離處理,使沉澱從水中分離,包括中和、硫化物、鐵氧體共沉澱幾種方法。各種處理技術的操作分別如下:把鹼加入到含重金屬的廢水中,重金屬會轉變為不溶於水的氫氧化物沉澱,然後將沉澱物分離,該法操作耗時少,簡單;把硫化物類的沉澱劑加入廢水中生成硫化物沉澱而除去重金屬也常用;先將鐵鹽向廢水中投加,然後控制工藝條件,使金屬離子形成不溶性的鐵氧體晶粒,最後固液分離,從而達到去除重金屬離子目的。
2、 電解法:電解法用於重金屬離子的凈化是一種相對成熟的廢水凈化處理技術,不僅污泥的生成量能有效的減少,而且能高效地回收某些貴金屬。其基本原理是電解過程中,氧化和還原反應分別在陽、陰兩極上發生,有害物質在氧化還原作用下轉化為無毒無害物質,實現廢水的凈化。電解法技術去除率高、可回收所沉澱的重金屬加以資源優化,二次污染情況少、處理過程中所使用的化學試劑量少;常溫常壓下,操作管理簡便;廢水中污染物的濃度發生波動時,通過電流電壓的調整,可保證出水水質的穩定;整套裝置的佔地面積不大,有效節省空間。
3、氧化還原法:廢水中的重金屬離子在氧化還原作用下生成無毒無害的新物質,其實質是在氧化還原過程中,無機物元素的原子或離子在失去或得到電子的過程中會導致元素化合價的變化,是用於治理電鍍廢水的最早方法之一,此法原理簡單、操作好掌握、對水量和高濃度廢水的沖擊承受大。一般根據還原劑的種類可以分為NaHSO3法、FeSO4法、SO2法、鐵屑法等。
4、膜分離新型處理技術:該技術可以在分子水平上,利用混合物分子具有不同粒徑的特徵,在通過半透膜時可實現選擇性分離,包括電滲析濾膜、反滲透濾膜、萃取濾膜、超過濾濾膜等。電鍍工業廢水經過膜分離處理後的廢水組成穩定,並可回槽使用。膜分離廢水凈化技術是近年來發展最迅速的高新技術,分離效率高、分離過程中不會發生相變且不會化學反應、分離器體積小、低能耗和方便操作等,廣泛應用於物質的分離與濃縮,具有廣闊的發展前景,在廢水處理中已受到特別的青睞。
5、高效離子交換法:離子交換處理法是利用離子交換樹脂、沸石等交換劑分離廢水中有害金屬離子的方法。離子交換樹脂主要有凝膠型和大孔型兩種,前者有選擇性交換功能,後者製造很復雜、高成本、再生劑耗量大。交換劑將自身所帶的能自由移動的離子通過與被處理的溶液中的離子進行交換來實現凈化目的。離子間的濃度差和功能基對離子的親和能力是離子交換的推動力,多數情況下交換劑的離子是先被吸附,再被交換,具有吸附、交換的雙重作用。
6、生物凈化處理技術:生物技術治理廢水日益受到人們的關注,根據凈化機理的不同,可分為絮凝法、吸附法、化學法以及植物修復法。利用微生物或其產生的代謝物來實現絮凝沉澱;利用生物體本身的特殊化學結構及特性成分來吸附水中的金屬離子,最後通過固液兩相分離去除金屬離子的方法也廣受關注。
❼ 高濃度酸鹼廢水的回收利用方法與基本過程是什麼呢
酸鹼廢水抄是廢水處理時襲最常見的一種。酸鹼廢水具有較強的腐蝕性,如不加治理直接排出,會腐蝕管渠和構築物,排入水體,會改變水體的pH值干擾,並影響水生生物的生長和漁業生產,排入農田,會改變土壤的性質,使土壤酸化或鹽鹼化,危害農作物,酸鹼原料流失也是浪費。所以酸鹼廢水應盡量回收利用,或經過處理,使廢水的pH值處在6?9之間,才能排入水體。
對於高濃度含酸(一般在10%以上)、含鹼(一般在5%以上)廢水,首先應根據水質、水量和不同工藝要求,進行廠區或地區性調度,盡量重復使用,如重復使用有困難,或濃度較低,水量較大,可採用濃縮的方法回收酸鹼。
高濃度酸鹼廢水的回收利用方法:
(1)浸沒燃燒高溫結晶法的基本過程是:將煤氣燃燒所產生的高溫氣體直接噴入待蒸發的廢液,去除廢液中的水分,濃縮並回收酸類物質。
(2)真空濃縮和自然結晶法的基本過程是:利用真空減壓法降低含酸廢水的沸點,以蒸發水分,濃縮並回收酸類物質。自然結晶法主要是利用含酸廢水製取硫酸亞鐵、硫酸銨等化工原料和化學肥料。此外,還可用滲析法、離子交換法回收酸、鹼物質。
❽ 微電解填料在處理高濃度工業污水上有什麼優勢跟傳統鐵碳填料比好在哪密度是1立方米多少
你好,可以看一下微電解填料的詳細介紹:
【產品簡介】
微電解填料,是利用原電池原理,在鐵、碳中添加多種催化劑,將粒徑合乎標準的鐵、碳及其他催化劑——金屬、非金屬元素,按一定比例均勻混合並壓製成型,然後採用高溫微孔活化技術,進行固相燒結而成的高效規整化填料。
【作用原理】
微電解技術是目前處理高濃度、高色度、高含鹽量、難生物降解有機廢水的一種理想工藝,又稱內電解法。鐵碳微電解填料浸入廢水中時,由於鐵和碳之間的電極電位差,廢水中會形成無數個微原電池。這些細微電池是以電位低的鐵成為陰極,電位高的碳做陽極,在含有酸性電解質的水溶液中發生電化學反應的。反應的結果是鐵受到腐蝕變成二價的鐵離子進入溶液。由於鐵離子有混凝作用,它與污染物中帶微弱負電荷的微粒異性相吸,形成比較穩定的絮凝物而去除,為了增加電位差,促進鐵離子的釋放,在鐵碳微電解填料中加入一定比例催化劑。
發生電化學反應過程如下:
陽極(Fe):Fe - 2e→Fe2+ E(Fe / Fe2+)=0.44V
陰極(C) :2H++ 2e→H2 E(H+/ H2)=0.00V
反應中,產生了初生態的Fe2+ 和原子H,它們具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環等作用。
若有曝氣,還會發生下面的反應:
O2+ 4H++ 4e→ 2H2O E (O2)=1.23V
O2+ 2H2O + 4e → 4OH- E(O2/OH-)=0.41V
Fe2++O2+4H+→2H2O+Fe3+
反應中生成的OH-是出水pH值升高的原因,而由Fe2+氧化生成的Fe3+
逐漸水解生成聚合度大的Fe(OH) 膠體絮凝劑,可以有效地吸附、凝聚水中的污染物,從而增強對廢水的凈化效果。
微電解對色度去除有明顯的效果。這是由於電極反應產生的新生態二價鐵離子具有較強的還原能力,可使某些有機物的發色基團硝基—NO 、亞硝基—NO 還原成胺基—NH ,另胺基類有機物的可生化性也明顯高於硝基類有機物;新生態的二價鐵離子也可使某些不飽和發色基團(如羧基—COOH、偶氮基-N=N-) 的雙鍵打開,使發色基團破壞而除去色度,使部分難降解環狀和長鏈有機物分解成易生物降解的小分子有機物而提高可生化性。此外,二價和三價鐵離子是良好的絮凝劑,特別是新生的二價鐵離子具有更高的吸附-絮凝活性,調節廢水的pH值可使鐵離子變成氫氧化物的絮狀沉澱,吸附污水中的懸浮或膠體態的微小顆粒及有機高分子,可進一步降低廢水的色度,同時去除部分有機污染物質使廢水得到凈化。
【產品特點】
1、 技術先進 該產品解決了傳統微電解污水處理工藝填料板結、鈍化及需活化、更換等難題和弊端,並具有持續高活性鐵床優點。由於微電解和催化劑的雙重作用,同比傳統鐵碳填料,(1)針對有機物濃度大、高毒性、高色度、難生化廢水的處理,廢水中的COD去除率提高10-20%,可達到35-80%,色度可去除掉60-90%,同時B/C值可提高0.1-0.3,提高了廢水的可生化性。(2)損耗量可降低60%以上。(3)處理過程中產生的污泥量減少50%以上。
2、 反應速度快 採用微孔活化技術,比表面積大,同時配加催化劑,對廢水處理提供了更大的電流密度和更好的微電解反應效果,反應速率快,一般工業廢水只需要30-60分鍾,長期運行穩定有效。
3、 解決除磷、重金屬的難題 微電解處理方法可以達到化學沉澱除磷的效果,還可以通過還原除重金屬。對含有偶氟、碳雙鍵、硝基、鹵代基結構的難除降解有機物質等都有很好的降解效果。
4、 操作方便 規整的微電解填料使用壽命長,且操作維護方便,處理過程中只消耗少量的微電解填料,只需定期添加即可,無需更換,進而大大降低了維護勞動強度。
5、 減少二次污染 廢水經微電解處理後會在水中形成原生態的亞鐵或鐵離子,具有比普通混凝劑更好的混凝作用,無需再加鐵鹽等混凝劑。COD去除率高,並且不會對水造成二次污染。
6、 應用方式多樣 該產品還可應用於已建成未達標的高濃度有機廢水處理工程,用於廢水的預處理,可確保廢水處理後穩定達標排放,也可將生產廢水中濃度較高的部分廢水單獨引出進行微電解處理。
【應用領域】
適用於化工、制葯、醫葯中間體、染料、染料中間體、農葯、造紙、電鍍、印染、重金屬、洗毛、酒精等行業的高濃度、高含鹽量、高色度、難生物降解有機廢水處理及處理水回用工程。
【技術參數】比重約1200Kg/m3,比表面積約1.2m2/g, 空隙率>65%,規格:1.5cm * 3cm,含鐵量>70% ,物理強度:≧1000Kg/cm2。
也可以參看:http://www.Sdhuayun.com
❾ 高濃度洗煤廢水處理與回用技術
高濃度洗煤廢水枯皮逗處理與回用技術具體內容是什麼,下面中達咨詢為大家解答。
隨著我國經濟的不斷發展,煤礦的開采業的發展也越來越快,洗煤廢水的排放也越來越多,這樣就造成了嚴重的環境污染,我國的水資源也造成了極大的浪費,近幾年來我國多數煤場都安裝了洗煤設備,但是由於資金以及技術的原因,高濃度洗煤廢水的排放問題依然很嚴峻,所以急需研究出一種高濃度的洗煤廢水處理技術以及回用技術,其技術的研究對我國環境保護和防止水資源浪費都有著十分重要的意義。一、高濃度洗煤廢水處理難度高的影響因素1、廢水中的懸浮顆粒帶有很強的負電荷,這樣就使洗煤廢水變成了膠體分散體系,並且其穩定強很強,所以洗煤廢水穩定的根本原因是懸浮顆粒的表面帶有負電荷。其原因是:(1)膠體顆粒之間會產生很強的互相排斥的靜電,電位越高產生的靜電斥力就越大,膠體顆粒就會越穩定。(2)帶點的膠體顆粒可以將周圍的水分子吸引到一起,在其周圍就形成了一層保護膜,進而阻止了帶電顆粒的接觸,這樣洗煤廢水就更加穩定了。2、高濃度洗煤廢水中的微細含量很高。微細顆粒的直徑越小,其沉降的越少,這樣就給沉澱分離增加了難度。3、污泥的阻力大,導致了高濃度洗煤廢水的過濾性能十分差。對於過濾性能比較好的洗煤廢水,可以直接通過壓濾脫水的方法就可以實現。但是高濃度的洗煤廢水的過濾性較差,壓濾脫水的辦法很難實現,而且這種辦法耗費的資金較多。4、高濃度洗煤廢水中的懸浮物濃度高、粘度高以及煤泥密度小,所以在處理的時候就會更加的困難。二、高濃度洗煤廢水處理技術的研究在處理高濃度洗煤廢水的時候,必須要在廢水中加入一定量的混凝劑,這樣就可以降低其電位,破壞廢水中膠體顆粒的穩定性,進而使泥水分離。1、無機混凝劑的篩選。按照高濃度洗煤廢水的性質,可以選擇出集中無機葯劑來進行實驗,實驗水樣的SS質量濃度、取樣的大小、攪拌速度、攪拌時間以及沉降時間都做出了相應的規定。實驗結果如下表,由圖表可知,在選中的葯劑里,電石渣和石灰對廢水的處理效果最明顯,但是其形成的顆粒直徑比較小,沉降的速度也很慢,並且其過濾性能也較差,給進一步脫水處理增加了一定的難度,還需要投入絮凝劑。石灰與電石渣的化學成分基本一致,都是氧化鈣,但是電石渣屬於工業廢渣,其成本非常低廉,而且一般的煤礦本身都有這種工業廢渣,所以電石渣作為混凝劑最合適。2、確定治理方案。實驗結果顯示電石渣可以對洗煤廢水的穩定性造成破壞,可以使煤泥顆粒凝聚並沉降,但是由於其沉降的速度比較緩慢,需要投入絮凝劑來提高沉降的速度,這樣就可以改變沉澱性能。在經濟因素的基礎上通過實驗,非離子型PAM作為絮凝劑作為合適,電石渣和PAM的加入量和攪拌的時間以及速度對沉降都有影響,通過實驗得出,對沉降效果其顯著作用的是PAM的投入量,然後是電石渣的投入量以及投入PAM之後的攪拌時間,投放電石渣之後攪拌時間對沉降的效果基本沒有影響。實驗的最佳構成是:在一百毫升洗煤廢水中投入零點六克的電石渣,攪拌時間為六十秒,之後在投入質量分數為沒賣百分之零點一的PAM兩毫升,攪拌時間為九十秒。3、沉降實驗。使用電石渣與PAM聯用的方法來處理高濃度洗煤廢水是行的通的,這種辦法不僅可以分離出百分之四十左右的清水,而且清水中的COD濃度以及SS濃度都比煤礦洗煤廢水排放標准和回用標准要低,與此同時,絮凝體的過濾性能也可以得到很好的改善,這樣就為煤泥的進一步脫水創造了有利條件,但是因為上清液的酸鹼值比較高,這樣就需要按照上清液與廢酸一千比一的比例來投加工業廢酸,把酸鹼值降低到八左右的位置。4、經濟效益和回用研究。(1)葯劑費。按照每立方米洗煤廢水PAM投入二十克、電石渣六千克以及零點四升的工業廢酸,然後綜合一切消耗因素,可以及選出每立方米的洗煤廢水的運握鏈行成本大約為零點七元。(2)處理之後的洗煤廢水,其中的清水循環可以同於洗煤,不會對周圍的水域造成污染,分離出的煤泥可以出售,這樣既可以獲得經濟利益又可以獲得很好的社會效益。分離出的清水重復用於洗煤,不但可以節約水資源,還可以為企業節約水費,而且企業每年可以回收煤泥,還可以獲得可觀的經濟效益,對高濃度洗煤廢水進行處理,還可以免除高額的排污費,獲得的經濟效益不僅可以抵掉處理廢水的運行成本,還可以獲得額外的經濟效益,在短時間內就可以回收投資資金。結束語隨著我國社會經濟的不斷發展,科技水平的不斷提升,這種方法處理高濃度洗煤廢水的處理和回用技術將會得到廣泛地使用,其對我國的社會效益以及企業的經濟效益都起著重要的作用,還可以有效地防止環境污染,隨著科技水平的不斷提高,這種處理技術將會不斷地完善和創新,可以為環境污染、企業生產效益以及社會效益做出更加突出的貢獻。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
❿ 重金屬廢水處理的方法有哪些
重金屬廢水常見於電鍍、電子工業和冶金工業,尤其是電鍍、電子工業廢水,它的成分非常復雜,除含氰(CN-)廢水和酸鹼廢水外,根據重金屬廢水中所含重金屬元素進行分類,一般可以分為含鉻(Cr)廢水、含鎳(Ni)廢水、含鎘(Cd)廢水、含銅(Cu)廢水、含鋅(Zn)廢水、含金(Au)廢水、含銀(Ag)廢水等。
廢水中的重金屬是各種常用方法不能分解破壞的,而只能轉移它們的存在位置和轉變它們的物理和化學形態。例如,經化學沉澱處理後,廢水中的重金屬從溶解的離子狀態轉變成難溶性化合物而沉澱下來,從水中轉移到污泥中;經離子交換處理後,廢水中的金屬離子轉移到離子交換樹脂上;經再生後又從離子交換樹脂上轉移到再生廢液中。總之,重金屬廢水經處理後形成兩種產物,一是基本上脫除了重金屬的處理水,一是重金屬的濃縮產物。重金屬濃度低於排放標準的處理水可以排放;如果符合生產工藝用水要求,最好回用。
重金屬廢水處理方法通常有沉澱法、物理化學法、電化學處理技術、生物化學法;以上所述方法都有各自的優缺點,在使用這些方法的時候需要根據重金屬廢水的具體特點進行方案的設計。很多時候,單一的方法往往很難取得較好的效果,同時使用兩種或者多種方法則可以更好更快地達到治理重金屬廢水的目的。