Ⅰ 污水處理廠哪家比較好
國內注意污水處理廠有:上海:白龍港污水處理廠、北京:高碑店再生水廠、廣東:廣州獵德污水處理廠、天津:津沽污水處理廠湖北:武漢北湖污水處理廠
1 、上海:白龍港污水處理廠
上海白龍港污水處理廠處理量達280萬噸/日,佔全市中心城區污水總量的三分之一,可以說是亞洲最大污水處理廠。
4、天津:津沽污水處理廠
津沽污水處理廠處理規模為 55 萬 m³/d,總用地面積為 38.92 公頃。服務范圍為西至北門內大街、南開三馬路、崇明路、津淶公路,東至大港和津南邊界,北至海河,南至獨流減河。
包括中心城區的河西區、和平區、南開區、西青的大寺、王穩庄地區和全部津南區,總的服務面積為 273k_,服務人口 300 萬人。
5、湖北:武漢北湖污水處理廠
北湖污水處理廠北湖污水處理廠位於武漢化工區騰飛大道與八吉府大街交會處東側,由武漢市水務集團武漢三鎮實業控股公司興建,投資45.5億元,佔地面積約1400畝,是國家「長江大保護」和武漢市「四水共治」關鍵工程。
Ⅱ 順義污水處理廠在哪
順義區污水處理廠是北京市政集團以BOT模式投資建設並運營的污水處理廠,設計處理能力8萬噸/天。目前順義區污水處理廠是順義區主要的COD減排項目工程。
順義區污水處理廠
地址:北京市順義區李橋鎮半壁店村
路線:公交車935、915支2、640、989路順義半壁店下車沿李天路向東150米即是
自駕:可由機場高速公路葦溝出口經由機場輔路,右轉上李天路,過機場東路路口繼續向東約100米即是;或者經由通順路上李天路,經過約1.5公里即是。
Ⅲ 我國哪些城市污水處理廠實現了三級水處理技術,舉例說明
以下是一些較早的數據供您參考:
目前,我國大多數城市的污水處理廠還只能實現二級水處理技術,而實現了三級水處理技術的城市比較少。舉例說明:
1. 北京市:北京市自來水集團有限公司在北京襲拿返建設了一座集污水處理、回用、排放於一體的污水處理廠——北京市南水北調污水處理廠。該廠實行三級處理技術,除了實現二級標准外,還能把廢水中的氮、磷等營養物質除去,使處理後的水質更清潔、更透明。
2. 上海市拍飢:上海市污水處理有限公司在上海建設了多個污水處理廠,如依水污水處理廠、普陀污水處理廠等,其中最新的洋涇浜污水處理廠實現了三級水處理技術,可以將處理後的水質達到更高的回用標准,用於工業敏鬧用水和市政綠化等。
3. 廣州市:廣州市自來水集團有限公司在廣州建設了多個污水處理廠,如環保島污水處理廠、白雲污水處理廠等。其中,環保島污水處理廠實現了三級水處理技術,能夠將處理後的水質直接回用於園林綠化、餐飲、洗浴等領域,大大節約了用水成本。
值得注意的是,隨著我國城市化進程的加快,越來越多的城市開始關注污水處理和回用問題,相信未來會有更多的城市實現三級水處理技術。
Ⅳ 污水處理廠的污泥處置費用問題
城市污泥不同處理處置方式的成本和效益分析
——以北京市為例
張義安,高 定,陳同斌*,鄭國砥,李艷霞
中國科學院地理科學與資源研究所環境修復中心,北京 100101
摘要:以北京市為例,估算不同電價及運輸距離下填埋、焚燒及堆肥等方式的城市污泥處理處置成本,在此基礎上討論各種處理處置方案的前景,展望北京市污泥處理處置出路。污泥填埋在一定時期內還將是主要處理處置方式,但所佔比例將逐漸下降;堆肥是經濟上較為可行的處理處置方式,適合大力推廣;隨著經濟實力與技術水平提高,焚燒法可以適用於個別特殊地點。同時,分析了政府補貼對污泥處理處置效益的影響。
關鍵詞:城市污泥;處理處置成本;填埋;焚燒;堆肥
中圖分類號:X703 文獻標識碼:A 文章編號:1672-2175(2006)02-0234-05
城市污泥是污水處理的副產物,以含水率97%計算,體積占處理污水的0.3%~0.5%[1],深度處理產泥量還將增加50%~100%。目前我國每年排放的干污泥大約1.3×106 t,並以大約10%的速率在增加。
北京市全區域規劃污水排放量為330×104 m3/d,其中2003年市區污水排放量約為230×104 m3/d[2]。規劃建設14座污水處理廠,2015年污水處理能力預計將超過320×104 m3/d,處理率將超過90%。到2008年,北京市將新增9座中水處理廠,深度處理能力將由目前的1×104 m3/d提高到47.6×104 m3/d,屆時每年產生含水率 80% 城市污泥超過80×104 m3。北京市最大的污水處理廠——高碑店污水處理廠污泥外運運輸費用佔到全廠運行費用的1/3[3]。
城市污泥的大量產生,已引起日益嚴峻的二次污染,並成為城市污水處理行業瓶頸。污泥處理處置率低,其中非常重要的一個原因就是投資和運行成本方面的限制。但到目前為止,還未見關於不同污泥處理處置方案的經濟分析,導致不同單位和設計人員在方案的選擇上存在較大的盲目性。本文以北京為例,對幾種典型的城市污泥處理處置方式進行經濟分析,以便為城市污泥處理處置技術的選擇提供參考依據。
1 城市污泥處理處置成本估算
1.1 估算方法
以1 t干污泥(DS)為計算基準,綜合成本=運行成本+設備折價成本。運行成本以目前較為成熟的處理處置方式進行估算。
北京市污泥機械脫水效果通常在80%左右。各方案中的成本估算涉及或包括焚燒、運輸、填埋等3個流程;設備折價成本取15 a使用年限,年折舊7%,社會利率10%,即年折價17%,設備年工作時數以8000 h計。因此,設備折價=設備價格×指數×0.17/8000。
1.2 估算細則
(1)單位成本
填埋:生活垃圾衛生填埋的成本約60~70 ¥/t,污泥填埋時按照壓實生活垃圾∶土∶污泥容重比為0.8∶1∶1,污泥填埋成本為48~56 ¥/t,取52¥/t。
干化:乾燥能耗與脫水量成正比。燃氣加熱效率85%、鍋爐熱效率70%、過程熱損失5%時,水的蒸發能耗為150 (kW•h)/t,每小時去除1 t水的設備投資為180×104¥[4]。
焚燒:目前多採用流化床技術,每h焚燒1 t干化污泥的設備成本為528×104¥,污泥按干質量減量60%。焚燒的運行費用24¥/t,煙氣處理消耗NaOH量約為37 kg/t,折價約128¥/t [5]。
電價:北京市工業電價高峰期、平段區、低谷期分別為0.278、0.488、0.725¥/(kW•h)。按不同補貼方案,將電價設定為0.30、0.60¥/(kW•h)。
運費:北京市運輸價格在0.45~0.65¥/(t•km)之間,污泥為特殊固體廢物,需特殊箱式貨車運送,價格處於高端。另外,近年運輸價格有上漲趨勢。因此,運費取0.65 ¥/(t•km)。
此外,干化及焚燒均按設備成本添加30%物耗人工管理費及土建配套費。
(2)污泥含水率
污泥的有機質和水分含量較高,填埋存在一系列問題,當前主要關心的是土力學性能,當含水率高於68% 時需按m(土)∶m(污泥)=0.4~0.6的比例混入土 [6-8]。含水率降低時污泥性狀存在突變,因此填埋脫水目標設定為80%、30%。
含水率是污泥焚燒處理中的一個關鍵因素。有機質含量高、含水率低利於維持自燃,降低污泥含水率對降低污泥焚燒設備及處理費用至關重要。一般將污泥含水率降至與揮發物含量之比小於3.5時,可形成自燃[9]。北京市污泥有機物含量在45% 以下,因此使污泥維持自燃焚燒的水分含量應小於61.2%。朱南文總結了幾種國外污泥熱乾燥技術,可以將污泥乾燥至10%含水率[10]。污泥焚燒綜合成本隨乾燥程度動態變化,干化程度越高,干化能耗升高,焚燒設備及運行費用隨之下降。簡化起見,本文以污泥保持熱量平衡燃燒為估算前提,不再進行高水分下加入重油的成本估算。因此污泥焚燒的干化目標定為:60%和10%。
表1 北京市填埋場概況[11]及離污水處理廠的最近距離
Table 1 Description of landfill sites and wastewater treatment plants
填埋場 填埋場位置 處理規模/(t•d-1) 預計關閉時間 最近的污水處理廠 最近直線距離/km 1)
北神樹 通縣次渠鄉 980 2006 高碑店 20
安定 大興區安定鄉 700 2006 小紅門 36
六里屯 海淀區永豐屯鄉 1500 2017 清河 15
高安屯 朝陽區樓梓庄鄉 1000 2018 高碑店 15
阿蘇衛 昌平區小湯山鄉 2000 2012 清河、北小河 40
焦家坡 門頭溝區永定鎮 600 2011 盧溝橋 15
1) 最近距離數據為作者實測
綜上所述,污泥的處理處置方式計有:堆肥,分別乾燥至含水80%、30% 時填埋,乾燥至含水
60%、10%時焚燒。
1.3 填埋成本
填埋成本=能耗成本+運輸成本+填埋場成本+設備折價成本
能耗成本=[1/(1-η0)-1/(1-ηe)]×150×α×Pele
運輸成本=0.65×L /(1-ηe)
填埋場成本=βPf /(1-ηe)
設備折價=[1/(1-η0)-1/(1-ηe)]×180×α× 0.17×104/8000
其中,η0、ηe分別為處理處置始、末的含水率;Pele為電價,¥/(kW•h);L為運輸距離,km;α為土建及人工配套費指數,1.3;β為體積系數,含水率≥68%時在1.4~1.6之間,取1.5,含水率<68%時取1;Pf為填埋場填埋價格,40~60¥/t,取52¥/t。
污泥填埋運輸距離:北京市現有填埋場容量不足以滿足生活垃圾處置需求,即使規劃中的填埋場建成之後,富餘填埋能力也很有限,污泥填埋需另外覓地新建填埋場。隨著城市發展及填埋場地質條件要求,運輸距離也將越來越遠,參照表1,污泥
填埋的運輸距離將在40 km以上,因此在估算今後的填埋成本時,分別取50、100 km作為近期及遠期填埋場運輸距離。
1.4 堆肥成本及收益
城市污泥經過堆肥無害化處理之後進行土地利用,是國際上普遍採用的處理處置方式。強制通風靜態垛堆肥處理是泥堆肥主流技術,其處理成本與污泥初始含水率、處理規模、堆肥廠與污水處理廠之間距離以及設備原產地等因素相關。堆肥廠宜建在污水處理廠周圍,運輸成本計為0,堆肥成本主要由鼓風、烘乾、篩分能耗,調理劑及設備折價成本組成。目前,堆肥產品的市場銷售價格為350~500¥/t,扣除15%含水率後取500¥/t DS。
利用CTB堆肥自動控制系統[12,13]進行強制通風靜態垛堆肥在河南省漯河市城市污泥堆肥廠的應用結果表明,當污泥含水率不高於80%時,鼓風能耗在40~60 (kW•h)/t DS之間,取60 (kW•h)/t DS。CTB調理劑價格為300 ¥/t,損耗率一般為5% [14]。經過10~14 d堆肥,污泥干物質減量30%,含水45%。採用熱乾燥技術烘乾至含水15%,脫水負荷0.45 t/t DS;調理劑在烘乾前篩分後自然晾乾,需篩分能耗;篩分負荷共9.3 t/t DS,篩分能力1 t/h,功率3 kW。全程能耗95 (kW•h)/t DS,考慮到未知能耗,取100 (kW•h)/t DS。
設備折價:處理干污泥能力為 0.3×104 t/a的污泥堆肥廠設備投資約700萬¥,設備折價182 ¥/t DS(含佔地成本),取200¥/t DS。
1.5 焚燒成本
考慮到焚燒廢氣排放等問題,外運30 km以上焚燒為佳,取30 km;焚燒按干物質減量60%,燒余物需運至填埋場填埋,運輸距離取50 km。參考表3可知,乾燥至10%焚燒成本較乾燥至60%低。乾燥程度越高,焚燒廠佔地面積也越小,因此焚燒前以干化至10%為宜。
1.6 干化農用成本
未經穩定化處理污泥存在施用安全危險,考慮到干化的穩定效果較差,安全性有限,不再估算。
2 討論與分析
2.1 處理成本和經濟效益
表2 處理處置1 t城市污泥(干質量)所需的成本及其效益
Table 2 Comparison of the estimated cost and benefit of sewage sludge treated and/or disposed by different ways
填 埋
干化 運輸 填埋 綜合成本/¥
目標 能耗/¥ 設備折價/¥ 距離/km 運費/¥ 填土比例 費用/¥
80% 0 0 50 163 50% 390 5531),5532)
30% 2091),4182) 178 50 46 0 74 5071),7162)
80% 0 0 100 325 50% 390 7151),7152)
30% 2091),4182) 178 100 93 0 74 5541),7632)
焚燒
干化 焚 燒 燒余物 綜合成本/¥
目標 能耗/¥ 設備折價/¥ 運行/¥ 設備折價/¥ NaOH/¥ 運費/¥ 填埋/¥
60% 1461),2932) 124 60 365 128 13 20 8561),10022)
10% 2281),4552) 193 27 162 128 13 20 7711),9982)
堆 肥
能耗/¥ 設備折價/¥ 調理劑損耗/¥ 總成本/¥ 銷售/¥ 總效益/¥
391),782) 200 75 3141),3532) 410 961),572)
1) 電價取0.30 ¥/(kW·h);2) 電價取0.60 ¥/(kW·h)
各種處理方式處理成本估算過程及結果如表2所示。由表2可知,污泥處理處置以堆肥方式成本
最低,約300~350¥/t DS;填埋方式約500~760¥/t DS。焚燒方式成本最高,約800~1000¥/t DS。堆肥成本低於填埋方式,顯著低於焚燒方式,隨運輸距離增加填埋成本顯著高於堆肥成本。此外,污泥焚燒處理一次性投資大,運行維護費用最高。
各種處理方式中,污泥填埋沒有資源回收,效益為零;考慮到污泥熱值水平,回收焚燒熱能可能性較低,對凈效益影響不大;污泥干化可以起到脫水的效果,但穩定化的效果有限,加之干化過程中容易產生爆炸和肥效緩慢等問題,不宜提倡;在產品銷售良好情況下,按電價不同,堆肥處理可以盈利50~100¥/t DS。
2.2 各種處理處置技術的優缺點
現有的大部分填埋場設計建造標准低、缺乏污染控制措施,存在穩定性差等問題,導致散發氣體和臭味,污染地下水,不能保證填埋垃圾的安全,只是延緩污染但沒有最終消除污染。一些國家為了把上述問題降低到最小程度,制定了待處理污泥物理特性的最低標准,使污泥填埋的處理成本大大增加。例如德國要求填埋污泥干基含量不低於35%。為避免污泥中有機物分解造成的地下水污染,1992年德國發布了《城市廢棄物控制和處置技術綱要》,要求從2005年起,任何被填埋處理的物質其有機物含量不超過5% [15],這意味著污泥即便是經過乾燥也不滿足填埋的要求。污泥填埋面臨填埋場地、公眾及法規等多重壓力,填埋成本將逐步升高,近年來國外污泥填埋處理方式比例越來越小[6]。
是否推廣堆肥處理城市污泥,首先應切實評估施用污泥堆肥的潛在環境風險。杜兵等[16]研究表明,同國外相比北京市某典型污水處理廠酚類、酞酸酯類、多環芳烴類均處於污染程度較低的水平。堆肥處理的持續高溫可以確保殺滅病菌,保證污泥的農用安全。陳同斌等[17]對中國城市污泥的重金屬含量及其變化趨勢的研究結果表明,我國城市污泥中平均含量普遍較低,金屬含量基本未超過農用標准[18],且呈現逐漸下降的趨勢。近年相關研究也證明:科學合理地進行城市污泥農用不會造成土壤和農產品的重金屬污染問題[19]。我國城市污泥的土地利用重金屬環境風險並不像人們想像的那樣嚴重。
焚燒減量最為顯著,含水80%的污泥焚燒後減容率超過90%。然而,污泥含有多種有機物,焚燒時會產生大量有害物質,如二惡英、二氧化硫、鹽酸等,受國內焚燒技術的限制,二惡英污染問題尚未很好解決,重金屬煙霧與燃燒灰燼也可能造成二次污染。此外,焚燒浪費了污泥中的營養物質。對比三種處理處置方式,污泥焚燒佔地面積最小,但綜合成本最高,設備維護要求高,環保風險較大,這些不利之處都限制了污泥焚燒技術的廣泛應用。
綜上所述,堆肥處理實現污泥的資源化利用,科學合理施用下可以保證衛生安全及重金屬安全,同時較為經濟可行,是污泥處理處置技術的主要發展方向。但是,從市場銷售的角度來看,污泥堆肥產品的銷售渠道有待改善。各種處理方式優缺點概括於表3(下頁)。
2.3 電價影響及政府補貼
電價影響到污泥處理處置成本。電價從0.60¥/(kW•h)降低到0.30 ¥/(kW•h),各種處理方式的綜合成本分別降低40~230 ¥/t DS。如電價取至用電低谷期電價或者更低,成本可以進一步降低。
表3 各種處理處置技術優缺點對比
Table 3 Comparison of landfill, composting and incineration for sewage sludge
處理處置方式 收支平衡/(¥•t-1) 1) 技術難度 場地要求 能否資源化 無害化程度
填埋 -507~ -763 簡單 大 不能 延緩污染, 沒有最終消除污染風險
堆肥 57~96 較簡單 較小 能 重金屬低於農用標准時可以達到無害化要求
焚燒 -771~ -1000 技術設備要求高 小 不能 尾氣可能帶來二次污染
1) 運輸距離100 km、電價0.60 ¥/(kw•h)時, 以80%含水率填埋成本略低於30%含水率填埋, 但其佔地為後者5.25倍, 綜合考慮採取30%填埋
污泥含水80%及60%下填埋佔地分別為30%下填埋的5.25倍、1.75倍。政府通過補貼如降低電價等調控手段,將污水處理投入合理分配到其中的污泥處理單元,可以降低污泥處理單元的焚燒成本、填埋佔地,降低堆肥成本。政府補貼可以發揮經濟杠桿作用,調控污泥處理行業投入產出狀況,有利於污泥處理處置行業的健康發展。總之,污泥處理處置應該有適宜的政府補貼。
3 結論
(1)污泥堆肥成本隨電價變化約300~350 ¥/t DS,堆肥銷售可以補償部分處理成本,使污泥堆肥達到微利水平。合理施用堆肥可以提供養分和有機質,是污泥處理處置技術的重要方向。
(2)污泥填埋操作簡單,但其成本約500~760 ¥/t DS,高於堆肥處理。考慮到土地資源日益稀缺及二次污染問題,且從發達國家的經驗來看污泥填埋將逐步受到限制,因此其應用比例應逐漸減少。
(3)污泥焚燒減量效果最明顯,但其初始投資及運行費用最高,綜合成本約771~1000 ¥/t DS。其設備維護復雜,如果對尾氣處理不當會造成二次污染。
參考文獻:
[1] Edward S R, Cliff I D. 工程與環境引論[M]. 北京: 清華大學出版社, 2002.
Edward S R, Cliff I D. Introction to engineering & the environment [M]. Beijing: Tsinghua University Press, 2002.
[2] 柯建明, 王凱軍, 田寧寧. 北京市城市污水污泥的處理和處置問題研究[J]. 中國沼氣, 2000, 18(3): 35-36.
KE Jianming, WANG Kaijun, TIAN Ningning. Disposal of excess sludge from urban wastewater treatment plant in Beijing city [J]. China Biogas, 2000, 18(3): 35-36.
[3] 彭曉峰, 陳劍波, 陶濤, 等. 污泥特性及相關熱物理研究方向[J]. 中國科學基金, 2002, 5: 284-287.
PENG Xiaofeng, CHEN Jianbo, TAO Tao, et al. The specialties of sludge and associated thermal physical issues [J]. China Science Fund, 2002, 5: 284-287.
[4] 何品晶, 邵立明, 宗兵年. 污水廠污泥綜合利用與消納的可行性途徑分析[J]. 環境衛生工程, 1997, 4:21-25.
HE Pinjing, SHAO Liming, ZONG Bingnian. The feasible way analysis on comprehensive utilization and outlet of sludge in sewage treatment plant [J]. Environmental & Sanitary Engineerin,. 1997, 4:21-25.
[5] 鄧曉林, 王國華, 任鶴雲. 上海城市污水處理廠的污泥處置途徑探討[J]. 中國給水排水, 2000, 16(5): 19-22.
DENG Xiaolin, WANG Guohua, REN Heyun. Discussion at the treatment and disposal of the sewage sludge in Shanghai wastewater plants [J]. China Water and Wastewater, 2000, 16(5): 19-22.
[6] 國家建設部. CJ 3025 城市污水處理廠污水污泥排放標准[S]. 1993: 2.
Ministry of Construction of PR China. CJ 3025 Wastewater and sludge disposal standard for municipal wastewater treatment plants[S]. 1993: 2.
[7] 國家建設部. CJJ 17城市生活垃圾衛生填埋技術規范[S]. 2001: 20.
Ministry of Construction of PR China. CJJ 17 Technical Code for Sanitary Landfill of Municipal Domestic Refuse[S]. 2001: 20.
[8] 趙樂軍, 戴樹桂, 辜顯華. 污泥填埋技術應用進展[J]. 中國給水排水, 2004, 20(4): 27-30.
ZHAO Lejun, DAI Shugui, GU Xianhua. Application headway of sewage sludge landfill technique [J]. China Water & Wastewater, 2004, 20(4): 27-30.
[9] 高廷耀. 水處理手冊[M]. 北京: 高教出版社, 1983: 288-289.
GAO Tingyao. Handbook of water treatment [M].Beijing: Higher Ecation Press, 1983: 255-289.
[10] 朱南文, 徐華偉. 國外污泥熱乾燥技術[J]. 給水排水, 2002, 28(1): 16-19.
ZHU Nanwen, XU Huawei. Overseas technique of thermal drying sewage sludge [J]. Water Supply and Drainage.2002, 28(1): 16-19.
[11] 劉建國, 聶永豐. 京城垃圾處置[J]. 科技潮, 2004,7: 32-35.
LIU Jianguo, NIE Yongfeng. Treatment of waste in Beijing [J]. Technological Tides, 2004, 7: 32-35.
[12] 陳同斌, 高定, 黃啟飛. 一種用於堆肥的自動控制裝置: 中國, 0112522.9[P].
CHEN Tongbin, GAO Ding, Huang Q F. A servomechanism for composting: 中國, 0112522.9[P].
[13] 高定, 黃啟飛, 陳同斌. 新型堆肥調理劑的吸水特性及應用[J]. 環境工程, 2002, 20(3): 48-50.
GAO Ding, HUANG Qifei, CHEN Tongbin. Water absorbability and application of a new type compost amendment [J]. Environmental Engineering, 2002, 20(3): 48-50.
[14] 高定. 堆肥自動測控系統及其在豬糞堆肥中的應用[D]. 北京: 中國科學院地理科學與資源研究所, 2002: 78.
GAO Ding. The Development of Measuring and Controlling System and Its Application to Swine Manure Composting [D]. Beijing: Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, 2002: 78.
[15] 李美玉, 李愛民, 王志, 等. 發展我國污泥流化床焚燒技術[J]. 勞動安全與健康, 2001, 8: 20-23.
LI Meiyu, LI Aimin, WANG Zhi, et al. Develop sewage sludge fluidized bed incineration technique in our country [J]. Safety & Health at Work, 2001, 8: 20-23.
[16] 杜兵, 張彭義, 張祖麟, 等. 北京市某典型污水處理廠中內分泌干擾物的初步調查[J]. 環境科學, 2004, 25(1): 114-116.
DU Bing, ZHANG Pengyi, ZHANG Zulin, et al. Preliminary investigation on endocrine disrupting chemicals in a sewage treatment plant of Beijing [J]. Environmental Science, 2004, 25(1): 114-116.
[17] 陳同斌, 黃啟飛, 高定, 等. 中國城市污泥的重金屬含量及其變化趨勢[J]. 環境科學學報, 2003, 23(5): 561-569.
CHEN Tongbin, HUANG Qifei, GAO Ding, et al. Heavy metal concentrations and their decreasing trends in sewage sludge of China [J]. Transaction of Environmental Science, 2003, 23(5): 561-569.
[18] 國家環境保護總局. 城鎮污水處理廠污染物排放標准: 中國, 18918-2002[S]. 北京: 中國環境出版社, 2002: 5.
State Environmental Protection Agency. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant: China, 18918-2002[S]. Beijing: China Environment Press, 2002: 5.
[19] 田寧寧, 王凱軍, 柯健明. 剩餘污泥好氧堆肥生產有機復混肥的肥分及效益分析[J]. 城市環境與城市生態, 2001, 14(1): 9-11.
TIAN Ningning, WANG Kaijun, KE Jianming. Evaluation of organic complex fertilizer made of excess sludge from municipal wastewater treatment plant [J]. Urban Environment & Urban Ecology, 2001, 14(1): 9-11.
Ⅳ 北京最大再生水廠投入使用是怎麼回事
北京最大再生水廠-碧波污水處理廠6月30日正式投用。作為北京城市副中心最大的下沉式再生水廠,改造後處理才能提高多半,佔地上積卻僅為老廠的1/3。方案今年年底,地上將建成公園yzc88和景象湖,向市民免費打開。
現在,碧波污水處理廠天天要處理12萬噸污水,間隔滿負荷工作還有6萬噸的富餘量。」這位負責人說,出產的高品質再生水將用於玉帶河補水、工業冷卻用水以及市政雜用。
下沉式廠區的地上,今年年底前將建成一座生態公園。這座面積達百畝的公園中不光有旺盛的花木,更特意設置了體育休閑場地,添加了梨園區域體育運動場合。公園引進「海綿城市」的理念,使用下凹式綠洲,會聚並吸收來自地上的雨水,經過植物、沙土的歸納效果使雨水得到凈化,修養地下水源。
Ⅵ 北京「回天」TBD再生水廠通水運行,這個項目建設有何意義
建設該項目意義重大。再生水廠通過對污水的處理,提高了水資源的利用效率,對緩解首都用水壓力有著舉足輕重的的地位,尤其是對於昌平區幾十萬的居民來說,更是意義重大。幫助當地居民有效緩解用水壓力,也進一步也緩解首都的用水壓力。另一方面,作為污水處理的示範園區,對於超一線城市的污水處理也作出了一個典範,走出了一條全新的道路。
昌平區TBD再生水廠污水處理採用“A2O+MBR+臭氧脫色+次氯酸鈉消毒”工藝流程,污泥處理採用“濃縮+脫水+污泥外運”處理流程。使用這種工藝流程,能夠有效去除水中的細菌和病毒,自動化程度高、運行管理簡單,佔地面積相對較小。具體工作方式就是:通過管網收集污水,流入再生水廠中的粗格柵,過濾掉污水中較大的懸浮物和漂浮物,再流入提升泵池,進一步截留污水中的細小的懸浮物,再在沉砂池中沉澱污水中的無機砂粒。隨後,經過平流沉澱池、膜格柵、組合生物處理池,再進入清水池,由此得到的再生水最終被輸送至再生水管網或退水至七燕乾渠。
建設再生水廠一方面可以滿足昌平周邊區域的污水處理能力。另一方面進一步提高污水處理率及水資源循環利用率,從而緩解地區水資源緊缺狀況。
Ⅶ 高碑店污水處理廠回用方案研究
北京位於華北平原的北端,地處中國水資源十分貧乏的北方,是一個嚴重缺水的城市。北京人均佔有水資源量僅300m3左右,為全國人均水資源佔有量的1/8,世界人均水資源量的1/32。平水年水資源量約42億m3,其中地下水24億m3,地表水18億m3,枯水年水資源約33億m3。目前年用水量已達到平水年水資源量。迄今為止,地下水已嚴重超采,市區范圍內形成了1000多km2的漏斗區,地下水位連年下降,為此對地下水已經限采。
根據北京市國民經濟和社會發展遠景目標綱要和城市總體規劃,對北京市生活、工業、農業和城市河湖環境需水量進行預測,2020年全市需水量將達到60多億m3,年缺水約20億m3。因此,城市水資源供需不平衡和水資源短缺已成為制約北京社會經濟發展的重要因素。為了實現北京市國民經濟可持續發展戰略,緩解北京市面臨的21世紀城市發展和可利用水資源的矛盾,北京市政府決定開發城市污水資源作為城市第二水源。高碑店污水處理廠污水回用工程於1999年列入北京市政府《關於北京市環境污染治理目標與對策》(京政辦函〔1999〕)十大研究課題中,1999年3月至8月完成該項目的前期研究工作並完成了可行性研究,1999年10月完成項目立項和審批;2000年1月完成該工程的初步設計和審批工作,2月完成施工圖設計,4月開始施工,目前該工程施工已基本完成,預計今年上半年將正式啟用。該工程是將高碑店污水處理廠二級出水提升用於河道取水的工業用水,替代清潔水源、改善河道景觀,並將部分二級出水經深度處理後用於市政雜用(如道路噴灑、綠地澆灌等),替代自來水,達到城市污水資源化和改善河道水質的目的。回用水涉及的區域范圍,東至公路一環,西至西三環,南至南四環,北至長安街。地區面積為141km2。回用水用戶涉及到工業、公園綠化和河湖補水、道路噴灑等。本文主要分析該工程的技術方案和研究成果。
高碑店污水處理廠情況
高碑店污水處理廠是目前我國最大的污水處理廠,一期工程於1993年10月24日竣工投產,一期工程處理能力50萬m3/d。二期工程於1999年年底竣工投產。目前處理能力為100萬m3/d。高碑店污水處理廠污水系統流域面積96平方公里,服務人口240萬人,匯集北京市南部城區的大部分生活污水、東郊工業區、使館區和化工路的全部污水。該處理廠採用前置缺氧段活性污泥法工藝,即在推流式曝氣池前設置缺氧段,其目的是改善污泥性質,防止污泥膨脹。目前高碑店污水處理廠二級出水直接排入通惠河下游,除每年約5500萬m3用於農業灌溉外,剩餘的處理水每年超過3億m3沒有得到利用,根據我們對該廠出水的幾次實測和該廠提供的1999年出水水質分析結果,其出水達到設計要求,出水水質水量穩定,其二級出水多數參數已接近相關的回用水水質標准.但高碑店污水處理廠二級出水中氨氮和磷的含量還偏高,主要是該廠立項較早,當時在國家城市污水處理廠排放標准中還沒有除氮脫磷的要求。因此該廠一期處理工藝中未設除磷脫氮設施。
可能應用對象分析
潛在工業用戶高碑店污水處理廠內部用水高碑店污水處理廠已建規模為1萬m3/d的廠內回用水工程,主要用於污泥脫水沖洗濾布、檢修、噴灑、澆灑綠地、洗車用水水源等,該用水應優先保證。華能熱電廠華能熱電廠位於高碑店污水處理廠對面。高碑店污水處理廠至華能熱電廠之間鋪設了兩條直徑800mm的管道,同時該廠內部的深度處理站也已經建成。華能熱電廠提供的最新數據表明,該廠現計劃四台機組冷卻補水全部使用高碑店污水處理廠二級出水作為水源,並通過本廠深度處理站處理後再利用,以保證冷卻水水質。該廠實際可利用高碑店污水處理廠二級出水為7.68萬m3/d,該用水應優先保證。北京市第一熱電廠北京市第一熱電廠是一座高溫高壓熱電廠,位於通惠河北側,距離高碑店污水處理廠僅幾公里。該廠共有循環泵4台,每台循環水量為4.15 立方米/秒,循環泵房設在通惠河北岸,冷卻水是開放式循環,正常生產情況下有三台泵運行,所需水量約12 m3/s(即104萬m3/d)。其補水量約26 - 34.6萬m3/d,平均補水量30.3萬m3/d。考慮到目前河道水質現況,為保持河道水質上游仍需來水,北京市第二熱電廠部分慣流退水仍能用於第一熱電廠,在近期方案中第一熱電廠回用高碑店污水處理廠處理水用水量僅考慮為20萬m3/d。在遠期工程方案中,第二熱電廠採用封閉式循環冷卻方式運轉,耗水量將大大減少,第二熱電廠不再有慣流退水供第一熱電廠使用。因此,在遠期工程方案中第一熱電廠回用高碑店污水處理廠處理水用水量將在近期方案規模基礎上擴大10萬m3/d。北京市水源六廠北京市水源六廠距高碑店污水處理廠僅幾公里,此廠是為工業提供用水的河水廠,廠內建有規模為17萬m3/d的深度處理設施。而1998水源六廠供水情況僅為4.7萬m3/d,其中化工實驗廠1.5萬m3/d,有機化工廠0.6萬m3/d,化工二廠0.7萬m3/d,蒸汽廠0.3萬m3/d,焦化廠1.6萬m3/d。該廠進水取自通惠河。高碑店污水處理廠二級出水可直接供水源六廠使用。在近期方案中,東郊工業區和焦化廠利用高碑店污水處理廠處理水的水量為5萬m3/d,市政雜用水5萬m3/d。在遠期方案中,水源六廠再擴大7萬m3/d。通州工廠用水通州距高碑店污水處理廠約八公里。通州現有工廠120多家,包括化工、機械、紡織、造紙和食品等行業,用水量較大的工廠有造紙七廠、東方化工廠、通州氮肥廠和北京日用化學二廠等。通州的工廠共可使用再利用水量7萬m3/d。市政雜用水城市雜用用水在北京市污水綜合利用研究中一直未引起人們的重視,本研究中我們調查了沿通惠河、南護城河主要公園綠化面積、城市綠化、城市道路的噴灑用水量等,並多次走訪了市園林和環衛管理部門,具體調查結果如下:3.2.1 公園綠化及河湖用水沿河道主要公園有龍潭湖公園、北京游樂園、天壇公園、陶然亭公園、大觀園和萬壽公園,主要公園合計面積約267萬m2,公園綠化用水量約0.534萬m3/d。除外,上述公園河湖補水用水約2.3萬m3/d,沖廁用水約460 m3/d。所以主要公園總用水量約2.88萬m3/d。城市綠化用水在回用水供水范圍內有多處城市集中綠地,由於位置較為分散,在目前狀況下很難嚴格計算出回用於城市綠化的水量。故重點考慮集中在道路兩旁隔離帶和沿河道兩岸較集中的綠地,按北京市總體規劃估算城市綠化用水量約0.2萬m3/d 。道路路面噴灑用水據北京市規劃路網指標,其主幹路和次幹路的道路面積約5868萬平方米。目前可噴灑3389萬平方米,目前城市道路噴灑由市和區環衛部門負責,水源全部為自來水,取水點為固定的自來水消火栓。但按環衛部門道路噴灑水車取水半徑,並非所有可噴灑道路都能用高碑店污水處理廠處理水來代替。在方案中,城市雜用水將在水源六廠進行深度處理,深度處理後的出水用管道自水源六廠沿護城河輸送到西便門和廣安門。若在原有水源六廠供水管網中加設取水口,則可用高碑店污水處理廠處理水來噴灑的道路東至公路一環,西至西三環以西,東西長約23.5km。按環衛部門道路噴灑水車取水半徑3km計,南北長可達6km,可噴灑的地區面積為141km2。按北京市城市規劃設計研究院1992年《北京市總體規劃》研究成果,公路一環內道路用地率在1991年前為3.82%,到2010年將達13.43%。若在近期方案中道路用地率按10%計,則用高碑店污水處理廠處理水噴灑道路面積約14.1km2,根據環衛部門提供的噴灑道路的用水指標,每立方米水可噴灑2500 m2道路面積,則一天一次噴灑道路的需水量為0.564萬m3/d。目前北京市許多路面一天噴灑兩次。按市政府治理大氣環境污染,減少城市空氣灰塵量的要求,未來北京市路面噴灑要求達到一天三次。為此,在近期方案中按每天噴灑道路兩次考慮,則需水量約為1.13萬m3/d。近期方案市政雜用水規模上述市政雜用水合計約4.21萬m3/d,其中城市綠化及道路噴灑用水量為1.33萬m3/d;公園用水為2.88萬m3/d。考慮到不可預見水量和管網漏失率,近期方案中市政雜用水規模為5萬m3/d。3.3 農業灌溉用水高碑店污水處理廠農業灌溉區包括東南郊、朝陽、雙橋和通州四個灌區,分布在朝陽和通州通惠河兩岸的14個鄉和2個農場,現況灌溉面積20.21萬畝。農作物以糧、菜為主,其中糧田面積16.9萬畝,佔83%;菜田面積1.72萬畝,佔9%;林果及其它作物面積1.59萬畝,佔8%。農業灌溉需用水量約48萬m3/d,目前從官廳和密雲兩大水庫供給指標水及工業退水水量約10萬m3/d,採用地下水約19萬m3/d,從通惠河取水水量約19萬m3/d。高碑店閘下遊河道補水通惠河下游高碑店閘至北運河蒸發滲漏、一年八次換水和河道兩側綠化需水量約3.6萬m3/d。
回用技術方案
用戶用水優化分配
高碑店污水處理廠處理水優先保證廠內回用水1萬m3/d、華能熱電廠冷卻用水7.68萬m3/d、市政雜用水5萬m3/d、通過水源六廠供東郊工業區和焦化廠用水量5萬m3/d和第一熱電廠20萬m3/d,共計38.68萬m3/d。在遠期工程實施前,剩餘的高碑店污水處理廠處理水除用於高碑店閘至北運河兩側綠化和河道補水3.6萬m3/d外,還可以用於農業灌溉48萬m3/d,最後用於通州工廠7萬m3/d,總計97.28萬m3/d。在遠期工程方案實施後,第一熱電廠擴大用水量10萬m3/d,水源六廠擴大用水量7萬m3/d;剩餘的高碑店污水處理廠處理水用於高碑店閘至北運河兩側綠化和河道補水3.6萬m3/d、農業灌溉40.72萬m3/d,總計100萬m3/d。工程規模本工程方案主要考慮高碑店閘上游的回用水用戶,通過近期工程方案實施後才能利用高牌店污水處理廠處理水的用戶對象為:第一熱電廠20萬m3/d,市政雜用水5萬m3/d,通過水源六廠供東郊工業區和焦化廠用水量5萬m3/d。因此,近期工程方案規模為30萬m3/d。遠期工程方案規模將由近期工程方案規模30萬m3/d擴大到47萬m3/d。主要增加的用戶對象為:第一熱電廠用水規模擴大10萬m3/d,水源六廠擴大用水量7萬m3/d。工程方案高碑店污水處理廠二沉池出水經新建泵站(規模47萬m3/d)提升後用兩條管道分別輸送到高碑店湖(規模30萬m3/d)和水源六廠(規模17萬m3/d)。送至高碑店湖的處理水供北京第一熱電廠用水;送至水源六廠的處理水在該廠進行深度處理後,一部分通過水源六廠現有供水系統供給東郊工業區和焦化廠;一部分通過新建管道輸送到西便門和東便門。在水源六廠現有供水管道和新建管道沿線設取水口,供市政雜用取水。
回用水水質技術保障措施
高碑店污水處理廠改造由於高碑店污水處理廠出水中氮和磷的含量較高會直接影響回用水水質,必須對該廠進行技術改造,進一步提高該廠出水水質。2000年5月完成了該廠改造工程可行性研究。改造規模為50萬m3/d,即對高碑店污水處理廠一期工程(50萬m3/d)進行改造。該改造工程分兩步進行。第一步改造後使出水水質優於目前第一熱電廠冷卻水取水水源高碑店湖的水質,出水中BOD、COD、總磷和氨氮分別達到10mg/l、40mg/l、1mg/l和10mg/l。第二步改造使該廠50萬m3/d滿足高碑店湖Ⅳ類水體的水質要求。主要改造工作量包括曝氣池改造和污泥處理系統的改造。原曝氣池為1/12為厭氧區,其餘為好氧區,改造後將原池2/9為缺氧區及厭氧區(水力停留時間共為2h),其中進水端分出一停留時間為15min的強化吸附區。其餘仍為好氧區(水力停留時間7.25h)。原污泥系統中剩餘污泥泵入初沉池,其混合污泥再進污泥濃縮池濃縮後消化脫水,因濃縮污泥池停留時間太長(3d),處於厭氧狀態,磷又被釋放出來,通過上清液回到污水中,因此達不到除磷的目的。改造後,原有濃縮池改為濃縮酸化池,濃縮酸化池上清液做為碳源排入水處理系統;將消化池上清液和脫水機濾液及沖洗水收集後進行化學除磷。目前高碑店污水處理廠改造方案正在審批過程中,市政府將對改造工程單獨立項,其投資(約2511萬元)也不列入污水回用工程。深度處理措施高碑店污水處理廠二級出水水質水量穩定,達到設計要求,但還不能滿足市政雜用水標准,而綠化用水和道路噴灑等市政雜用水水質對人類健康和城市環境會產生影響,因此,市政雜用水必須在回用前進行深度處理,以滿足相應標准。在方案確定中通過不同廠址比較,將深度處理選擇在水源六廠。水源六廠現有日處理能力17萬m3/d的深度處理設施,主要採用機械加速澄清、砂濾和消毒等工藝處理過程。根據該廠提供的出水水質,其出水可滿足相應用戶要求。由於北京市工業結構的調整,目前該廠平均實際供水量不足5萬m3/d,尚有12萬m3/d處理能力沒有得到利用。另外,水源六廠離市政雜用水用戶較近,市政雜用水深度處理設在水源六廠利用其剩餘處理能力,可滿足市政雜用水近、遠期規模需求,在該廠深度處理後的水質能滿足市政雜用水水質要求。
主要工程內容和投資
本工程總投資33668萬元(不包括高碑店污水處理廠改造費用),其中征地拆遷費10000萬元,工程費用為19260萬元,工程建設內容主要為:(1)高碑店污水處理廠內47萬m3/d的泵站一座。(2)高碑店污水處理廠至高碑店湖輸水管:DN1800mm,長1480m。(3)高碑店污水處理廠至水源六廠管道:DN1400mm,長4766m。(4)市政雜用水配水管:DN1200mm,長6791m;DN1000mm,長1431m;DN800mm,長4615m;DN600mm,長2845m;D=500mm,長2880m。(5)水源六廠改造:包括蓄水池清淤和護砌、污泥池擴建、水泵改造、進出水口的改造、增加自控和電氣設備等。園林供水支線管道。
工程經濟效益分析
本工程總投資33668萬元,其中10000萬元為政府撥款,其餘為貸款(公司融資)。在考慮污水資源費0.20元/m3和水源六廠原有資產成本與利稅0.73元/m3的條件下,水價計算分析結果為:第一熱電廠用水水價0.31元/m3,市政雜用用水水價1.92元/m3,東郊工業區用水水價1.21元/m3。本工程完成後每年可節約清潔水資源16673萬m3,節約自來水3650萬m3/a,相當於節約了建設一座10萬m3/d的自來水廠的投資4億元。該工程能達到開源節流的目的,能為北京市城市綠化面積擴大和道路噴灑壓塵創造條件,對環境綜合治理具有較大的作用,環境的改善還會帶來了周圍地區的土地增值。
結論和討論
(1) 北京市是一個嚴重缺水型城市,合理利用高碑店污水處理廠處理水資源,對實現北京市國民經濟可持續性發展、緩解北京市面臨的21世紀城市發展和可利用水資源的矛盾具有重要意義。(2) 高碑店污水處理廠回用工程方案充分考慮了北京市城市水系、園林、道路及工業布局現狀,具有可實施性。(3) 高碑店污水處理廠污水回用工程能達到開源節流的目的,可以在一定程度上緩解北京城市水資源緊缺的局面,能為北京市城市綠化面積的擴大和道路噴灑壓塵創造條件,對環境綜合治理具有較大的作用。(4) 本工程總投資33668萬元,工程費用為19260萬元。按政府投資1億元,其餘為公司融資計算,在考慮水資源費0.20元/m3和水源六廠制水成本條件下,則回用水水價為:供第一熱電廠售水水價為0.31元/m3,供市政雜用售水水價為1.92元/m3,供東郊工業區售水水價為1.21元/m3。(5) 建議制定有關法規和政策,促進城市污水回用設施的發展。應盡快編制北京市回用水設施發展規劃,以便在相應的市政工程中鋪設回用水管道等設施,使城市污水回用設施逐步完善。
更多關於工程/服務/采購類的標書代寫製作,提升中標率,您可以點擊底部官網客服免費咨詢:https://bid.lcyff.com/#/?source=bdzd
Ⅷ 北京主城區的污水處理廠有哪些
北京城市排水集團有限責任公司高碑店污水處理廠x0dx0a北京城市排水集團有限責任公司小紅門污水處理廠x0dx0a北京威立雅污水處理有限責任公司x0dx0a北京城市排水集團有限責任公司北小河污水處理廠x0dx0a北京城市排水集團有限責任公司酒仙橋污水處理廠x0dx0a中國航天科工飛航技術研究院動力供應站x0dx0a北京城市排水集團有限責任公司吳家村污水處處理廠x0dx0a北京城市排水集團有限責任公司方庄污水處理x0dx0a北京盧南污水運營有限責任公司x0dx0a北京市海淀區再生水廠管理中心(溫泉再生水廠)x0dx0a北京肖家河污水處理有限公司x0dx0a北京城市排水集團有限責任公司清河污水處理廠x0dx0a北京市海淀區再生水廠管理中心(永豐再生水廠)x0dx0a北京市海淀區溫泉鎮水務管理站(太舟塢污水處理廠)x0dx0a城六區中,東西城和石景山沒有污水廠。
Ⅸ 北京城市排水集團所屬的再生水廠和污水處理廠有哪些
北京市城市排抄水監測總站有限公襲司(北京市朝陽區來廣營鄉新北路丙9號)
北京城市排水集團有限責任公司第二管網運營分公司(北京市朝陽區朝外街道芳草地西街小區東區)
北京市城市排水集團酒仙橋中水廠(將台窪社區衛生服務站北)
北京城市排水集團有限公司第三官網運營分公司(永泰庄北路11號清河再生水廠院內往北)
北京市城市排水集團有限公司第四管網運營分公司-北門(北京市豐台區開陽路12號)
北京市城市排水集團龐各庄轉運站(薛北路100米)
北京市城市排水集團有限公司清河廠(北京市海淀區永泰北路11號)
就找到這些。
Ⅹ 北京做污水處理的有哪些公司
北京肖家河污水處理公司
地址:北京市海淀區樹村西路27號
北京市北小河污水處理廠
地址:北京市朝陽區大屯鄉辛店村甲162號
北京威立雅污水處理有限責任公司
地址:北京市北京朝陽區霄雲路38號盛世大廈2201單元
電話:84538985
北京市華陽麗波污水處理技術有限公司
地址:北京市海淀遠大路金源商務中心
電話:010-88877794
北京嘉曉等離子體污水處理有限責任公司
地址:中國 北京 北京市東城區 蘇州胡同61號院
清河污水處理廠
地址:北京市海淀區西三旗
北小河污水處理廠
地址:北京市大屯鄉辛店村甲162號
電話:010-64950007
北京天竺污水處理廠
地址:北京市順義區天竺
酒仙橋污水處理廠
地址:北京市朝陽區將台
酒仙橋污水處理廠
地址:北京市朝陽區將台窪52號
電話:010-84318393
首鋼污水處理廠
地址:北京市石景山區八寶山
雲崗污水處理站
地址:北京市豐台區
方庄污水處理廠
地址:北京市豐台區成壽寺路10號
北京采育污水處理廠
地址:北京市大興區采育
北京市密雲縣污水處理廠
地址:北京市密雲鎮園林路66號
電話:010-69044356
北京排水集團吳家村污水處理廠
地址:北京市豐台區梅市口路59
北京市排水集團高碑店污水處理廠
地址:北京市朝陽區高碑店甲1號
電話:010-67745522
順天通物業管理污水處理廠
地址:北京市昌平區回龍觀
污水處理廠
地址:北京市延慶縣
黃村污水處理廠
地址:北京市大興區西紅門
北京排水集團威嘉污水處理廠
地址:北京市豐台區楊樹庄196
康莊鎮污水處理廠
地址:北京市延慶縣
小紅門污水處理廠
地址:北京市大興區南四環東路86號
懷柔區污水處理廠
地址:北京市懷柔區廟城
通州區污水處理廠
地址:北京市通州區城關鎮
金橋基地污水處理廠
地址:北京市通州區馬駒橋
良鄉衛星城污水處理廠
地址:北京市房山區良鄉
峪口鎮第一污水處理廠
地址:北京市平谷區峪口
金源經開污水處理公司
地址:北京市大興區西環南路3號
峪口鎮第二污水處理廠
地址:北京市平谷區峪口
北京市城市排水公司方庄污水處理廠
地址:北京市豐台區成壽寺路10號
北京市自來水集團檀州污水處理有限責任公司
地址:北京市密雲縣密雲鎮鼓樓西大街5號
北京市自來水集團夏都縉陽污水處理有限公司
地址:北京市延慶縣八達嶺工業開發區康西路118號
電話:81194377
酒仙橋污水處理廠籌建處
地址:北京市朝陽區將台路52號
平谷縣污水處理廠籌建處
地址:北京市平谷鎮文化北街7號
電話:010-69967888
八達嶺開發區污水處理廠
地址:北京市延慶縣八達嶺
自來水集團夏都縉陽污水處理公司
地址:北京市延慶縣延慶鎮
自來水集團檀州污水處理公司
地址:北京市密雲縣園林東路10號
北京門頭溝葡東污水處理廠
地址:北京市新橋南大街甲28號
電話:010-69843897
做客污水處理廠
地址:北京市豐台區成壽寺路10號
電話:010-87680995
污水處理廠
地址:北京市東城區青年湖南街12號樓首層
電話:010-84124880